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1 Material Referred to in the Text

1.1 Further Differences Between Our Model and Kerr et al.’s and Wolfinger et

al.’s Models

In Wolfinger et al.’s (2001) example, there is an additional AV interaction term which does not

appear in our model. The AV effect in their model represents the “channel” effect, which is

represented by the AD effect in our model. The reason for the difference is that dye is confounded

with variety in their example. Kerr and Churchill (2001) have an additional DG term. A DG

interaction term could be introduced into our gene model. A DG effect, even if present, will not

bias results for comparisons between samples tagged with the same dye, as is typically done in

reference designs. If there is a strong enough DG interaction, then some gene expression may only

be detected under one dye. However, in our experience this type of interaction applies to very

few genes, and these could be identified in advance from other microarray label experiments. If

DG effects exist and samples tagged with different dyes are compared then a reverse labelling of

each sample would be required to distinguish DG effects from sample effects. This is important for

cluster analysis where contrasts between pairs of samples must be estimated.



Supplement: Comparison of Microarray Designs 3

1.2 Efficiency Maximized When Replication Is At Sample Level

Consider the reference design shown in Figure 1 of the original paper. In the figure, subscripts

denote samples and two samples from each non-reference variety (denoted A and B) are taken;

alternatively, the second samples could be replaced with second aliquots of the same samples, so that

Array 2 would consist of R1 and A1, and Array 4 would consist of R1 and B1; but this alternative

is inferior to the design shown because it has only one sample from each population of interest

instead of two. This lack of replication at the sample level means sample effects are confounded

with variety effects, so that no inference about variety effects is possible. Now consider the loop

design shown in Figure 2 in the original paper; the figure displays a case with two subsamples from

each sample (represented by, for example, the A1 that appears both on Array 1 and Array 4); we

could keep the same number of arrays, and the same loop structure, but eliminate the subsampling,

so that each letter would have an unique subscript, requiring 4 samples of each variety; in fact,

eliminating the subsampling in Figure 2 would increase the efficiency of the estimates.

1.3 Confounding Of Sample Effects and Spot Effects in Single Aliquot Non-

reference Designs

In this case, each sample occurs on exactly one array. If spot effects (AG) are treated as fixed-

effects, as we have done, then this design precludes comparison of the gene expression profiles

for individual samples on different arrays; specifically, it precludes comparison of the gene-specific
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sample effects (FG) for samples on different arrays because these effects will be confounded with

the spot effects, i.e. with the blocking factor. Note that in Figure 3 we are forming the loops with

respect to samples instead of varieties. In such a design, it is always more efficient to alternate

varieties as well, as in figure 2 in the original paper, and to avoid ever placing two samples of the

same variety on an array.1

1.4 Figure Displaying Increasing Variance of Sample Contrasts in the Loop

Design

Figure 4 shows examples of the variance of contrasts for samples of size 10 and 20, with τg = σg

and with τg = 2σg. As the distance between samples in the loop increases, these plots display the

corresponding increase in the variance of contrasts. When there are 20 samples, the proportion

of contrast estimates with greater variance under the loop design is larger than when there are

10 samples. Note that as the number of samples increases (beyond 20), this trend will continue.

Hence, information about the distance between pairs of samples in a loop design will, on average,

decrease as the number of samples increases.
1Our analytic computations are based on designs which look like one large loop at the sample level, and like a

series of repeated loops at the variety level. These designs should have optimal or close to optimal efficiency for a

loop design with the small numbers of varieties we consider.
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1.5 Details of the Cluster Analysis Monte Carlo Simulation

The “spot” effect is simulated as a random effect with a normal distribution. The gene main effect is

represented by a fixed effect. Parameter values for effect sizes were approximated using a subset of

a prostate cancer microarray dataset. The base ten log of the intensity levels was the response. We

generated data with gene main effect Gg = 2.5, and random spot effect AGag normal with mean

0 and variance 0.612; twenty genes were down-regulated in half the non-reference samples and

up-regulated in the other half; we looked at simulations where the distance between up-regulated

and down-regulated genes was 2.5 and 1.8; for the rest of the 1, 000 genes in the non-reference

samples, and for all genes in the reference samples, gene effects were equal, so that FGfg = 0; we

considered one scenario with inter-sample variance and intra-sample variance 0.432, and a second

with inter-sample variance .552 and intra-sample variance .272. For each Monte Carlo simulation,

one-half of the non-reference samples were selected at random to be down-regulated, and the rest

were up-regulated.

