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Summary

Interest often focuses on estimating sensitivity and specificity of a group of raters or a
set of new diagnostic tests in situations in which gold standard evaluation is expensive or in-
vasive. Various authors have proposed semi-latent class modeling approaches for estimating
diagnostic error in this situation. This paper presents imputation approaches for this prob-
lem. We show how imputation provides a simpler way of performing diagnostic error and
prevalence estimation than the use of semi-latent modeling. Furthermore, the imputation
approach is more robust to modeling assumptions and, in general, there is only a moderate
efficiency loss relative to a correctly specified semi-latent class model. We apply imputation
to a study designed to estimate the diagnostic accuracy of digital radiography for gastric
cancer. We illustrate the feasibility and robustness of imputation with analysis, asymptotic
results, and simulations.

Key words: Diagnostic accuracy; Gold standard evaluation; Mean imputation; Multiple
tests; Partial verification; Prevalence; Sensitivity; Specificity, Verification bias.

1 Introduction

Diagnostic tests are often used to diagnose or screen for a disease. Estimates of sensitivity

and specificity are commonly used quantities to compare tests as well as to judge the quality

of each test individually. Ideally, a series of experimental tests are performed on each patient

along with a definite gold standard test (aka, a reference test). Unfortunately, gold standard

evaluation may be expensive, time-consuming, or unethical to perform on all subjects. Fail-

ure to account for the verification process (possibly resulting in verification bias) is a well

known problem which has been extensively studied for the case of single experimental test

(Begg and Greenes (1983), Zhou (1993), and an interesting application by Punglia, et al.

(2003)). For multiple experimental tests, various authors have proposed semi-latent models
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which incorporate information on tests with and without gold standard evaluation. Walter

(1999) and VanderMerwe and Maritz (2002) focused on the situation of two tests when only

individuals with at least one positive test are verified with the gold standard test. Albert and

Dodd (2006) proposed two classes of models for the dependence between tests for partially

verified designs. Both of these models can easily be applied to either the situation in which

individuals are verified completely at random or to the situation in which the probability of

verification depends on the actual test results.

Although model-based approaches work well when the model is correctly specified, and

in many cases when the model is misspecified, estimation is complex and requires specialized

software. Imputation and re-weighting estimators for prevalence, sensitivity, and specificity

provide simple alternative to model based approaches, which have been studied for the case

of a single experimental test (Gao et al. (2000), Alonzo et al. (2001), Alonzo and Pepe

(2005)). There has been little work investigating imputation and re-weighted estimators in

the case of multiple correlated tests on a given individual. A notable exception is Zheng et

al. (2005) who propose a weighted estimating equations approach in this setting.

This paper discusses imputation approaches for estimating diagnostic error and preva-

lence with multiple tests under partial verification. The approaches are described in Section

2. In Section 3, we analyze the data from a study evaluating the use of digital radiography for

diagnosing gastric cancer using imputation approaches, a re-weighted estimation approach,

and alternative semi-latent class modeling approaches. In Section 4, we show the asymptotic

bias of the imputation approaches under two semi-latent class models which account for the

dependence between tests in different ways. We present the results of simulation studies in

Section 5. A discussion follows in Section 6.

2 Imputation Approach

Let i = 1, 2, ..., I be an index for individuals and let j = 1, 2, ..., J be an index for tests. Let

di be the true disease status, define Pd = P (di = 1) as the prevalence of disease, and let

vi be an indicator of whether the ith patient is verified. Further, let yij be the jth binary
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experimental test result on the ith patient and Y i = (yi1, yi2, ..., yiJ)′. We begin by addressing

the problem of estimating a common sensitivity and specificity across J experimental tests.

This is appropriate when a single test is repeated multiple times on each individual or when

interest focuses on obtaining an average sensitivity and specificity across J tests. Further, the

common sensitivity and specificity assumption leads to a simple formulation with a limited

number of parameters for examining the statistical properties of the imputation approaches

for multiple tests.

When gold standard evaluation is available on all subjects, simple method of moments

estimators of prevalence (Pd), sensitivity (Se), and specificity (Sp) are

P̂d =
1

I

I∑
i=1

di, Ŝe =

I∑
i=1

yi.di

J
I∑

i=1

di

, and Ŝp =

I∑
i=1

(J − yi.)(1 − di)

J
I∑

i=1

(1 − di)

. (1)

These estimators of the common sensitivity and specificity are maximum likelihood esti-

mators under an independence assumption across multiple tests, and are asymptotically

unbiased under an arbitrary dependence structure between tests.

We discuss various approaches for imputing values of di into (1) when di is not observed.

