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Abstract

In many biomedical applications, researchers encounter semicontinuous data whereby

data are either continuous or zero. When the data are collected over time the obser-

vations are correlated. Analysis of these kind of longitudinal semi-continuous data

is challenging due to the presence of strong skewness in the data. In this paper, we

develop a flexible class of zero-inflated models in a longitudinal setting. Improving

on a likelihood-based approach (using Monte-Carlo EM) that was proposed by Al-

bert and Shen (2005), we use a Bayesian approach to analyze longitudinal data from

a acupuncture clinical trial in which we compare the effects of active acupuncture,

sham acupuncture and standard medical care on chemotherapy-induced nausea in

patients being treated for advanced stage breast cancer. A penalized spline model

is introduced into the linear predictor of the model to explore the possibility of

nonlinear treatment effect. The subject-specific effects involved in the model are

assumed to follow a nonparametric Dirichlet process (DP) mixture. We also account
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for possible serial correlation between successive observations using Brownian mo-

tion. Thus, the approach taken in this paper provides for a more flexible modeling

framework and, with the use of WinBUGS, provides for a computationally simpler

approach than direct maximum-likelihood. We illustrate the Bayesian methodology

with the acupuncture clinical trial data analyzed by Albert and Shen (2005).

Key words: Acupunture; Dirichlet Process mixture; Emesis; Penalized-spline;

Two-Part model; WinBUGS
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1 Introduction

In many biomedical applications, a longitudinal response variable may take continuous distri-

bution with a large number of values clustered at zero. These kind of longitudinal models with

clumping at zero are referred to as two-part model by Lachenbruch (2002) and semicontinuous

model by Olsen and Schafer (2001). Data structure in a two-part model is quite different from

one that has been left-censored or truncated, because the zero’s represent actual response val-

ues. For example, in the data set we consider, at some time points patients experience large

amount of vomitting and at some other time points there is no vomitting at all (i.e., with zero

vomitting). Treating these kind of data using a normal distribution is not suitable since ignor-

ing the many zeros, especially when a sizeable proportion of the data is zero, implies that the

underlying parametric distributional assumptions will not be met. This type of data may also

be positively skewed for the nonzero values. So in a two-part model, the data can be considered

as a mixture of 0’s and highly skewed, continuously distributed, positive values (Robinson et

al., 2006). Hence, in a two-part model, zeros should be analyzed separately from the nonzero

continuous data.

The two-part model which originated in econometrics (Heckman, 1976; Duan et. al. 1983)

is based on two equation. One equation (logistic model) is used to predict the probability

of occurrence of a nonzero value, and a second equation (linear model) is used to predict the

amount of nonzero values. Recently, Zhou and Tu (1999) and Tu and Zhou (1999) have proposed

testing procedures for comparing different populations on the basis of a two-part model. More

recently, Welsch and Zhou (2006) proposed methodology which allows for flexibly modeling the

continuous part of the data. However, majority of the literature in the area addresses the cross-

sectional case whereby only a single observation is measured on each individual. Excess zeros

may also occur with longitudinal data and in that scenario the correlation among measurements

on the same individual must be accounted for. Olsen et al. (2001) and Tooze et. al. (2002) have
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extended a two-part regression model to include random effects in both the logistic and linear

stages of the model to capture unexplained heterogeneity among individuals in a longitudinal

data. Recently Albert et al. (2005) developed a longitudinal two-part model with a Gaussian

process to account for the serial correlation . Lu et al. (2004) and Albert (2005) discuss an

estimating equations approach for two-part model with application to clustered data, and Li et

al. (2005) introduced measurement error model in semicontinuous longitudinal data. While a

majority of these approaches are based on maximum likelihood estimation, Zhang et al. (2006)

developed a Bayesian two-part model to analyze health care data. Robinson et al. (2006) has

developed a hierarchical Bayesian approach to analyze a multivariate two-part model. However,

all these models are heavily dependent on the normal distribution and uses a parametric mixed

model. Thus, the resulting estimates of the parameters may be compromised if the assumption

of the parametric distribution is violated.