1.6 More Practical Robustness Issues

Here we discuss some practical robustness issues, including: arrays with multiple spots per gene,

array replication, use of blocking factors to reduce variability, and sample size calculation.

If genes are spotted multiple times on each array, then variation in spots will no longer be

captured by the array by gene interaction because several spots on a slide will share the same
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array and gene labels. Spot effects can then be captured by appending a spot location subscript to

the array by gene interaction in the gene model, replacing AGag with AGLagl where l indexes the

location.

Although repeating arrays (i.e. having RNA from the same two sources on more than one

array) will generally result in loss of efficiency, it may be desirable in some cases. For instance,

some repeated arrays with reversed labelling allow one to estimate the DG interaction term; also,

repeated arrays in a BIB design may allow one to estimate the FG interaction term and identify

potentially problematic or influential samples.

Similarly, if some factors are not of interest, then one may wish to use these as blocks in a block

design to gain efficiency. Creating blocks in a reference design is straightforward. Blocks may be

formed in a loop design by creating a separate loop for each level of the blocking variable. Because

each RNA sample will be associated with one level of the blocking variable, it will be associated

with only one of these unconnected loops. One could not compare samples in different blocks. The

loop design locks one into a blocked analysis where the reference design does not.

Correct sample size for a reference design can be calculated in a straightforward way using a

log-ratio approach (Simon et al., 2002). With non-reference designs, established methods exist for

calculating sample size and power curves for fixed effects and mixed effects models, and can be

applied directly to array data (Wolfinger et al., 2001).
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1.7 The Model Assumptions

Here we discuss some assumptions of the ANOVA modelling approach, and the impact violations

would have on our results, including: inadequacies of the normalization model, correlation of resid-

uals from the normalization model, and inadequacies of the gene model.

Some reviewers expressed concern that the normalization model may be inadequate for two

reasons: it makes the unlikely assumption of equal error variance, and it performs the normalization

in a linear fashion. We agree that the first assumption is unlikely if the effects in the gene-specific

models are non-zero, but that assuming equal variance does produce least squares estimates of

normalization model parameters, which we think reasonable. Some researchers believe that making

a nonlinear adjustment to each array (Dudoit et al., 2000) is important because it corrects for dye

bias associated with spot intensity. Our normalization model is really not essential to the results

we have presented, and can be replaced by a different normalization procedure that corrects for

the same effects before fitting the gene model. Our analytic and simulation results would still

be valid, since they only rely on the structure of the gene model. Our main purpose here is to

compare experimental designs, and not necessarily solve the complex question of microarray data

normalization.

We have modelled the residuals in the gene model as independent even though they are really

correlated from the fitting of the normalization model. We do not think this is problematic. Note

that the correlation of the residuals induced by fitting an ANOVA model is a function of the design
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matrix, and hence does not depend on effect size. Therefore, we can use matrix algebra to calculate

the correlation created by fitting the normalization model for each pair of residuals, regardless of

effect size. A computation shows that for any two residuals from the normalization model, the

correlation induced by the model falls between − 1
G and 0, where G is the number of genes. Since

the number of genes is large, the correlation will be practically zero. For instance, with 1000 genes,

the correlation of every pair of residuals would fall between -.001 and 0; with 5000 genes, between

-.0002 and 0. Such a minor violation of the independence assumption in the gene models is clearly

of no practical concern. Also note that any array normalization methodology uses the data to

perform the normalization, and will therefore induce correlation among the measured quantities at

the gene level; as long as this correlation is very small, the benefits of normalization far outweigh the

cost of creating an extremely small violation of independence. As the famous statistician George

Box said some years ago, ”All models are wrong, but some are useful.” The success of microarray

technology shows that these are useful models.

