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Abstract

development.

Background: Recent developments in high-throughput genomic technologies make it possible to have a
comprehensive view of genomic alterations in tumors on a whole genome scale. Only a small number of somatic
alterations detected in tumor genomes are driver alterations which drive tumorigenesis. Most of the somatic
alterations are passengers that are neutral to tumor cell selection. Although most research efforts are focused on
analyzing driver alterations, the passenger alterations also provide valuable information about the history of tumor

Results: In this paper, we develop a method for estimating the age of the tumor lineage and the timing of the driver
alterations based on the number of passenger alterations. This method also identifies mutator genes which increase
genomic instability when they are altered and provides estimates of the increased rate of alterations caused by each
mutator gene. We applied this method to copy number data and DNA sequencing data for ovarian and lung tumors.
We identified well known mutators such as TP53, PRKDC, BRCA1/2 as well as new mutator candidates PPP2R2A and
the chromosomal region 22q13.33. We found that most mutator genes alter early during tumorigenesis and were
able to estimate the age of individual tumor lineage in cell generations.

Conclusions: This is the first computational method to identify mutator genes and to take into account the increase
of the alteration rate by mutator genes, providing more accurate estimates of the tumor age and the timing of driver
alterations.

Keywords: Probabilistic modeling of tumor development, Estimating the order of mutations during tumorigenesis,

Identifying mutator genes

Background

Recent developments in high-throughput genomic tech-
nologies are providing a comprehensive view of genomic
alterations in tumors, including DNA copy number
changes and nucleotide mutations on a whole genome
scale. Although a large number of somatic alterations
are detected in tumor genomes, only a small number of
those are considered driver alterations which drive clonal
expansion and invasion. Most of the somatic alterations
appear to be passengers that are neutral for tumor cell
selection [1]. Currently, most research efforts are put into
distinguishing and analyzing driver alterations although
an in-depth understanding of the driver alterations in the
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early stages of tumorigenesis has not emerged for most
cancer types.

The passenger alterations can provide valuable informa-
tion about the tumor. The number of passenger somatic
alterations accumulated in the tumor can provide infor-
mation about the approximate age of the tumor lineage,
which is the number of cell divisions in the dominant
clone’s lineage from the birth of the patient until the
biopsy. Somatic alterations are acquired at each cell divi-
sion with small probability, therefore, tumor samples
which have undergone many cell divisions tend to accu-
mulate many passenger alterations [2].

In addition to providing information on the age of
the tumor lineage, passenger alterations can also give
information about the approximate timing of the driver
alterations occuring during tumorigenesis. Although the
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driver alterations and their order of occurrence differ
among tumors, elucidating this information can be impor-
tant for understanding tumorigenesis. Tumors evolve
through a sequence of somatic driver alterations [3].
Mutations occur randomly and are selected for in cellu-
lar clonal evolution. For example, during early tumori-
genesis, mutations which confer growth advantage may
be selected for, however, as the tumor expands, muta-
tions which give advantage in the condition of cellular
crowding and substrate limitations due to reduced blood
flow will be selected [4]. Early mutations may repre-
sent important therapeutic targets because they occur in
all tumor clones and late mutations may play important
roles in metastasis. Due to the importance of under-
standing the temporal order of driver alterations dur-
ing tumorigenesis, several computational methods have
been developed to estimate this order [5-9], but no pre-
vious methods have used passenger alterations for that
purpose.

If a driver alteration occurs late during tumorigenesis, it
will be found mainly in tumors with a large number of pas-
senger somatic alterations. If it occurs early, the number
of passenger alterations should be smaller. One important
caveat, however, is that the rate of formation and accumu-
lation of new passenger alterations may increase during
tumorigenesis.

The most frequently observed genomic instability
is chromosome instability (CIN), which refers to a
high rate of chromosome structure alteration in cancer
cells. Another form of genomic instability is character-
ized by increased frequencies of nucleotide mutations.
Microsatellite instability (MIN), which is a special case of
this genomic instability is characterized by the expansion
or contraction of the number of oligonucleotide repeats
present in microsatellite sequences [10].

A higher rate of nucleotide mutations or chromosome
alterations during tumorigenesis is caused by alterations
in genes that maintain genomic stability. These so called
mutator genes which increase genomic instability when
altered, are involved in the processes of DNA sysnthe-
sis and repair, chromosome segregation, damage surveil-
lance, cell cycle checkpoints, and apoptosis [11-13].