These approaches are generalizations of prior methodologies (Guo et al. (2000) and Alonzo

et al. (2001) for prevalence and Alonzo and Pepe (2005) for diagnostic accuracy), which are

now applied to the situation of multiple experimental tests.

For verified observations (vi = 1), we fit the following simple logistic regression model to

(di, Y i) data,

logitP (di = 1|yi., vi = 1) = β0 + β1yi. and yi. =

J∑
j=1

yij. (2)

The resulting maximum-likelihood estimators are denoted β̂0 and β̂1, and

P̂ (di = 1|yi., vi = 1) =
exp(β̂0 + β̂1yi.)

{1 + exp(β̂0 + β̂1yi.)}
. (3)
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For mean imputation (MI), we impute values of P̂ (di = 1|yi., vi = 1) (dented by d̂i) in

place of the unobserved di’s in (1) when observations are not verified (vi = 0). For semi-

parametric efficient estimation, we replace values of di by vidi

(P (vi=1|yi)
−(

vi−P (vi=1|yi)

P (vi=1|yi
)d̂i, where

P (vi = 1|yi) is the probability of verification which can depend on the test results yi (we

will discuss the verification mechanism in more detail later). When the verification process

is known (we are considering a verification process which is fixed by design), the semi-

parametric estimator (SPE) is unbiased under a misspecified model (Alonzo et al. (2001);

Alonzo and Pepe (2005)). An alternative to these two imputation approaches is a re-weighted

estimator in which di is replaced by vidi/P (vi = 1|yi). For multiple tests, this re-weighted

estimator is closely related to the generalized estimating equations approach proposed by

Zeng et al. (2005).

The imputation and re-weighted approaches can easily be adapted for estimating the

rater-specific estimates of sensitivity and specificity. Sensitivity and specificity for the jth

test (Sej and Spj) can be estimated as

Ŝej =

I∑
i=1

yijdi

I∑
i=1

di

and Ŝpj =

I∑
i=1

(1 − yij)(1 − di)

I∑
i=1

(1 − di)

. (4)

We propose imputing non-verified di’s into (4) by using a logistic regression model with

a regression coefficient corresponding to each of the J test results,

logitP (di = 1|yi1, yi2, .., yiJ , vi = 1) = β0 +
J∑

j=1

βjYij. (5)

Specifically, as in the common sensitivity and specificity case, we replace non-observed di’s

with P̂ (di = 1|yi1, yi2, ..., yiJ , vi = 1). More complex logistic regression models with high-

order interaction terms corresponding to interactions between multiple tests are possible.

However, we found that estimates of diagnostic error and prevalence were nearly unbiased

relative to a correctly specified parametric model when using simple additive imputation
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models. Alternatively, a simpler imputation model such as (2) can be used in place of (5).

The advantages and disadvantages of using (2) versus (5) are studies with simulations in

Section 5.

Standard errors of P̂d as well as a common and rater-specific Ŝe, and Ŝp can be estimated

using the Bootstrap (Efron and Tibshirani, 2003). Specifically, we construct a bootstrap

sample by sampling I individual observations (di, Y i, vi) at random with replacement from

the I total observations in the original dataset. For each bootstrap sample, estimates of

prevalence, sensitivity, and specificity are obtained using imputation. Standard errors can

then be estimated as the sample standard deviation of the bootstrap sample estimates.

The imputation approaches will be compared with the two semi-latent models proposed

by Albert and Dodd (2006). The first is a Gaussian random effects model in which depen-

dence between repeated tests is introduced through a Gaussian random effect. This model

will be referred to as the Gaussian random effects (GRE) model. The second model incor-

porates dependence between tests through a finite mixture, whereby given an individual’s

true status, the individual will either be subject to diagnostic error or be always correctly

diagnosed. This model will be referred to as the finite mixture (FM) model. Details about

these two semi-latent models are presented in the Appendix.

We will examine the performance of the imputation approaches under different types of

verification mechanisms. First, we will consider verification which is completely at random.

This type of verification occurs if the verification is a simple random sample chosen indepen-

dently from the test results Y i. For this process, we will denote the proportion of individuals

verified as r = P (vi = 1). Second, we will consider verification in which the probability of

verification depends on the test results Y i, where r
g(Y i)

= P{vi = 1|g(Y i)}, and where

g is a function of the test results Y i. In this paper, we consider g(Y i) =
J∑

j=1

yij . This

type of verification has been referred to as verification biased sampling (Begg and Greenes,

1983; Pepe, 2003). An important special case, called extreme verification biased sampling

occurs when the reference standard test is obtained only on individuals with at least one

positive test because determining the gold standard test requires an invasive procedure such
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as surgery (r0 = 0 and rj = 1, j = 1, 2, ..., J). In this situation, it may not be ethical to

obtain gold standard evaluation when all tests are negative.