Shen et al (2000) presented the results of a clinical trial where daily emesis volume was col-

lected longitudinally over a two week period for breast cancer patients being treated with a stan-

dard chemotherapy. 104 patients were randomized between three groups: (i) patients treated

with standard chemotherapy only (34 patients), (ii) patients treated with sham acupuncture

(33 patients), and (iii) patients treated with active acupuncture (37 patients). An important

endpoint for this study was the daily measurement of the volume of emesis over a 14- day

follow up period. Figure 1 presents a histogram of daily emesis volume of all patients com-

bined, showing the presence of many 0s, and demonstrating that there are many days in which

patients have no emesis. Interest primarily focused on comparing the longitudinal course of

patients treated with sham acupuncture with those treated with active acupuncture. Albert et

al (2005) used this dataset as motivation for a direct likelihood approach for fitting two-part

models for longitudinal data. Their model assumed a standard linear model for incorporating

time effects on both the probability of a positive volume and the mean volume given a posi-

tive volume. Further, they assumed that longitudinal dependence between measurements were
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described by a stochastic process which accounted for serial as well as between-subject depen-

dence. Incorporating serial dependence (which was important to do in this application) made

estimation difficult, requiring Monte-Carlo EM for parameter estimation. Further, standard

errors were estimated using the bootstrap, making inference particularly computational.

In this article, we study the two-part model under both parametric and nonparametric

Bayesian framework to analyze the data in Shen et al. (2000). Although we build our model

based on Albert et al. (2005), our model offers an extension of the existing methods on several

issues. First, a penalized spline (Ruppert et al., 2003) model is introduced in both the logistic

and linear predictor of the model to flexibly model the interaction of treatment over time. Pe-

nalized spline models have a simple mixed model representation which allows the entire model

to be cast within the mixed model framework. Figure 2 shows the nonlinearity of the longi-

tudinal trajectory of the mean emesis volume for patients over the weeks for each treatment.

The kind of semiparametric model developed is useful to explore the nonlinear effect of time

and treatment on the responses. Second, we add more flexibility to the model by incorpo-

rating a Brownian motion to account for the serial correlation in the data. Third, we relax

the distributional assumption of the random effect and propose a flexible random effect using

Dirichlet Process (DP) mixture rather than assume the effect as Gaussian. The DP has the

advantage of not assuming any parametric form of the distribution. Instead the data determine

the shape of the random effects distribution. DP mixture models (Fergusion, 1973; Antoniak,

1974, Escober and West, 1995; Kleinman and Ibrahim, 1998), by now have an extensive litera-

ture in Bayesian analysis and have been established to provide a rather broad and flexible class

of distributions. To our knowledge, none of the previous approaches considered DP mixture

in the settings considered here. Another important contribution of our model is the easy and

simple implementation in the freely available software WinBUGS (Spiegelhalter, 2005). This is

incontrast to a likelihood approach where Monte-Carlo EM (see McCulloch (1997) for details)

requires software development and is very computationally intensive.
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In the next section we introduce the model and discuss the parametric Bayesian method.

In section 3 we relax the normality assumption and develop a nonparametric method. This

nonparametric method is particulary useful when the normality assumption is at stake. In

Section 4 we illustrate the application of the proposed method in a real data set followed by

discussion and further research in section 5.

2 Parametric Bayesian Model for Longitudinal Two-part

Model

In this section a two-part model for semicontinuous longitudinal data is introduced. We develop

our two-part model based on Albert et al., (2005).

Let yij be the volume of emesis for subject i (i =, 2, · · · , n) at week j (j = 1, 2, · · · ,m),

where n is the total number of subjects and m is the total number of follow-up times. For the

acupuncture clinical trial, n = 104 and m = 14. Let Rij be a random variable denoting the

volume of daily emesis where,

Rij =





0, if yij = 0

1, if yij > 0

(1)

with conditional probabilities

Pr(Rij = rij|θ) =





1− pij(θ1), if rij = 0

pij(θ1), if rij = 1

(2)

where θ1 is a vector of parameters.