Since alterations of mutator genes increase the rate
of alterations, the samples in which mutator genes are
altered tend to accumulate many passenger alterations.
Therefore, if one does not take into account the increase
of the rate of alterations due to mutator genes, the timing
of the mutator gene alterations as well as the tumor age
will be overestimated.

Here, we propose a method which estimates the age
of the tumor lineage and the timing of the driver alter-
ations from the number of passenger alterations. The
alterations include point mutations, short insertions and
deletions detected in sequencing data and copy number
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alterations detected in copy number data. This method
also identifies mutator genes that induce increase of
chromosome alteration or point mutations and esti-
mates the increased rate of chromosome alterations or
point mutations caused by the mutator gene during
tumorigenesis.

In the Methods section, we introduce the data types
to which this method can be applied and then describe
the probability model used. We then present the results
obtained from applying the method to ovarian cancer data
and lung cancer data in the Results section.

Methods

Data types

Our method can be applied to sequencing data as well as
copy number data. Sequencing data provide point muta-
tions and short insertions or deletions (INDEL). Copy
number data provide copy number alterations (CNA),
either deletions or amplifications spanning a range of
chromosomal regions. To apply our method, we first need
to distinguish driver from passenger alterations.

For sequencing data, we first define driver genes as those
which are more frequently mutated than expected by the
background mutation rate. There are various methods to
find driver genes and we use the method of Youn et al.
[14] in this paper. We define the mutations detected in
driver genes as driver alterations and those detected in
non-driver genes as passenger alterations.

For copy number data, we use the segmented copy num-
ber obtained from the circular binary segmentation algo-
rithm [15]. The circular binary segmentation algorithm
splits the chromosomes of each sample into contiguous
regions of constant copy number taking into account the
noise in the data. We only consider the segmented regions
whose value of the logy copy number change are larger
than 1 or less than -1 as CNAs. Of these CNAs, we define
driver and passenger CNAs as follows.

We define the CNAs which occur 10° base pairs away
from each end of any GISTIC region (the chromosomal
regions that are focally amplified or deleted recurrently,
found by the algorithm GISTIC [16]) as passenger CNAs.
If there are multiple passenger CNAs of the same type
(amplification or deletion) that are close to each other (less
than 10° base pairs), we merge them.

We define the CNAs which overlap the GISTIC region
of the same type (amplification or deletion) for longer than
two thirds of the region as driver CNAs. In other words,
we say that a sample contains an amplified driver CNA
associated with a given focally amplified GISTIC region
if the amplified segment (segment whose logy copy num-
ber change is larger than 1) in the sample overlaps more
than two thirds of the amplified GISTIC region. Similarly,
a sample contains a deleted driver CNA associated with a
given focally deleted GISTIC region if the deleted segment
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(segment whose logy copy number change is less than —1)
in the sample overlaps more than two thirds of the deleted
GISTIC region.

Probability model

For each tumor sample i, we know the number of pas-
senger somatic alterations Nj, the age of the patient S;,
whether an alteration occurred in driver gene/region j or
not (denoted by A;; = lor 0) and whether it is germline or
somatic (denoted by G;; = lor0).

From these data, we want to infer when the driver
gene/region j alters in sample i and if altered, how much
it increases the alteration rate of other genes or regions.
We also want to estimate the age of tumor lineage T;.
We define it as the number of cell divisions between the
birth of the patient and the biopsy of the tumor in the lin-
eage containing the founder cell of the dominant clone for
sample i. We will use the Bayesian probabilitstic model
defined below.

We model the accumulation of passenger somatic alter-
ations in the lineage of tumor founder cell by a Poisson
process. In the tumor cell lineage, we assume that new
passenger alterations are acquired with rate A at each cell
division. Therefore, for the cell which has gone through T;
cell divisions, N; follows Poisson distribution with rate A T;
if the alteration rate stays constant. (Figure 1(a)) In order
to permit the increase of alterations by unknown factors
such as exposure to mutagens by smoking or UV radia-
tion, we add E; and therefore, the number of passenger
somatic alterations N; follows a Poisson distribution with
rate A\T; + E;
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When a driver gene or region j is altered in sample i
(A; = 1), we assume that it increases the alteration rate
by Aj. It is positive if the gene/region is a mutator and
0 otherwise (Figure 1(b)). Suppose the alteration of the
driver gene or region j occurred in sample ; at time X; ;. We
assume the increase A; is independent of when the driver
j is altered. Then until the time X, the alteration rate per
cell division is A and after that, it becomes A + A;. There-
fore the number of passenger alterations follows a Poisson
distribution with rate A.Xl"/' + A+ A]')(Tl' - Xi,j) +E =
AT + Ai(T; — Xij) + Ei.