3 Motivating Example

The methodology is motivated by a medical imaging study which compared conventional

versus digital radiography for diagnosing gastric cancer (Iinuma, et al., 2000). In this study,

six radiologists (J = 6) evaluated 225 images on either conventional (I = 112) or digital

(I = 113) radiography in order to compare sensitivity and specificity across techniques and

radiologists. A gold standard evaluation was obtained from three independent radiologists

simultaneously reviewing clinical information along with all imaging data to provide a ref-

erence truth evaluation of the image. The review was done on 225 patients, although such

an extensive consensus review may not be possible for larger studies. We use the digital

radiography data from this study to illustrate the imputation approach and to compare the

results with those obtained by fitting the GRE and the FM models presented in Albert and

Dodd (2006) (see Appendix).

Table 1 shows the estimated diagnostic error for digital radiography using mean imputa-

tion for a differing proportions of completely random verification (r) and for extreme biased

sampling (r0 = 0, rs = 1, s = 1, 2, 3, ..., 6). The table shows estimated prevalence, sensitivity,

and specificity for the common sensitivity and specificity as well as for rater-specific sensitiv-

ities and specificities. For the common sensitivity and specificity we imputed data based on

(3) and for rater-specific estimates of sensitivity and specificity we imputed non-observed di’s

based on (4) (Results were very similar when we imputed based on (3) when estimating rater-

specific sensitivity and specificity. We will examine the effect of using a simpler imputation

model versus a more complex one in Section 5). In order to capture the variability associated

with different amounts of verification, we resampled data with replacement and incorporated

the reference standard on a given image subject to the verification mechanism. Means and

standard errors summarizing the 1000 bootstrap samples are presented in Table 1. The

results show that the means are close across the different verification mechanisms. Specifi-
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cally, means computed under completely random verification with r = 0.20 and r = 0.50 as

well as extreme biased sampling are close to estimates obtained under complete verification

(r = 1). For extreme biased verification, it was particularly surprising that mean imputation

performed so well, since an extrapolation of the logistic imputation model to the case of all

negative tests is required. We will show, in the next section, that this extrapolation works

well under certain probability mechanisms, but poorly under others.

Under complete verification, the mean imputation approach reduces to a method-of-

moments estimation approach similar to generalized estimating equations (Liang and Zeger,

1986) under an independence correlation structure assumption. In this case, estimates and

standard errors were nearly identical to those obtained with the two semi-latent models

under complete verification (Albert and Dodd, 2006). This was true for both the common

diagnostic error model and the rater-specific diagnostic error model. With 20% completely

random verification, estimates using the imputation approach appear to be closer to the

results for complete verification than when we used either the GRE or FM models. For

the common diagnostic error model, estimates of Pd, Se, and Sp were 0.23 (SE=0.06), 0.78

(0.07), and 0.91 (0.02) for the GRE model and 0.22 (0.05), 0.82 (0.08), and 0.90 (0.01) for

the FM model, respectively.

We estimating diagnostic accuracy and prevalence under both re-weighted estimation and

semi-parametric efficient estimation. For completely at random verification, the re-weighted

estimation is equivalent to discarding non-verified cases. For the common sensitivity and

specificity case under 50% completely random verification, estimates of prevalence, sensitiv-

ity, and specificity were 0.24 (SE=0.063), 0.75 (0.083), and 0.91 (0.020) for the re-weighted

approach and 0.24 (SE=0.046), 0.75 (0.074), and 0.91 (0.016) for semi-parametric efficient

estimation. These results suggest that the weighted estimation is substantially less efficient

(50% less efficient) and the semi-parametric efficient estimation is moderately less efficient

(approximately 27% less efficient) compared with mean imputation (presented in Table 1).

Similar results were observed when we estimated rater-specific sensitivity and specificity

(data not shown).

7



A comparison of the standard errors across the different proportions of verification in

Table 1 suggest that, particularly for estimating prevalence and specificity, there is little

gain in efficiency in verifying more than 50% of cases. If obtaining reference standard tests

is the constraining aspect of a study, these results suggest that it may be more cost-effective

to invest reference samples on new patients as compared with observing a larger proportion

of verified samples on existing patients.

We also examined other verification biased mechanisms in addition to extreme verifi-

cation bias. Specifically, we examined a verification mechanism in which we oversampled

discrepant cases by verifying images when there was a discrepancy among any of the 6 raters

with probability 0.40 and where we verified cases without any discrepancies with proba-

bility 0.05. Under this verification mechanism, prevalence, sensitivity, and prevalence are

estimated as 0.24 (SE=0.045), 0.76 (0.074), and 0.91 (0.018) for mean imputation and 0.24

(SE=0.65), 0.76 (0.117), and 0.90 (0.021) for semi-parametric efficient estimation. Thus,

there is potentially sizable efficiency loss for the semi-parametric efficient estimation relative

to mean imputation. Similar results were found for estimation of rater-specific sensitivity

and specificity (data not shown).