Let, Sij ≡ [yij|Rij = 1], denote the mean transformed positive emesis volume for the ith

subject at jth week with p.d.f. f(sij|θ2) where f(sij) may be any distribution with yij > 0. We
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assume a continuous normal distribution for the log-transformed volumes (log(Y + 1)).

Stage One: We assume the following model for the two-part model:

logit(pij|θ1) = XT
1ijβp + fp(tij) + gp

ci
(tij) + ZT

1ijb1i + Wijp (3)

f(sij|θ2) = XT
2ijβs + f s(tij) + gs

ci
(tij) + ZT

2ijb2i + Wijs + eij (4)

The logistic regression (3) models the probability of a positive volume and the linear mixed

model (4) models the mean transformed positive emesis volume. Here, βk (k = p, s) are qk

vector of regression coefficients. The nonparametric function of time fk(tij) is the spline model.

In order to capture the nonlinear trajectory of the different treatments over time, we might

be interested in fitting a separate mean curve for subjects receiving each treatment. To do

that we use an arbitrary smooth function gk
ci
(tij) to model interaction in which a categorical

factor (treatment) interacts with a continuous predictor (Coull et al., 2001; Durban et al., 2004;

Ruppert et al., 2003; Crainiceanu et al., 2006). Here, ci ∈ {1, 2, · · · , L} represents the treatment

group index corresponding to subject i, and gk
1 , · · · gk

L are L different functions depending on the

values of ci. Note that gk
ci

are the deviations of the treatment group from the overall curve. The

random effects bi = (b1i,b2i)
T accounts for the unobserved heterogeneity among the subjects.

A random intercept in the logistic model allows some subjects to have consistently high or

low probability of a positive volume, while a random intercept in the lognormal part allows

individuals to have a tendency to high or low mean volume given they have a positive volume.

To account for the serial correlation in the data (Albert et. al., 2005), we include a stochastic

process apart from the usual random effects to flexible model the semicontinous longitudinal

data. Thus, the process Wij = (Wijp, Wijs)
T is similar to the bivariate stochastic process model

involving Brownian motion of Sy et al. (1997). However, because the measurements in our

data were taken on a fixed schedule, rather than irregularly as in the study data used by Sy et

al. (1997), we instead use a bivariate random walk as the stochastic-process in our model. This
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Brownian motion Wij models the local variation and departure from the polynomial trend while

the random effects bi account for the variability of the trend across the subjects. Brownian

motion also adds flexibility to the nonparametric function of time. The measurement error eij

is assumed to have a N(0, σ2) distribution.

Stage two: The second stage of the the model (3-4) defines the distributional assumptions on

the random subject effects vector bi and the bivariate stochastic process Wij. The random walk

increments at time 0 are fixed at 0. Thus, we assume,

bi ∼ N


0, Σ =


 Σ11 Σ12

Σ12 σ22





 (5)


 Wijp

Wijs


 |


 Wi,j−1,p

Wi,j−1,s


 ∼ N





 Wi,j−1,p

Wi,j−1,s


 , (tj − tj−1)Σw


 ; j = 2, · · · ,m; (6)

For the first time point we assume the increments to be zero, i.e., (Wi1p ≡ 0), and (Wi1s ≡
0). Although we assume a normal distribution for the random subject effect bi, we relax the

distributional assumption in next section.