In general, when there are multiple driver genes/regions
j € ], each of which increases the alteration rate by Aj, the
number of passenger somatic alterations follows a Pois-
son distribution with rate AT; + Zje] A{(T; — X)) + E;
(The derivation of this is provided in the Additional file 1).
This means that the alteration of each driver gene/region
j increases the average number of passenger alterations
accumulated in the sample by A;(T; — X;;) additively. The
value of X;; is unknown, but the values of A;; and G;;
give some information about X;; since A;; = 1 implies
Xi,j § Ti and Ai,j =0 implies Xi,j > Ti. AISO, Gi,j =1
implies X;; = 0 since the alteration existed from the birth
of the patient. G;; = 0 implies X;; > 0.

Since we cannot estimate X;; and T; for each sam-
ple separately, we use a Bayesian approach and assume
a prior distribution for X;; and T;. We assume T; fol-
lows a Gamma distribution with an unknown shape and
rate parameter «, 8. We restrict the range of values it can
assume for each sample to be between 50 and the age of
the patient S; divided by the tumor cell division time r for

(a) sample i without a mutator alteration

alteration rate

time

no. of passenger
alterations

no. of passenger T Xij
‘alterations N; ~ Poisson(AT; + E;)
(b) sample i with a mutator alteration in gene j
alteration rate A A+A;
time
0 Xij T;

N; ~ Poisson(AX; j+ (A +Aj)(Ti — X j) + E;)

a mutator alteration.

number of cell divisions in the lineage of the tumor founder cell from the birth to the biopsy

= increase of the alteration rate per cell division caused by an alteration of gene j

A = basic alteration rate per cell division
N; = number of passenger alterations in sample i
T;
X;j = time at the alteration of gene j in units of cell divisions
4
E; = increase of total alteration rate by unknown factors

Figure 1 Probability model for generation of passenger somatic alterations. (a) for samples without mutator alterations, (b) for samples with
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the specific tissue. This is because the number of cell divi-
sions in the tumor lineage is unlikely to be less than 50 or
larger than S;/r since cell divides most frequently after the
onset of neoplasia in the lineage of the founder cell.

We assume X;; follows a Gamma distribution, however
since it is possible that the alteration may never occur, we
assume Pr(X;; = 00) = p; > 0. When 0 < X;; < oo, we
assume X;; follows a Gamma distribution with shape and
rate parameter oj, ;. We assume E; follows an exponential
distribution with a parameter p.

The rate of alteration A differs for nucleotide mutations
(point mutations and short INDELs) detected in sequenc-
ing data and CNAs detected in copy number data. The
rate of nucleotide mutations per cell division AMUYT is cal-
culated using the experimentally obtained mutation rate
per cell division and per base pair, 10~° [17,18].

JAMUT_ (=9

x number of base pairs sequenced for non-driver genes

The rate of CNAs per cell division, A“N4 is unknown.
The ratio of AMUT yg, ) CNA g

ACNA rate of CNAs per cell division

R

T AMUT ™ rate of mutations per cell division

no. of CNAs
no. of mutations

no. of CNAs/no. of cell divisions

no. of mutations/no. of cell divisions

average no. of passenger CNAs per sample

average no. of passenger mutations per sample
Therefore, we estimate ACN4 ag R . AMUT

The unknown values of the parameters o, S, B,
Aj, pj, p are estimated by maximizing the likelihood of the
observed data: the number of passenger somatic alter-
ations N; and occurrences of driver alterations j in sample
i (A;j) given their germline status (G;;) and the age of the
patient S;.

For given values of the times x;; of alterations of
gene/region j € J and the age of the tumor lineage ¢;, the
number of passenger somatic alterations Nj; in sample i
would have a Poisson distribution with mean

Wik Lis €7) = Z Ap(ti — xix) + At + e
k,Ai’kZI

Then, the likelihood of observing N; and A;; given their
germline status G;; and age of the patient S; is obtained
by integrating Poisson(n;; i (x;, ti, e;)) times probability
density functions of X;j, T;, E; over the ranges of X;j, T;
and E; corresponding to A;; = a;j, Gij = g, ¥j. When
G;j = 1,X;;iszero. When G;; = 0, X; is between 0 and T;
if A;; = 1; otherwise X is larger than T;. T; takes values
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from 50 to the age of the patient i divided by the tumor cell
division time r and E; takes values from O to infinity. For
the derivation of the likelihood function and the details of
parameter estimation, see the Additional file 1.