In all our analyses, we found that mean imputation and semi-parametric efficient es-

timation led to similar estimates (and both were similar to estimates obtained with the

semi-latent class models). The differences in the approaches were in the estimated standard

errors. Model based approaches were most efficient (smallest standard errors) followed by

mean imputation, semi-parametric efficient estimation, and finally by re-weighted estimation.

As we will further demonstrate with asymptotic results and simulations, the imputation ap-

proaches provide a good trade-off between (i) simplicity and robustness and (ii) efficiency as

compared with semi-latent class modeling approaches. In the next section we examine the

asymptotic bias for the mean imputation estimators for the case of a common sensitivity and

specificity, under both a completely random and a verification biased sampling mechanism.
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4 Asymptotic Bias

Asymptotic bias of the mean imputation estimator were evaluated under both GRE and

FM models (note that the semi-parametric efficient estimator is unbiased under any model).

Denote vi(yi.) as an indicator that the ith subject is verified which may depend on the sum

of the J tests. As the number of individuals I becomes large, the estimator of prevalence,

P̂d converges to P ∗
d , where

P ∗
d = E

[
divi(yi.) + P̂ (di = 1|yi., vi = 1){1 − vi(y)}]

= PdE
[
P (vi = 1|yi.)

]
+ E

[
P ∗(di = 1|vi = 1, yi.){1 − P (vi = 1|yi.)}

]
, (6)

where P ∗(di = 1|vi = 1, y) = exp(β∗
0 + β∗

1y)/{1 + exp(β∗
0 + β∗

1y)}, β∗ = (β0, β1)
′, and where

β∗ = argmaxβ∗E
{
LogL(β)

}
= E

[
P (vi = 1|yi.)P (di = 1|yi., vi = 1)logP ∗(di = 1|vi = 1, yi., β)

+ P (vi = 1|yi.){1 − P (di = 1|yi., vi = 1}
x log{1 − P ∗(di = 1|vi = 1, yi., β)}]. (7)

The expectations in the above equations are taken with respect to the true GRE or FM

model.

The estimators of sensitivity and specificity, Ŝe and Ŝp, converge to Se∗ and Sp∗, where

Se∗ =
1

JP ∗
d

E
[
yP (vi = 1|yi.)P (di = 1|yi., vi = 1) + yP ∗(di = 1|vi = 1, yi., β

∗){1 − P (vi = 1|yi.)}
]

(8)

and

Sp∗ =
1

J(1 − P ∗
d )

E
[
(J − y)P (vi = 1|yi.){1 − P (di = 1|yi., vi = 1)}
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+ (J − y){1 − P ∗(di = 1|vi = 1, yi., β
∗)}{1 − P (vi = 1|yi.)}

]
. (9)

Using (5)-(8), we computed the asymptotic relative bias for P̂d, Ŝe, and Ŝp (defined as

{P ∗
d − Pd}/Pd, {Se∗ − Se}/Se, and {Sp∗ − Sp}/Sp, respectively) under various situations.

Figure 1 shows the asymptotic relative bias for P̂d, as a function of the proportion verified

and the number of tests J , under the GRE model with completely random verification. The

figure shows that, in this case, the asymptotic bias is negligible for any number of tests J .

In general, we found that the asymptotic bias for P̂d, Ŝe, and Ŝp under either a GRE or FM

model was negligible with completely random verification.

We found no asymptotic bias under a FM model under verification biased sampling (in-

cluding extreme biased sampling). However, there is substantial bias under a GRE model.

Figure 2 shows the asymptotic relative bias under the GRE model with a random verifi-

cation process in which r0 = 0.05, rx = 0.40, for x = 1, 2, .., J − 1, and rJ = 0.05. This

particular mechanism is one in which discrepant measurements are over-sampled relative to

concordant measurements. For this configuration, the prevalence is positively biased, while

the sensitivity is negatively biased. In addition, the bias increases with an increasing J . We

investigated the asymptotic bias of the imputation procedure under extreme biased sam-

pling under a GRE model with Pd = 0.20, Se = 0.75, Sp = 0.90, and σ0 = σ1 = 2. We

found sizable asymptotic bias in this situation (we calculated P ∗
d = 0.22, Se∗ = 0.69, and

Sp∗ = 0.89). Thus, there is the potential for sizable amounts of bias with mean imputation

under extreme biased sampling.