We estimate the smooth functions {fk(t), gk
ci
(t); k = p, s} by penalized splines. Crainiceanu

et al. (2006) outline a strategy for fitting penalized spline model in WinBUGS. Thus, following

Ruppert et al. (2003) and Crainiceanu et al. (2006),we assume the linear spline estimator of

the form

fk(t) = αk
1 + αk

2t +

Dk∑

d=1

uk
d(t− κk

d)+; uk
d ∼ N(0, σ2

ku) (7)

gk
ci
(t) =

L∑

l=2

zk
il(γ

k
0l + γk

ilt) +
L∑

l=1

zk
il

{
Dk∑

d=1

vkl

d (t− κk
d)+

}
(8)

vkl

d ∼ N(0, σ2
kv); l = 2, 3, · · · , L; k = p, s; .
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where zil = 1 if zil = l and 0 otherwise for l = 2, 3, · · · , L.

(t− κk
d)+ =





0, t ≤ κk
d

(t− κk
d), t > κk

d

and κk
1, · · · , κk

D are knots for the k = p, s. The choice of the knots κk
d’s will be described

in the data analysis section. We have assumed same variance parameter for each curve, i.e.,

N(0, σ2
kv); l = 2, 3, · · · , L, and the random effects are independent from function to function,

i.e., the curves are different but with the same amount of smoothing. In order for the fixed

effects to be identified we need to put constrains on αk
1, γk

0l, γk
1l, we assume αk

1 = γk
01 = γk

11 = 0.

The specification of the treatment group curves is equivalent to
∑Dk

d=1 vk1

d (t−κk
d)+ for l = 1 and

(γk
0l +γk

ilt)+
{∑Dk

d=1 vkl

d (t− κk
d)+

}
for treatment l = 2, · · · , L. This avoids the nonidentifiability

of the slope and intercept parameter. A higher degree splines may be used. However, the

motivating application did not benefit from this extension.

3 Nonparametric Bayesian Approach

The parametric model described in Section 3 makes normal distribution as a specific distri-

butional assumption for the random effects bi. The choice of the normal distribution for the

random effects, however, is arbitrary. It may well happen that the normal distribution does not

correctly fit the data at hand, for example if the data are skewed, contain outliers, or consist of

diverse populations. Although, estimation for the fixed effects parameters is relatively robust

to misspecification of the random effects, it is becoming widely recognized that inference for

random effects can be misleading when normal distributional assumptions do not hold (Verbeke

and Lesaffre, 1996). Thus a more general model that relaxes these parametric assumptions may

be more desirable for making robust inferences. As pointed out by Gelfand (1999), in a situa-
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tion where the parametric assumption may be too restrictive, a semiparametric model can be

developed by a nonparametric specification of some portions of the model.

This section considers a model that generalizes the normality assumption of the random

effects to include an entire class of distributions using a Dirichlet process mixture (DPM) prior

(Antoniak, 1974). The aim of this generalization is to protect the inference from bias resulting

from the incorrect specification of the random effect distribution. This prior can often be

centered on a known distribution making it possible to both use the parametric form when

appropriate and to move away from it when its fit is poor.

Thus, we model the distribution of bi using a DPM prior.

bi|G ∼ G where G|ν, G0 ∼ DP(ν, G0) (9)

The basic idea of the above DPM model (9) is to model the uncertainty of the random effects

bi by specifying an unknown (random) distribution function G rather than a known parametric

distribution. Since we assume that the form of G is unknown, the uncertainty about G needs

to be modeled and thus we model the uncertainty about G by placing a prior distribution on G

over all possible probability measures. Such a prior is called a DPM prior and we denote it by

G ∼ DP (G0, ν) where G0 is the known baseline prior and also the prior expectation of G(.). The

positive scalar parameter ν is the concentration parameter and the strength of belief parameter.