This model can be applied to both sequencing and copy
number data. For sequencing data, the number of pas-
senger somatic mutations for sample i, NLMU T is assumed
to follow a Poisson distribution with rate AMUTT, 4
Zje} AJMUT(Ti - Xij) + EfVIUT where AMUT g the basic
nucleotide mutation rate and AMYT is the increase of
nucleotide mutation rate by the alteration of driver j.
For copy number data, the number of passenger somatic
CNAs, NI.CNA is assumed to follow a Poisson distribution
with rate ACNAT; + Zje] AjCNA(Ti - Xij) + EiCNA where
ACNA s the basic CNA rate and AiCNA is the increase of
CNA rate by the alteration of driver ;.

With these parameters, we can obtain the posterior
mean of T; and X;; for each sample i given the data N;, A;;
and G;;. Also, using the posterior mean of X;;, we can
order the sequence of driver alterations which occurred
for each sample i. In the Results section, we present the
result obtained for ovarian and lung cancer data.

Results and discussion

Ovarian cancer data

We applied our method to the ovarian cancer data from
The Cancer Genome Atlas (TCGA) [19], which analysed
DNA copy number and whole exome sequences in 316
high-grade serous ovarian adenocarcinomas.

We first identified driver genes by applying the method
of Youn et al. [14] to the whole exome sequencing data.
We further select genes mutated in more than ten samples
and obtained CSMD3, FAT3, NF1, TP53, USH2A, BRCA1
and BRCA2. The genes BRCA1 and BRCA2 have somatic
mutations in 11 and 10 samples, but they have germline
mutations in 27 and 20 samples, respectively.

Second, we used GISTIC to identify 63 regions of focal
amplification and 50 regions of focal deletion from the
copy number data. Although GISTIC identified 113 driver
regions, we found that many of the regions show corre-
lated pattern of alterations as shown in Figure 2. It is a
heatmap of amplification patterns of focal amplification
regions amplified in more than ten samples. Columns rep-
resent amplification regions and rows represent tumor
samples. The yellow color indicates that the region is
amplified in the corresponding tumor samples. Columns
are sorted by their chromosome locations. Figure 2 shows
that the amplification patterns of columns 9, 10, 12 are
clustered around that of column 11. Although GISTIC
found four separate regions, it seems that the amplifica-
tions in columns 9, 10, 12 are not separate events from the
amplification in the column 11. The fact that column 11
contains a well known driver gene MYC while the other
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tumor samples

Columns are sorted by their chromosome locations.

amplification regions

Figure 2 Heatmap of amplification patterns of the significantly amplified regions in ovarian cancer found by GISTIC. Columns represent
amplified regions and rows represent tumor samples. The yellow color indicates that the region is amplified in the corresponding tumor samples.

columns 9, 10, 12 do not contain such genes also support
this claim. Therefore, we removed such satellite chromo-
somal regions and also removed the regions altered in
less than or equal to ten samples which leaves 14 driver
regions.

Then, we applied our model to the selected driver
genes/regions. For each sample i, we obtain the posterior
mean of the age of tumor lineage T; and the time of driver
gene/region alteration X;;. In Additional file 2: Table S1,
we present these values with their 90% confidence interval
(CI) obtained by performing 400 bootstraps.

The average value of the posterior mean of tumor ages is
1113 cell divisions. The 10t/ percentile is 563 and the 90tk
percentile is 1839 cell divisions. We removed the gene
TP53 from this analysis since it is mutated in almost all
samples (95%) and with very few samples in which TP53
is not mutated, it is difficult to estimate the parameters for
TP53 correctly. This may have caused the overestimation
of the age of tumor lineage since we ignored the possible
increase of the alteration rate by the mutation of TP53.
Note that the estimated age of tumor lineage is inversely
proportional to the alteration rate.

Identified mutators
We estimated the increase of mutation rate A;VIUT and

CNA rate AjCNA by the alteration of the gene/region j and

also obtained their 90% CI from 400 bootstraps. The genes
BRCA1, BRCA2 and the chromosomal region 16q23.1 are
estimated to increase the mutation rate by 30%, 50% and
120%, respectively. However, only BRCA1 and BRCA2
have 90% CIs which do not include zero. Therefore, we can
say only reliably that BRCA1 and BRCA2 genes increase
mutation rate. They are well known mutator genes
that play key roles in repairing double-strand breaks in
DNA [20].