We would also emphasize here that systematic relations among the genes and cross-hybridization

do not imply that the errors in the gene models will be correlated. For instance, if a collection of

genes associated with proliferation have up-regulated expression levels in a subset of the samples,

then this may cause the sample effect estimates, F̂G, in the different gene models to be correlated.

But it will not induce correlation in the errors terms either within a particular gene model or in

different gene models. Similarly, if a target gene hybridizes to two spots on an array, then estimated

expression for the two genes associated with the spots may be correlated, but this again will not
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induce correlation in the error terms.

Our theoretical and Monte Carlo results rely on ANOVA assumptions and methods in the gene

models in order to facilitate the comparisons between the different types of microarray designs.

We believe the ANOVA approach to be reasonable, but if one uses this approach, the ANOVA

assumptions need checking for specific data. Although ANOVA methods are fairly robust, if these

assumptions appear to be seriously violated for a set of data, then this may be problematic for

loop or block designs. If, for instance, the residuals for a particular gene appear to violate the

assumption of normality, then the ANOVA results may be invalid. If a reference design was used,

then more robust non-model based methods can be applied to the data. However, if a loop or block

design was used, then the more complex relation between the groups over the arrays may make

finding a robust alternative analysis technique difficult.
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1.8 Figures and Tables
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Figure 1: Loop Design Example: Two samples from each of two varieties. One aliquot from each
sample. Single replicate shown.
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Figure 2: Loop Design Example Figure: Two samples from each of four varieties or phenotypes.
One aliquot from each sample.
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Figure 3: Loop Design for Cluster Analysis: Two aliquots from each of N samples. Ss represents
an aliquot from sample s.
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Figure 4: Contrast variance of simple reference design and loop design. Distance = 1 + (number of
samples between the two samples of interest in the loop, taking shortest route).



Supplement: Comparison of Microarray Designs 13

Contrast Variances: No Subsampling

Number of Number of
Number of Arrays in Samples in

Design Varieties Single Replicate a Single Replicate a V ar
(
V̂ Gig − V̂ Gjg

)

Reference v v v b 1
R

(
2τ2

g + 4σ2
g

)

BCB 2 1 2 2
R

(
τ2
g + σ2

g

)

BIB 3 3 6 4
3R

(
τ2
g + σ2

g

)

BIB 4 6 12 1
R

(
τ2
g + σ2

g

)

BIB 5 10 20 4
5R

(
τ2
g + σ2

g

)

Table 1: Variances of contrasts for reference, balanced complete block (BCB), and balanced
incomplete block (BIB) designs. One aliquot from each non-reference sample used. Contrast
variances are the same for all pairs of (non-reference) samples i and j. In the first row, v is
the number of varieties, and the contrast variance formula is the same for all v. For the block
designs, the contrast variance formula varies depending on the number of varieties. R is the
number of replicates.

aA single replicate for a reference design is a collection of microarrays arranged so that every array contains
one sample from a variety of interest paired with one aliquot from the reference sample, and there are enough
arrays so that one sample from each variety of interest is present. A single replicate for a balanced block design
is a collection of microarrays arranged so that every array contains two samples, each from a different variety,
and there are enough arrays so that every variety appears exactly once on an array with every other variety. (For
detailed diagrams of designs, see Supplementary Material at http://linus.nci.nih.gov/ brb/TechReport.htm.)

bDoes not include reference sample.
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Contrast Variances: Two Aliquots Per Sample

Number of Number of
Number of Arrays in Samples in

Design Varieties Single Replicate c Single Replicate c V ar
(
V̂ Gig − V̂ Gjg

)

Reference v 2 v v d 1
R

(
2τ2

g + 2σ2
g

)

Loop/BCB 2 2 2 1
R

(
2τ2

g + σ2
g

)

Loop/BIB 3 3 3 1
R

(
2τ2

g + 4
3σ2

g

)

Loop (same) 4 4 4 1
R

(
2τ2

g + 3
2σ2

g

)

Loop (adjacent) 4 4 4 1
R

(
2τ2

g + 2σ2
g

)