A large value of ν suggests that G is likely to be close to G0, and hence yield the results that

are similar to those obtained from the parametric model with prior on G0. On the other hand,

a small value of ν implies that G is likely to place most of its probability mass on a few points

and then, the distribution of the random effects will behave as a finite mixture of parametric

distribution. This set up allows the unknown distribution function G to be nonparamtetrically

estimated from the data. Another key feature is the almost sure discreteness of the random

measure G that assigns positive probability to common values among all bi’s.
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The above representation (9) provides a formal definition of the DPM prior. There are several

ways to implement a DPM prior. Recent research has focussed on using the constructive defini-

tion of the DPM to produce MCMC algorithms (Sethuraman, 1994). Following Sethuraman’s

(1994) stick-breaking representation:

G(·) =
∞∑

r=1

prδZr(·), where Zr
iid∼ G0(·|κ), r = 1, . . . , and

with p1 = V1, pr = Vr

r−1∏
j=1

(1− Vj), r = 2, . . . , and Vr
iid∼ Beta(1, ν), r ≥ 1

(10)

If we truncate the sum in (10) at a large integer R we obtain the models considered in Ishwaran

and Zarepour (2002). This reduces G(·) into finite dimensional form as GR =
R∑

r=1

prδZr(·).
Here Zr are independent and identically distributed variables with some known distribution

G0(.) and the distribution of p = (p1, . . . , pR) is specified by the stick-breaking construction.

Ishwaran and Zarepour (2002) has shown that as R → ∞, truncated DP, GR(.), converges to

a DP as in equation (9). Another advantage here is that since the DP structure is reduced to

a finite mixture model by this truncation and a non-conjugate structures can be more easily

handled now. The advantage of the approximation is that the model reduces to a finite mixture

model and can be fitted using the standard MCMC methods and implemented in WinBugs

(Speigelhalter, 2005) software. We discuss the choice of R in detail in the Data analysis section.

4 Prior Specification

Let θ = (βp, βs, g
p
ci
, gs

ci
, Σ, Σw, σ2) be the set of parameters for model (3-4). In the Bayesian

framework we assume independent priors for these parameters. We assume conditionally con-

jugate priors that leads to simpler updating schemes in the Markov chain sampling methodology.

In particular We assume a normal distribution for the location parameters: βk ∼ N(β0k, D
−1
k ),

αk
2 ∼ N(mk, σ

2
α); k = p, s. The variance parameters are assumed an inverse gamma prior, i.e.,

σ2 ∼ IG(a, b), σ2
ku ∼ IG(aku, bku), and σ2

kv ∼ IG(akv, bkv); k = p, s. Here, IG(a, b) denotes an
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inverse gamma distribution with density proportional to exp(−b/x)/xa+1. Note that small val-

ues of a, b corresponds to vague prior information. Σ ∼ IW (H, η0), ΣW ∼ IW (G, η1) Here,

Wishart(P−1, νb) denotes the Wishart distribution with νb degrees of freedom and scale matrix

P−1.

The full Bayesian model in the present context is completed by assigning prior distribution

on the DPM parameters ν and G0. It is assumed that

ν ∼ Gamma(ν1, ν2), G0 ∼ N2(0, ∆), and ∆−1 ∼ W2(ζ, Ψ) (11)

The hyperparameters of all the prior distributions are assumed to be known.

5 Example

We analyze the clinical trial data on acupuncture for treating chemotherapy-induced vomiting

in patients being treated for advanced stage breast cancer (Shen et al., 2000; Albert et al.,

2005). 104 patients were randomized to one of three treatment groups (active acupuncture,

sham acupuncture, and standard medical care) and were followed over a 14-day period. The

only subject-specific covariate we consider is age. The data depict a large amount of serial

correlation which diminishes and levels off with increasing distance between measurements

(Albert and Shen, 2005). To account for this extra correlation we consider the random walk

increments described in (5) and (6).

Thus, we consider the following model for analyzing the data:

logit(pij) = βp
1 + βp

2agei + fp(tij) + gp
ci
(tij) + bi1 + Wjp (12)

f(sij) = βs
1 + βs

2agei + f s(tij) + gs
ci
(tij) + bi2 + Wjs + eij (13)

There is no clear rule on how many knot points to include or where to locate them in the
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spline functions. More knots are needed in regions where the function is changing rapidly

(Ruppert, 2002). Sometimes subject knowledge may be relevant in placing knots where a

change in the shape of the curve is expected. Using too few knots or poorly sited knots means

the approximation to the curve will be degraded. By contrast, a spline using too many knots

will be imprecise. We select the knots among the existing values and they are equally spaced

within the range [min(x), max(x)]. Thus we assume to have 6 knots and they are placed at time

points 2, 4, 6, 8, 10, 12.