The chromosomal regions 8p21.2, 8q24.21, 16q23.1,
19q12, 22q13.33 are estimated to increase the CNA rate by
70%, 30%, 40%, 30% and 50%, respectively. Only the region
8p21.2 and 22q13.33 have 90% CI that do not include zero,
implying only they increase CNA rate.

The region 8p21.2 (chromosome 8 between 26165916
bp and 26284094 bp) includes 12 genes, one of which
is a tumor suppressor gene PPP2R2A. PPP2R2A is fre-
quently deleted or downregulated in prostate, breast, lung
and thyroid cancer [21]. Kalev et al. [22] recently revealed
that PPP2R2A plays a critical role in double strand break
repair through dephosphorylation of ATM. Moreover,
they idenfied PPP2R2A as a novel predictive marker for
the efficiency of treatment with PARP inhibitors.

The region 22q13.33 (chromosome 22 between
49481137 bp and 49498777 bp) is the most significantly
deleted regions of all regions found by GISTIC and all
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alterations involving this region were telomere loss.
The loss of 22q13.33 is the cause of Phelan-McDermid
Syndrome characterized by global developmental delay,
absent or severely delayed speech, and normal to accel-
erated growth [23]. Although the role of the deletion of
this region in tumorigenesis is not known, telomere loss
in general is observed frequently in cancer cells and it is
suggested to play an important role in driving the chro-
mosome instability associated with cancer. The telomere
loss on the chromosome leads to chromosome fusions
between two sister chromatids during mitosis facilitat-
ing the accumulation of genetic changes [24,25]. The
list of genes included in these regions is provided in the
Additional file 1.

Of the four mutator gene/regions selected by our
method, three are associated with double strand break
repair pathways. The other one is a telomere loss which
is known to lead to chromosome instability by chromo-
some fusion. This provides a degree of validation of our
method.

Timing of driver alterations

We calculate the posterior mean of the alteration time of
each gene/region for each sample i. The posterior mean
alteration time of the gene/region j for the given sam-
ple depends on the estimated parameters of the prior
distribution for the gene/region, other alterations which
occurred in the same sample and the number of passenger
alterations in the sample. Table 1 gives the posterior mean
alteration time of the gene/region j averaged among sam-
ples in which j is altered and their 90% Cls. Each region
is represented by its chromosome location, the candi-
date target genes included in the region and the type of
alteration (amplification or deletion).

Based on the posterior mean of the alteration time of
each gene/region for each sample i, we have inferred the
order of driver alterations. We estimated the confidence
of the sequence by the proportion the same sequence
occurred out of 400 sequences obtained from 400 boot-
straps. We present the order and its confidence for each
sample in Additional file 2: Table S1. Figure 3 shows a
summary of the inferred order of alterations occurring in
tumor samples represented as a tree structure. The num-
ber in parentheses beside each alteration represents the
number of samples which have the same inferred order
up to that alteration. Figure 3 shows only cases in which
the inferred order of the first two driver alterations occurs
more than once.

Figure 3 shows that all four mutator gene/regions have
the smallest posterior mean time of alterations for most
of the samples in which they were altered. One of the
main questions in the area of genetic instability in can-
cer is whether it arises early or late during tumorigenesis.
It was suggested that a mutator phenotype would need
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Table 1 Estimates of the mean time of alteration in cell
divisions with its 90% Cl from ovarian data

Gene or region Mean time of alteration 90% Cl
in cell divisions

1p34.2(MYCL1), Amp 307 (67,731)
3926.2(MECOM), Amp 473 (413,688)
8p21.2(PPP2R2A), Del 6 (0,326)
8G24.21(MYC), Amp 10 (0,383)
10923.31(PTEN), Del 545 (215,922)
11914.1(ALG8), Amp 382 (167,830)
12p12.1(KRAS), Amp 62 (47,252)
13914.2(RB1), Del 256 (196,602)
16423.1(WWOX), Del 790 (101,851)
17911.2(NF1), Del 375 (282,637)
19p13.13, Amp 445 (5,729)
19g12(CCNE1), Amp 280 (5453)
20q13.12(ZMYNDS), Amp m (81,359)
22q13.33, Del 0 0,0
BRCA1 113 (2132)
BRCA2 2 02)
CSMD3 426 (350,548)
FAT3 338 (288,745)
NF1 177 (73,684)
USH2A 521 (45,690)

The mean time of alteration for each gene/region is calculated by averaging the
posterior mean of the alteration time of the gene/region among samples in
which it is altered.

to be expressed early to generate the causally associ-
ated mutations driving tumorigenesis [13], however there
has been little evidence supporting this hypothesis. Our
result supports the claim that alterations resulting in a
mutator phenotype occur early during tumorigenesis. It
also shows that in the samples in which the mutator
regions 8p21.2 and 22q13.33 are altered, many driver
alterations occur afterwards, confirming their roles as
mutators.