Table 2: Variances of contrasts for reference and loop designs. Two aliquots from each non-reference
sample used. In the first row, v is the number of varieties, and the contrast variance formula is the
same for all v, although the number of arrays required varies. For the loop designs, the number of
arrays required and the contrast variance vary depending on the number of varieties. For 4 or more
arrays, the variance of contrasts also depends on the relative positions of the varieties in the loop;
“same” indicates varieties which appear together on an array, and “adjacent” varieties which do not.
R is the number of replicates.

cA single replicate for reference design is a collection of microarrays arranged so that every array contains one sample
from a variety of interest paired with one aliquot from the reference sample, and there are enough arrays so that one
sample from each variety and two aliquots from each sample are represented. A single replicate for a loop design is
a collection of microarrays arranged so that every array contains two aliquots, each from a different sample, there are
enough arrays so that two aliquots from each sample are represented, and the samples are arranged in a loop design (see
Figure 3).

dDoes not include reference sample.
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2 Application: A Comparison of an ANOVA and Log-ratio Anal-

ysis

We applied these analyses to the publicly available apo AI dataset described in Dudoit et al. (2000).

This was a reference design experiment with two non-reference varieties (control mice and mice with

the apolipoprotein gene knocked-out). None of the non-reference samples were subsampled, so that

sample effects were confounded with the error term. Therefore, sample effects and interactions

were removed from the models. The resulting models were:

log (Yadvfgr) = µ + Aa + Dd + ADad + Vv + εadvfgr

radvfgr = Gg + AGag + V Gvg + γadvfgr.

We compared our results to those of Dudoit et al. (2000), who used a t-test approach based

on log ratios to compare the 8 knocked out mice to the 8 control mice. Dudoit et al. identified

8 genes significantly differentially expressed using a permutation analysis. Table 3 shows the nine

most significant genes found using the ANOVA approach. The top 8 most significant genes match

exactly the 8 found by Yang et al, and have highly significant Bonferroni adjusted p-values. No

other genes appeared significant under the ANOVA approach. Indeed, the ninth most significant

gene using the ANOVA approach had an adjusted Bonferroni p-value of 1, and appears in the table.

Reference

Dudoit, S., Yang, Y.H., Callow, M.J., and Speed, T.P. (2000) Statistical methods for identify-
ing differentially expressed genes in replicated cDNA microarray experiments. Technical Report,



Supplement: Comparison of Microarray Designs 16

Reported by Gene Row Bonferroni F-test
Gene Name Dudoit et al. Number Rank P-value
Apo AI yes 2149 1 3x10−8

Apo CIII yes 1739 2 7x10−7

Apo AI yes 5356 3 8x10−5

Sterol C5 desaturase yes 4139 4 2x10−4

Apo AI yes 540 5 4x10−4

EST AA080005 yes 1496 6 1x10−3

Sterol C5 desaturase yes 4941 7 2x10−3

Apo CIII yes 2537 8 4x10−3

cDNA no 2106 9 1

Table 3: Comparison of results for log-ratio analysis and ANOVA analysis based on log intensities.

http://www.stat.berkeley.edu/users/terry/zarray/TechReport/578.pdf.

3 Efficiency Computations

3.1 Notation

ravf indicates the residual (from the normalization model) corresponding to sample f from variety

v on array a for a particular gene (subscript omitted). Inter-sample variance for a gene g is denoted

τ2
g , and intra-sample variance for gene g is denoted σ2

g .

The usual constraints are used to estimate parameters, namely,

∑
a

ÂG = 0

∑
v

nvV̂ G = 0,
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where nv is the number of aliquots associated with variety v that appear in the design.

3.2 Efficiency Calculations for the Reference Design

Step 1: Suppose we have N non-reference varieties and one sample from each of these varieties and

a simple reference design.

Array 1 Array 2 ... Array N

r100 r200 ... rN00

r111 r222 ... rNNN

The estimate of a variety effect is

V̂ G1g = r111 − (r100 − r̄·00)− r̄···

V̂ G2g = r222 − (r200 − r̄·00)− r̄···

V̂ G1g − V̂ G2g = r111 − r222 − (r100 − r200)

= (V1 − V2) + (F1 − F2) + (γ111 + γ222 − γ100 − γ200)

var
(
V̂ G1g − V̂ G2g

)
= 2τ2

g + 4σ2
g
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Step 2: If we repeat this experiment by adding a R new batches of N samples and pairing each

with another aliquot from the reference variety, then we have

var
(
V̂ G1g − V̂ G2g

)
=

2
R

τ2
g +

4
R

σ2
g

For any reference design without subsampling of non-reference varieties, this can be used to

find the variance of a contrast.