Our available data set is not large enough to allow part of it to be used for prior ellicitaion.

Prior information based on expert opinion, even if available is user specific. Hence, for our

data set we choose prior to be weakly informative, while making sure that the model remain

identifiable. For each β in the model we take a N(0, 1000) prior. Similarly for each α component

we take N(0, 1000) prior. For the variance parameters we take IG(2.001, 1.001), giving rise to a

prior mean of 1 and prior variance of 1, 000. Each of the variance covariance matrices Σ, ΣW , ∆

are assumed a IW (diag(1, 1), 3)prior. For the concentration parameter ν of the DPM prior we

assume Gamma(.1, .1) distribution. This choice of ν has a prior mean of 1. Note that ν = 1

signifies that the probability of generating a new cluster is 1
J+1

when we have a sample of size

J. To assess the effect of this parameter on the inferences we also consider a Gamma(2, 0.1) for

the concentration parameter, and found the results to be very similar.

The posterior distributions are analytically intractable. We use Gibbs sampler (Gelfand

and Smith, 1990) to obtain samples from the posterior distribution. Thus computations are

done via Monte Carlo approximations with the help of the MCMC method. The methods are

implemented in the freely available software packages R (R development Core Team, 2004),

and WinBUGS (2005). Our code uses the R package R2WinBUGS (Sturtz et al., 2005) to execute

WinBUGS while running a session in R. We ran a chain of 80, 000 iterations with the first 30, 000

discarded as burn-in. Convergence was assessed visually by monitoring the dynamic traces of

Gibbs iterations and by computing the Gelman-Rubin (Brooks and Gelman, 1998) convergence
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statistic. We follow (Ghosh and Rosner, 2007) to check the sensitivity of the inference to

the approximation of DPM by varying the upper limit of the number of components in the

DPM model. We found that R = 20 works pretty well, in the sense that the MCMC puts

negligible posterior probability on the number of unique components being larger than some

number greater than R and thus increasing R beyond that value does not change the parameter

estimates in our example. Figure 3 shows the histogram of the number of components. The

initial values for the fixed parameters were selected by starting with the prior mean and covering

±3 standard deviations. The initial values for the precision were arbitrarily selected.

Table 1 contains the posterior means, posterior standard deviations, and 95% credible intervals

for the parameters of interest under the proposed Bayesian parametric and nonparametric

methods as discussed before. The covariate age has no significant effect on both the logistic

regression as well as on the linear regression. The large significant random intercept variance

(Σ11) for the logistic part shows that after accounting for covariate differences among the

subjects, some subjects have a greater probability of positive emesis volume than others. The

positive random intercept variance (Σ22) shows that for the subjects who are vomiting tend

to have a larger mean transformed emesis volume than others. The correlation between the

random intercepts of the model (Σ12) is positive implying that the probability of positive volume

and mean emesis volume is correlated. However, this correlation increases substantially in

the nonparametric model. Another aspect of the extra heterogeneity can be observed in the

posterior estimate of ν which is 5.467. It indicates the presence of the sizeable number of distinct

components in the distribution of the random subject effects. It also indicates the presence of

mixands in the distribution of the random effect and hence evidence of possible multimodality

on the distribution.

The estimated ΣW suggests that there is significant autocorrelation in both the occurrance of

a non-zero emesis and in the emesis volume given a positive volume. However, there was little

cross-autocorrelation between the two components since 95% credible intervals for Σ12
W included
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zero for both the parametric and non-parametric models.