We investigated a slight alteration to the imputation procedure under a verification biased

sampling mechanism. Rather than fitting an unweighted logistic regression for imputation,

we investigated the performance of a weighted logistic regression in which we weight inversely

proportion to the probability of verification. Specifically, we weight each verified observation

by 1/P (vi = 1|yi.). Figure 3 shows that the asymptotic relative bias is negligible when we

used the weighted logistic regression predictor. Further evaluations demonstrated that, with

the exception of extreme biased sampling, the use of the weighted predictor did very well

for all random verification mechanisms. Inverse proportional weighting does not work for
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extreme biased sampling since, there is no gold standard evaluation when
J∑

j=1

yij = 0, and

therefore, there is no appropriate weight for a category that is never observed.

5 Simulations

A series of simulations were performed to show the finite sample properties of the imputa-

tion approaches and re-weighted estimation relative to both a correctly specified semi-latent

model and a misspecified one.

Table 2 shows the performance of the imputation approaches relative to both FM and

GRE models for a common sensitivity and specificity when, data are simulated under a GRE

model, the logistic regression model (2) is used for imputation, and when I = 1000 and J = 5.

Further, data were generated under a verification biased sampling mechanism in which dis-

cordant test results were sampled more frequently than concordant results (r0 = r5 = 0.05

and rs = 0.40 for s = 1, 2, 3, and 4). As reported in Albert and Dodd (2006), the results

suggest that, under a verification biased sampling mechanism, estimates of prevalence and

diagnostic error obtained using a semi-latent model may be sensitive to the assumed depen-

dence structure between tests. The imputation estimates were computed using the weighted

logistic regression where the weights were chosen inversely proportional to the verification

probabilities. Recall, that the simple logistic imputation model resulted in biased (asymp-

totically) estimation when we did not implement this weighting. The results suggest that

the imputation estimates are nearly unbiased and that there is only a moderate efficiency

loss relative to using the correctly specified semi-latent model ( the sensitivity, specificity,

and prevalence with the mean imputation estimators are (0.051/0.066)2 = 60%, 60%, and

71% as efficient as using the correctly specified GRE model). The re-weighted estima-

tion approach is very inefficient relative to the imputation approaches or model-based ap-

proaches. For example, the re-weighted estimators of sensitivity, specificity, and prevalence

are (0.051/.092)2 = 31%, 31%, and 17% as efficient as using the correctly specified GRE

model. Further, although the semi-parametric estimator is robust under a misspecified im-

putation model, it is moderately less efficient than mean imputation (the efficiency of SPE
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relative to MI is 89%, 81%, and 86% for sensitivity, specificity, and prevalence, respectively).

We examined the effect of using a seriously misspecified imputation model on estimation.

To do this, we assumed the logistic model (2) in which y2
i. replaced yi. and simulated 1000

datasets under a GRE model. (Recall that results in Section 3 suggested that under a GRE

model, mean imputation is nearly unbiased with an imputation model given by (2) and

when the imputation is done by weighting each observation inversely proportional to the

probability of verification.) Similar to simulations presented in Tables 3 and 4, sensitivity,

specificity, and prevalence were chosen as 0.75, 0.90, and 0.20. Average MI estimates of

sensitivity, specificity, and prevalence were 0.72 (SE=0.066), 0.90 (0.019), and 0.21 (0.026),

demonstrating slight bias for sensitivity under the poor imputation model. As expected,

average SPE estimates were nearly unbiased with only a slight decrease in efficiency as

compared to those presented for the SPE estimates under imputation model (2) in Table 3

(data not shown).

Table 3 shows the performance of the imputation approach under a FM model with

the same verification biased sampling mechanism as specified for Table 2. The results are

similar to those discussed for Table 2. Specifically, estimates of the semi-latent model under

a misspecified model are biased, and the imputation approach provides nearly unbiased

estimates with only small efficiency loss relative to using the correctly specified modeling

approach. The efficiency of the mean imputation estimator of sensitivity, specificity, and

prevalence relative to the correctly specified semi-latent class model is 78%, 97%, and 89%,

respectively.

Table 4 shows the performance of the imputation approach for rater-specific estimates of

diagnostic error with I = 1000 and J = 4 under verification biased sampling with a GRE

model. Data were imputed using a weighted logistic regression model (weights are inversely

proportional to verification probabilities) with linear terms corresponding to the four test

results (i.e., using (5) ). As in the common sensitivity and specificity case, the MI approach is

nearly unbiased and moderately efficient as compared with the true semi-latent GRE model.