The non-mutator genes/regions containing MYC,
KRAS, CCNE1 and RB1 have the smallest posterior mean
time of alterations in most samples while the driver gene
CSMD3, USH2A and the region containing MECOM,
WWOX have large posterior means.

Lung cancer data

We applied our method to lung tumor sequencing data
from Ding et al. (2008) [26] who sequenced the coding
exons and splice sites of 623 candidate cancer genes in
188 samples from patients with lung adenocarcinomas.
We applied our method to the driver genes mutated in
more than ten samples: APC, ATM, EGFR, KRAS, LRP1B,
NF1,PTPRD, STK11, TP53. We also included the gene
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1st

4th 5th

2nd

1p342(MYCLL) (10) —
None/Other (8)

10023.31(PTEN) (2)
13q14.2(RB1) (10) — > 17q11.2(NF1) @) —
None/Other (6)

12p12.1(KRAS) (2)

22q1333(12) —

None/Other (6)

19q12(CCNE1) (3)

None/Other (7)

16623.1(WWOX) (2)
12p12.1(KRAS) (17)

1p34.2(MYCL1) (2)
None/Other (8)

 ,19p1313(3)

19q12(CCNE1) (24)
None/Other (21)

BRCA2 (28)
CSMD3 (2)

None/Other (18)

17911.2(NF1) (3)

USH2A (3)

None/Other (19)

BRCAL (32)
NF1 (2)

None/Other (23)

8024.21(MYC) (29) —— 19912(CCNE1) (2) ——— 3q26.

3rd

19p13.13 (2) ———— > USH2A (1)

10g23.31(PTEN) (1)

19p13.13 (1) ——— 3926.2(MECOM) (1)

13q14.2(RB1) (1) —— 19q12(CCNE1) (1) —— 19p13.13 (1)

8p21.2(PPP2R2A) (2) —— 8¢24.21(MYC) (1) ———— 19p13.13 (1) — 19q12(CCNE1) (1)

T FAT3(2) ——— 16¢23.1(WWOX) (1)

USH2A (1) ——> 16¢23.1(WWOX) (1)

19p13.13 (1)

8p21.2(PPP2R2A) (13) ——> 8¢24.21(MYC) (3) —— 19q12(CCNE1) (1) ——> 1p34.2(MYCL1) (1) — 11q14.1(ALG8) (1)

1p34.2(MYCL1) (1) ———> 19p13.13 (1) ———> USH2A (1)
19p13.13 (1)

19912(CCNE1) (5) — 3q26.2(MECOM) (1)

USH2A (1)

12p12.1(KRAS) (1)

8q24.21(MYC) (4) — BRCAL (1)

FAT3 (1)

- NF1(4) —— 10g23.31(PTEN) (1)

3926.2(MECOM) (1)
CSMD3 (1)

19p13.13 (1)

2(MECOM) (1)

NF1 (2) ——— > CSMD3 (1)
13q14.2(RB1) (1)
_

8024.21(MYC) (3) ——— > NF1 (1)
11g14.1(ALG8) (2) ——— > USH2A (1)
12p12.1(KRAS) (2) —— 16¢23.1(WWOX) (1)

20013.12(ZMYNDS8) (1)

Figure 3 Order of alterations occurring in ovarian tumor samples represented as a tree structure. The number in parentheses beside each
alteration represents the number of samples which have the same order up to that alteration.

PRKDC which is mutated in eight samples since it is a well
known mutator gene.

In Additional file 3: Table S2, we present the pos-
terior mean of the age of tumor lineage T; and the
alteration time of gene j, X;; with their 90% CI for
each sample i. The average value of the posterior mean
of tumor ages is 749 cell generations. The 10th per-
centile is 236 and the 90th percentile is 1617 cell
divisions.

Identified mutators
We estimated the increase of mutation rate AT by the
alteration of the gene j and also obtained their 90% CI

from 400 bootstraps. Only two genes, TP53 and PRKDC,
were found to increase mutation rates. TP53 increases
mutation rate by 170% while PRKDC increases mutation
rate by 670%. The 90% CI for AJMUT of both genes do not
include zero.