Figure 4 presents the nonparametric mean profiles under the parametric and nonparametric

model. The top two panels show the mean profiles for the logistic model, the lower two panels

show the profiles for the log-normal part for both models. Both the parametric and nonpara-

metric curves are similar in the overall shape, specially for the log-normal part. We focus on

the logistic component (probability of a positive emesis volume) since this is where treatment

differences appear. For both the parametric and non-parametric models, there is a sizable effect

of treatment on the probability of a positive emesis during the first five days after randomiza-

tion (comparing the dashed and dotted lines) with the maximal treatment effect appearing at

4 days post randomization. Further, the treatment effect appears to be diminished after day

5. Since, acupuncture was only provided over the first 5 days after randomization, the results

suggest that active acupuncture may be beneficial over sham acupuncture over the time period

in which acupuncture is given. The treatment effect appears to be stronger for the parametric

model than the non-parametric model.

Figure 4 also shows the mean profile for the standard medical group (no acupuncture). A

comparison of the sham acupuncture (dashed line) with the standard medical arm (solid) line

is a measure of placebo effect. As with the treatment effect, placebo effect appears to be

substantial over the first 5 days after randomization and to diminish after day 5. Also, the

placebo effect over days 1-5 appears to be slightly larger for the nonparametric model than the

parametric model.

To gain further insight into the differences between the treatments, specially between the sham

acupuncture and acute acupuncture we find the absolute difference between the nonparametric

curves in the logistic model and the corresponding posterior probability. Let ga(t) and gs(t) be

the be the two function corresponding to acute acupuncture and sham acupuncture. Then, we
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define the difference between the function as,

Λ(t) =

∫ t14

t1

|ga(t)− gs(t)|
t14 − t1

dt

where, t1, t14 are two boundary points (minimum and maximum follow up time). Then the

posterior probability that |Λ(t)| > 0 can be approximated as:

P (|Λ(t)| > 0|data) ≈ 1

L

L∑

l=1

I(|Λl(t)| > 0)

where Λl(t) is the lth iterate in the Gibbs sampler. We can then calculate the posterior proba-

bility based on MCMC output.

We estimated the absolute difference between the active and sham acupuncture groups sep-

arately over 1-5 days and 6-14 days for the parametric and nonparametric models. For the

parametric model (normal random effect), the estimated absolute difference between the active

and sham acupunture during days 1-5 is 1.832 with posterior probability 0.92, and during days

6-14 is 0.471 with posterior probability 0.32. For the nonparametric model (DPM random ef-

fect), the estimated absolute difference between the active and sham acupunture during days

1-5 is 1.136 with posterior probability 0.76, and during days 6-14 is 0.316 with posterior proba-

bility 0.29. Thus, there is some evidence (more for the parametric model than the more flexible

nonparametric model) for an effect of treatment while acupuncture treatment is ongoing, but

very little evidence for a treatment effect once acupuncture treatment stops.

We compare the performances of the parametric and nonparametric models using the model

selection criteria, based on Deviance Information Criterion (DIC) proposed by Spiegelhalter et

al. (2002) and defined as

DIC = D(θ) + pD = −4Eθ[log p(y|θ)|y] + 2 log p(y|θ).

Here D(θ) = −2 log p(y|θ) is the deviance and D(θ) is the average posterior deviance, pD =

D(θ) −D(θ) is what Spiegelhalter et al. (2002) termed as the “effective dimension” and θ is
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an estimate of θ based on the data y. Recently, Celeux et al. (2006) have pointed out that the

“effective dimension” pD can be negative in case of mixture of distributions. For models with

mixtures or missing values, the recent Celeux et al. (2006) suggest eight different modifications

of the DIC. The nonparametric model we propose utilize mixture structures through a DPM,

and thus we choose DIC3 (based on terminology used in Celeux et al. 2006), defined as

DIC3 = −4Eθ[log p(y|θ)|y] + 2 log Eθ[p(y|θ)|y]

as our model comparison criterion. Note that the second term is simply based on predictive

distribution p(y|y) = Eθ[p(y|θ)|y]. The model with smallest DIC is taken to be the best fitting

model. Table 1 reports the DIC values. It can be seen that the DIC for the two-part models was

calculated separately for each part of the model as well as for the overall model. Overall, we

see the that the nonparametric DPM model fits the model better than the parametric random

effect model.