Note that the misspecified FM model results in substantial bias demonstrating the lack
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of robustness to modeling assumptions for the semi-latent class models under verification

biased sampling. Table 4 also suggests that there is a small loss of efficiency in using the

SPE (average relative efficiency of SPE to MI was 93%) and a substantially larger one when

using RW estimation, both relative to MI. We also conducted another simulation similar to

that presented in Table 4, in which we replaced the more complex linear predictor (5) by the

simpler logistic model (2). The results for the MI estimator suggests moderate efficiency in

estimating diagnostic accuracy and prevalence at the expense of a slight increase in bias (data

not shown). The root-MSE averaged over all four rater-specific sensitivities and specificities

as well as over prevalence was slightly lower for the simpler model (avg root MSE was 0.0363

using (2) and 0.0771 using (5)), suggesting that there may not be substantial gains in using

the more complex imputation model. Further, there were few differences in the bias and

variances of SPE estimators between the two imputation models (data not shown).

6 Discussion

In this paper, we present imputation approaches for estimating diagnostic error and preva-

lence when there are multiple experimental tests and only a fraction of the individuals have

gold standard evaluation. The imputation approaches are shown to have little or no bias

and are moderate to highly efficient as compared to a correctly specified semi-latent class

model.

There are a number of advantages of imputation over semi-latent class modeling ap-

proaches. First, imputation only involves fitting logistic regression models, making imple-

mentation simple. The semi-latent class modeling approaches require specialized software,

making their implementation more difficult. Second, imputation appears to be more robust

than misspecified semi-latent class models. This is particularly important under verification

biased sampling where model-based inferences on diagnostic error and prevalence may be

sensitive to modeling assumptions (see Tables 2, 3, and 4).

One disadvantage of imputation is under extreme biased sampling, in which individuals

who are negative on all tests have no gold standard evaluation. In this case, the imputation

13



approach requires an extrapolation of the logistic regression imputation model to the case

where all the experimental test results are negative. Although, this extrapolation appeared

to work well in our example (estimates of diagnostic accuracy for extreme-biased sampling

were close to those obtained with complete verification), it may not work well under certain

probability models. The asymptotic results showed that mean imputation resulted in nearly

unbiased estimation for FM models, but could be highly biased under GRE models.

Another potential disadvantage of imputation is the moderate efficiency loss relative to

a correctly specified semi-latent class model. In some situations, the extra effort in fitting a

semi-latent class model and performing model diagnostics to help assure that the dependence

structure between tests is correctly specified may be warranted. However, the additional

efficiency of the semi-latent class models may come at the expense of bias if in fact the

model is misspecified.

Our analyses and simulation studies suggested that there may be little pay-off in verifying

more than 50% of cases. Although various authors have considered optimal design strategies

for the case of a single diagnostic test (Irwig, et al. (1994); Tosteson et al. (1994); McNamee

(2002)), there has been little or no work on the optimal design problem for multiple tests.

This is an area for future research. However, the choice of an optimal design will depend

heavily on assumed probability distributions for the multiple tests. Therefore, we question

the practicality of developing an optimal design in this situation.

We compared two classes of imputation estimators (mean imputation and semi-parametric

efficient estimation) with re-weighted estimation as well the fully efficient semi-latent class

modeling approaches. We found the re-weighting approach particularly inefficient for our

problem. Although, this loss in efficiency has been reported previously for the case of a

single diagnostic test (Alonzo, et al., 2003), there appears to be a larger loss for case of

multiple experimental tests. Presumably, this is because (i) the re-weighted approach does

not explictly use information about the multiple experimental tests on non-verified cases,

and (ii) there is more information in these multiple tests than in a single experimental test.

Alonzo et al. (2003) reported efficiency gains for the re-weighted approach when known
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verification weights were estimated from the data. We would expect similar small gains in

efficiency for multiple tests when estimating these verification weights. However, even with

these anticipated gains, we would not recommend re-weighted estimation in this setting due

to overall low efficiency compared with the other methods considered. We showed that mean

imputation resulted in nearly unbiased estimation under two different broad classes of semi-

latent class models. Further, although semi-parametric efficient estimation is unbiased in this

setting (i.e., unbiased when the verification mechanism is known), there can be moderate

efficiency loss relative to estimation with mean imputation.

Our major focus was on the situation where the verification process was fixed by design

(e.g., limited resources require the investigators to verify only a small fraction of cases). How-

ever, in many situations, investigators attempt to verify everyone, but for various reasons,

many individual refuse the gold standard test. Incorporating subject-specific covariates into

the imputation model may be appropriate in these cases.
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Appendix: Gaussian random effects (GRE) and finite mixture (FM) models.