Both of the genes TP53 and PRKDC are well known
mutator genes. A new finding from our method is
that PRKDC increases mutation rate much greater
than TP53. TP53 activates DNA repair proteins when
DNA has sustained damage or it initiates apopto-
sis if DNA damage is irreparable. PRKDC encodes
a protein involved in the repair of double-stranded
DNA breaks.
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Timing of driver alterations

We have inferred the order of driver alterations by the pos-
terior mean of the alteration time of each gene for each
sample i. We present the inferred order of driver muta-
tions and its confidence for each sample in Additional
file 3: Table S2. The posterior mean alteration time of gene
j averaged among samples in which j is altered and their
90% Cls are given in Table 2. Figure 4 shows a summary
of the inferred order of mutations occurring in tumor
samples represented as a tree structure.

It shows that EGFR, TP53, KRAS and STK11 have the
smallest posterior mean time of alterations for most of
the samples in which they were altered. In our analysis
with ovarian cancer data, KRAS amplification was also
identified as an early event.

There is much evidence supporting the finding that
alterations of KRAS, EGFR, STK11 and TP53 are early
events in many cancer types [9]. Figure 4 also shows that
LRP1B and PTPRD tend to have the largest posterior
mean time of alterations for most of the samples in which
they were altered. This suggests that these genes may play
important roles in invasion or metastasis. This is sup-
ported by the study suggesting LRP1B may be involved
in cellular invasion/metastasis [27] and the study showing
the association between deletion of PTPRD and cuta-
neous squamous cell carcinoma metastasis [28].

Conclusions

We have developed a method which estimates the age of
the tumor lineage and the timing of the driver alterations.
This method also identifies mutator genes and estimates
the increase in rate of alterations caused by the muta-
tor gene during tumorigenesis. We applied this method to
TCGA ovarian cancer and lung cancer data. For ovarian

Table 2 Estimates of the mean time of alteration in cell
divisions with its 90% ClI for the driver genes from lung
data

Gene Mean time of alteration in cell divisions 90% Cl
APC 379 (44,801)
ATM 594 (93,805)
EGFR 23 (18,93)
KRAS 280 (158,392)
LRP1B 549 (443,917)
NF1 505 (60,744)
PRKDC 466 (324,1637)
PTPRD 801 (394,1228)
STK11 259 (108,455)
TP53 323 (208,456)

The mean time of alteration for each gene is calculated by averaging the
posterior mean of the alteration time of the gene among samples in which it
is altered.
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cancer data, we used both sequencing and copy num-
ber data and found that BRCA1 and BRCA2 increase the
rate of point mutations and the chromosomal regions
8p21.2 and 22q13.33 increase the rate of copy number
alterations. We found that alterations in genes/regions
resulting in a mutator phenotype tend to occur early.
For the non-mutator genes/regions, the regions contain-
ing MYC, KRAS, CCNE1 and RB1 tend to alter early
while the gene CSMD3, USH2A and the region containing
MECOM, WWOX tend to alter late.

For lung data, we applied this method to only sequenc-
ing data and found that TP53 and PRKDC increase muta-
tion rate. We found that EGFR, KRAS, STK11 and TP53
tend to mutate early while LRP1B and PTPRD tend to
mutate late.

This is the first attempt to identify genes that increase
the mutation rate or CNA rate using computational meth-
ods. Finding mutator genes simply based on the corre-
lation between the number of passenger alterations and
the alteration status of a driver gene generates many false
positives since it cannot distinguish a mutator gene and
a gene that alters late. For both genes, there are high
correlations between the number of passenger alterations
and their alteration status. For example, if we test for
each driver j whether there is a difference in the mean
between the number of passenger alterations in samples
in which driver j is altered and those in other samples,
we find that LRP1B, NF1, PRKDC, PTPRD, TP53 genes
have p values less than 0.01 for lung sequencing data. For
ovarian sequencing data, we found that 16q23.1, 19q12,
BRCA2, FAT3, USH2A have p values less than 0.01. For
ovarian copy number data, we found that 8p21.2, 8q24.21,
16q23.1, 19p13.13, 19q12, 22q13.33 have p values less
than 0.01. Note that this method finds many more muta-
tor candidates compared to our method while missing
an important mutator BRCA1l. The mutator candidates
found by the correlation, such as PTPRD or LRP1B whose
p-values are 2-107% and 3-10° are estimated to be simply
altered late by our method. There is no evidence support-
ing their role in increasing genomic instability, implying
they could be false positives.