6 Discussion

This paper presented a parametric and nonparametric Bayesian approach for modeling lon-

gitudinal semicontinuous data. The approach allowed for flexible inference on the treatment

effect over time using a penalized spline model, the incorporation of serial correlation using a

Brownian motion process, and more flexible distribution for the random effects using a Dirichlet

process formulation. The approach is easily implemented in WinBugs (2005).

We used this methodology to analyze data from an acupuncture clinical trial. A goal of the

trial was to compare daily emesis volume across a standard medical group, a sham acupuncture

group, and an active acupuncture group, with the major focus on comparing the active and

sham acupuncture group to assess treatment effect. The results show some evidence that active

acupuncture reduced emesis relative to sham acupuncture over the period in which acupuncture
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was administered. The treatment effect quickly diminished after acupuncture was stopped. An

assessment of the difference between the active and sham curves over days 1 to 5 was more

substantial under the parametric model than the better fitting nonparametric model. Further,

the posterior probability of the difference being greater than zero was higher for the parametric

than the nonparametric model (0.92 and 0.76, respectively). For both models, the difference

was substantially reduced for the period between days 6 and 14. These results were similar in

spirit to those reported by Albert and Shen (2005) in their likelihood analysis.

Albert and Shen (2005) presented a likelihood-based approach to this problem. A Monte-

Carlo EM procedure was used for parameter estimation to deal with the serial correlation.

Unfortunately, this algorithm was very computationally intensive, requiring days of computa-

tion on a cluster of processes to make inference. Using WinBugs, the Bayesian approach was

much more computationally feasible than the maximum-likelihood approach.
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Table 1: Parameter Estimates

Parametric Model Nonparametric Model

DIClogistic 1747.81 1610.48

pDlogistic 68.382 48.3

DIClog-normal 689.72 640.51

pDlog-normal 80.39 75.803

Overall DIC 2437.53 2250.99

poverall 148.772 124.103

Parameter Mean SD 95% CI Mean SD 95% CI

βp
1 2.09 0.24 (0.19, 2.31) 1.452 0.52 (0.1932, 2.579)

βs
1 2.279 0.14 (2.01, 3.16) 2.22 0.19 (1.836, 2.591)

βp
2 -7.34E-04 0.0033 (-0.0072, 0.0057) 3.12E-04 0.0028 (-0.0052, 0.0058)

βs
2 -0.0229 0.0135 (-0.05, 0.001) -0.0228 0.012 (-0.0477, 0.011)

Σ11 0.65 0.161 (0.3843, 1.012) 0.7605 0.249 (0.2172, 1.777)

Σ12 0.17 0.028 (-0.281, 0.661) 0.669 0.035 (-0.279, 1.47)

Σ22 0.0402 0.0074 (0.0278, 0.0569) 0.0896 0.0361 (0.081, 0.1819)

Σ11
W 0.017 0.0085 (0.0076, 0.0384) 0.034 0.008 (0.0091, 0.116)

Σ12
W 0.0024 0.003 (-0.0032,0.0103) 0.0058 0.003 (-0.0016, 0.0206)

Σ22
W 0.0116 0.0034 (0.0067, 0.02) 0.013 0.0035 (0.0073, 0.023)

σ 0.1337 0.007 (0.1197, 0.1493) 0.173 0.005 (0.129, 01535)

ν - - - 5.467 0.284 (1.639, 9.643)
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Figure 1: Histogram of the emesis volume
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Figure 2: Mean of log(Emesis volume+1) for each treatment from day 1 to 14
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Figure 4: Treatment comparison. The top panel is the comparison of zero part and the lower

panes is the same for the nonnegative longitudinal data; “–” denotes the standard medical

group; “.-.-” denotes the sham acupuncture group; “...” denotes the active acupuncture group
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