As described in Albert and Dodd (2006), the semi-latent models are based on the likeli-

hood

L =

I∏
i=1

[
P (Y i|di)P (di)

]vi
[ 1∑

l=0

P (Yi|di = l)P (di = l),
]1−vi

(10)
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where the P (Y i|di) is parameterized to incorporate conditional dependence between tests.

The GRE model incorporates dependence between tests by assuming that (Yij|di, bi) are

independent Bernoulli with proportions given by Φ(βjdi
+ σdi

bi), where the random variable

bi is standard normal and Φ is the cumulative distribution function of a standard normal

distribution. Under this model P (Y i|di) =
∫ {∏J

j=1 P (Yij|di, bi)}φ(b)db, where φ(b) is the

standard normal density. Under the GRE model, the sensitivity and specificity of the jth

test is given by Φ(βj1/
√

1 + σ2
1) and 1 − Φ(βj0/

√
1 + σ2

0), respectively.

The FM model incorporates dependence between tests through a finite mixture compo-

nent. Let lidi
be an indicator of whether the ith subject, given disease status di, is always

classified correctly. Further, let η0 = P (li0 = 1) and η1 = P (li1 = 1). Test results Yij given

di and lidi
are assumed independent Bernoulli with probability

P (Yij = 1|di, lidi
) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if di = 1 and li1 = 1

0 if di = 0 and li0 = 1

ωj(1) if di = 1 and li1 = 0

1 − ωj(0) if di = 0 and li0 = 0,

(11)

where ωj(di) is the probability of the jth test making a correct diagnosis when the individual

is subject to diagnostic error (li1 = 0 or li0 = 0) and the true disease state is di. Under the

finite mixture model, the sensitivity and specificity of the jth test are η1 +(1− η1)ωj(1) and

η0 + (1 − η0)ωj(0), respectively. Estimation is based on maximizing (9).

Figure Legends:

Figure 1: Asymptotic relative bias of mean imputation for estimating Pd under a Gaussian

random effects (GRE) model with completely random verification. The Gaussian random

effects model has SENS = 0.75, SPEC = 0.90, Pd = 0.20, and σ0 = σ1 = 2.

Figure 2: Asymptotic relative bias of mean imputation for estimating Pd (solid line), Se

(dotted line), and Sp (dashed-dotted line) under a GRE model, verification biased sampling,

and an unweighted logistic imputation model. The Gaussian random effects model has

16



SENS = 0.75, SPEC = 0.90, Pd = 0.20, and σ0 = σ1 = 2. The verification mechanism is

r0 = rJ = 0.05, rx = 0.40, x = 1, 2, ..., J − 1.

Figure 3: Asymptotic relative bias for estimating Pd (solid line), Se (dotted line), and Sp

(dashed-dotted line) with mean imputation under a GRE model, verification biased sampling,

and a weighted logistic imputation model. The weights are chosen inversely proportional

to the verification probabilities. The Gaussian random effects model has SENS = 0.75,

SPEC = 0.90, Pd = 0.20, and σ0 = σ1 = 2. The verification mechanism is r0 = rJ = 0.05,

rx = 0.40, x = 1, 2, ..., J − 1.
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Table 1: Mean imputation estimation of overall and rater-specific sensitivity and specificity
as well as prevalence for digital radiography using partial verification designs. Individuals
were re-sampled with replacement to obtain a re-sampled dataset of 113 patients. For the
first three columns, verification was done completely at random with probability r. For the
fourth column, verification was done on all subjects with at least one positive test (extreme
biased sampling). 1000 resampled datasets were obtained and means (SE) across these
datasets are presented.

Rater r = 0.20 r = 0.50 r = 1.0 Extrem. bias samp∗

Overall Pd 0.24 0.24 0.24 0.24
(0.05) (0.04) (0.04) (0.04)

SENS 0.76 0.76 0.75 0.77
(0.08) (0.06) (0.06) (0.06)

SPEC 0.91 0.91 0.91 0.91
(0.02) (0.01) (0.01) (0.01)

Pd 0.24 0.24 0.24 0.24
(0.07) (0.05) (0.04) (0.05)

1 SENS 0.68 0.67 0.67 0.67
(0.17) (0.12) (0.09) (0.10)

SPEC 0.99 0.99 0.99 0.99
(0.02) (0.01) (0.01) (0.01)

2 SENS 0.78 0.77 0.78 0.79
(0.15) (0.11) (0.08) (0.09)

SPEC 0.87 0.87 0.87 0.87
(0.05) (0.04) (0.04) (0.04)

3 SENS 0.52 0.52 0.52 0.52
(0.15) (0.11) (0.10) (0.10)

SPEC 0.99 0.99 0.99 0.99
(0.01) (0.01) (0.01) (0.01)