It is well known that genomic instability can be
caused by dysfunction of DNA repair genes and cell
cycle checkpoint control genes. The DNA repair genes
which have been found to be altered in cancers include
BRCA1/2, MSH2/6, MLH1/2, BLM, RAD50, MREL11,
NBS1, PRKDC, NBS1, BLM, RECQL4, BAP1, WRN,
RADS51L3, RAD52, FANCA, and PALB2 [10-12]. Of the
mutator genes identified in our analysis of lung and ovar-
ian cancer, BRCA1/2, PRKDC, and PPP2R2A gene in the
region 8p21.2 belong to this category although the role of
PPP2R2A in inducing chromosomal instability in ovarian
cancer was previously unknown. Other DNA repair genes
are rarely altered in our dataset. The genes in the cell cycle
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checkpoint control pathway which have been found to be
altered in cancers include TP53, ATM, MDM?2/4, BUBI,
and STK12. Of the mutator genes we identified, TP53
belongs to this category.

In addition to the DNA repair and cell cycle chek-
point processes, there are many other processes involved
in genomic stability. These include DNA replication,
deoxynucleotide metabolism, chromosome condensation,
sister chromatid cohesion, kinetochore structure and
function and centrosome/microtubule formation. There-
fore, in principle, there are many genes that could induce
genomic instability. Other than these processes, telomere
erosion is known to be able to lead to chromosome insta-
bility. In our analysis of ovarian data, we found that the
deletion of 22q13.33 is telemere loss which leads to chro-
mosome instability. This is a new finding that supports the
role of telomere erosion in CIN of ovarian cancer.

Our method also provides an estimate of tumor age and
timing of driver alterations which can be obtained only
through computational methods. The age of the tumor
lineage is the number of cell divisions in the dominant
clone’s lineage from the birth of the patient until the
biopsy. Some tissues such as pancreatic epithelia do not
self-renew, therefore, most of the cell divisions in the lin-
eage of the pancreatic tumor occur after the onset of

neoplasia [29]. Therefore the age of the tumor lineage
corresponds approximately to the tumor age, the time
interval from the onset of neoplasis to the tumor detec-
tion in units of cell generations. Some tissues such as skin
or gastrointestinal epithelia regulary self-renew. In these
cases, the number of cell divisions in the lineage is the sum
of the number of cell divisions before the onset of neopla-
sia and that after the onset of neoplasia. If the cell division
rate has been constant throughout a life, the age of the
tumor lineage corresponds to the age of the patient. In this
paper, we estimated the average age of the tumor lineage
for the ovarian tumor is 1113 cell divisions and that for the
lung tumor is 749 cell generations. Ovarian elithelia regu-
larly self renew [29], while lung epithelia renew slowly and
are stimulated to self-renew upon injury [30], therefore,
the age of the tumor lineage for lung tumor is close to the
tumor age. The cell division time for a lung tumor cell is
known to be approximately 8 days [31]. Therefore it takes
749 - 8 days = 16.4 years on average from the beginning of
the tumor to the detection of lung tumor.

Estimates of tumor age, together with clinical data
such as tumor stage can provide information for how
long it takes for a benign tumor to develop into inva-
sive and metastatic tumors. Estimating when metasta-
sis occurs during tumorigenesis is particularly important
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since metastasis is responsible for most cancer related
deaths although it is the least understood process. Under-
standing this can help planning early detection programs
for cancer since it is critical to know how early you have
to detect the tumor in order to have an effect. If the
tumor metastasizes before detection, then early detection
of the primary tumor may not help the patient. For exam-
ple, cancer screening has been successful for both colon
and cervical cancers in reducing death rate but results for
breast cancer are less successful, indicating that screen-
ing breast mammography fails to detect cancer until after
they have spread [32]. Although this problem of estimat-
ing when metastasis occurs has not been dealt with in this
paper, it is an important future work that our method can
be used to answer.

Estimates of tumor age also provide insight into the
biology of tumor cell populations, may help to under-
stand intra-tumor heterogeneity and differences in prog-
nosis and responsiveness to therapy. A previous attempt
to estimate the tumor age using the number of passen-
ger mutations [2] did not take into account the increase
of the mutation rate by the alteration of mutator genes,
and hence their estimate of tumor age may be some-
what overestimated. We believe our method will be a
useful contribution for better understanding the process
of tumorigenesis.
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