4 SENS 0.82 0.81 0.82 0.83
(0.17) (0.11) (0.08) (0.09)

SPEC 0.97 0.97 0.97 0.97
(0.03) (0.02) (0.02) (0.02)

5 SENS 0.85 0.85 0.85 0.86
(0.14) (0.09) (0.07) (0.08)

SPEC 0.72 0.72 0.72 0.72
(0.07) (0.05) (0.05) (0.05)

6 SENS 0.85 0.87 0.89 0.90
(0.14) (0.09) (0.06) (0.08)

SPEC 0.89 0.89 0.90 0.90
(0.06) (0.04) (0.03) (0.03)

∗ The average proportion of individuals verified (at least one positive test result) was 55%.
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Table 2: Simulation: A comparison of mean imputation (MI), semi-parametric efficient
(SPE), and re-weighted (RW) estimation approaches with a correctly specified GRE model
and a misspecified FM model. Equation (2) was used to impute data. Data are generated
under a GRE model where Pd = 0.2, σ0 = σ1 = 1.5, SENS = 0.75, SPEC = 0.90, I = 1000,
and J = 5. Further, the verification is at random where r0 = r5 = 0.05 and rx = 0.40 for
x = 1, 2, 3, and 4. 1000 resampled datasets were obtained and means (SE) across these
datasets are presented.

Method SENS SPEC Pd

MI 0.75 0.90 0.20
(0.066) (0.018) (0.025)

SPE 0.75 0.90 0.20
(0.070) (0.020) (0.027)

RW 0.74 0.90 0.20
(0.092) (0.025) (0.051)

GRE 0.74 0.90 0.20
(0.051) (0.014) (0.021)

FM 0.83 0.92 0.21
(0.023) (0.008) (0.014)
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Table 3: Simulation: A comparison of the mean imputation (MI), semi-parametric efficient
(SPE), and re-weighted (RW) estimation approaches with a correctly specified FM model
and a misspecified GRE model. Equation (2) was used to impute data. Data are generated
under a FM model where Pd = 0.2, η0 = 0.2, η1 = 0.50, SENS = 0.75, SPEC = 0.90,
I = 1000, and J = 5. Further, the verification is at random where r0 = r5 = 0.05 and
rx = 0.40 for x = 1, 2, 3, and 4. 1000 resampled datasets were obtained and means (SE)
across these datasets are presented.

Method SENS SPEC Pd

MI 0.75 0.90 0.20
(0.037) (0.0062) (0.016)

SPE 0.75 0.90 0.20
(0.040) (0.061) (0.017)

RW 0.74 0.90 0.20
(0.073) (0.014) (0.048)

FM 0.75 0.90 0.20
(0.030) (0.0056) (0.016)

GRE 0.65 0.89 0.23
(0.051) (0.0067) (0.023)
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Table 4: Simulation: A comparison of the mean imputation approach with a correctly
specified GRE model and a misspecified FM model when estimating rater-specific sensitivity
and specificity. Equation (5) was used to impute data. Data are generated under a GRE
model where Pd = 0.2, σ0 = σ1 = 1.5, I = 1000, and J = 4. Further, the sensitivities for the
four raters are 0.80, 0.85, 0.90, and 0.95, and the specificities are 0.95, 0.90, 0.85, and 0.80.
The verification is at random where r0 = r5 = 0.05 and rx = 0.40 for x = 1, 2, 3, and 4. 1000
resampled datasets were obtained and means (SE) across these datasets are presented.

Rater Truth MI SPE RW GRE FM

1 SENS 0.80 0.80 0.80 0.79 0.80 0.82
(0.06) (0.06) (0.09) (0.05) (0.04)

SPEC 0.95 0.95 0.95 0.95 0.95 0.97
(0.02) (0.02) (0.03) (0.02) (0.01)

2 SENS 0.85 0.85 0.85 0.84 0.85 0.88
(0.05) (0.05) (0.07) (0.04) (0.03)

SPEC 0.90 0.90 0.90 0.90 0.90 0.92
(0.02) (0.02) (0.03) (0.02) (0.01)

3 SENS 0.90 0.90 0.89 0.90 0.90 0.93
(0.05) (0.05) (0.06) (0.04) (0.02)

SPEC 0.85 0.85 0.85 0.85 0.85 0.87
(0.02) (0.02) (0.03) (0.02) (0.01)

4 SENS 0.95 0.95 0.95 0.95 0.95 0.97
(0.04) (0.05) (0.05) (0.04) (0.02)

SPEC 0.80 0.80 0.80 0.80 0.80 0.82
(0.02) (0.02) (0.03) (0.02) (0.02)

Pd 0.20 0.20 0.20 0.20 0.20 0.21
(0.02) (0.03) (0.06) (0.02) (0.02)
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