3.3 Reference design with two aliquots per sample

Array 1 Array 2 ... Array N Array N+1 ... Array 2N

r100 r200 ... rN00 r(N+1)00 ... r(2N)00

r111 r222 ... rNNN r(N+1)11 ... r(2N)NN

Suppose we have one replication of the reference design in the previous subsection, which is not

a true replication but a replication with from the same set of samples. Add a fourth subscript for

the replicates.

V̂ G1g = r̄111· − (r̄100· − r̄·00·)− r̄····
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V̂ G2g = r̄222· − (r̄200· − r̄·00·)− r̄····

V̂ G1g − V̂ G2g = r̄111· − r̄222· − (r100· − r200·)

= (V1 − V2) + (F1 − F2) + (γ̄111· + γ̄222· − γ̄100· − γ̄200·)

var
(
V̂ G1g − V̂ G2g

)
= 2τ2

g + 2σ2
g

3.4 Efficiency Calculations for Balanced Incomplete Block Designs

3.4.1 Balanced block design with two varieties, no subsampling

Array 1 Array 2 ...

r111 r223 ...

r122 r214 ...

Step 1: Suppose we have two samples for each variety.

V̂ G1g − V̂ G2g = r̄·1 − r̄·2

=
1
2
(r111 + r214 − r122 − r223)

=
1
2
(2V1 + F1 + F4 + γ111 + γ214 − 2V2 − F2 − F3 − γ122 − γ223)

= V1 − V2 +
1
2
(F1 + F4 − F2 − F3) +
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1
2
(γ111 + γ214 − γ122 − γ223)

var
(
V̂ G1g − V̂ G2g

)
= τ2

g + σ2
g

Step 2: If we repeat the process by adding R new pairs of blocks, each with varieties laid out

in the same pattern and new samples, then

var(V̂ G1g − V̂ G2g) =
1
R

τ2
g +

1
R

σ2
g

3.4.2 Balanced incomplete block (BIB) design with 3 varieties, no subsampling

Array 1 Array 2 Array 3 ...

r111 r223 r335 ...

r122 r234 r316 ...

Step 1: Suppose we have two samples from each variety.

A computation shows that

V̂ G1g =
1
3
(r111 − r122 + r316 − r335)

V̂ G2g =
1
3
(r122 − r111 + r223 − r234)
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V̂ G1g − V̂ G2g =
2
3
(r111 − r122)

1
3
(r316 − r335 − r223 + r234)

var
(
V̂ G1g − V̂ G2g

)
=

8
9
(τ2

g + σ2
g) +

4
9
(τ2

g + σ2
g)

=
4
3
(τ2

g + σ2
g)

The variance is the same for every pair of samples.

Step 2: If we repeat the process by adding R new triplets of blocks, each with varieties laid out

in the same patterns and new samples, then

var
(
V̂ G1g − V̂ G2g

)
=

4
3R

(τ2
g + σ2

g)

3.4.3 BIB design with 4 varieties, no subsampling

Array 1 Array 2 Array 3 Array 4 Array 5 Array 6 ...

r111 r223 r335 r437 r519 r64(11) ...

r122 r234 r346 r418 r54(10) r62(12) ...

Step 1: Suppose we have three samples per variety. A computation shows that
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V̂ G1g =
1
4
(r111 − r122 − r447 + r418 + r519 − r5,3,10)

V̂ G2g =
1
4
(r122 − r111 + r223 − r234 + r6,2,11 − r6,4,12)

var
(
V̂ G1g − V̂ G2g

)
= τ2

g + σ2
g

The variance is the same for every pair of varieties.

Step 2: Repeat the balanced incomplete block design R times.

var
(
V̂ G1g − V̂ G2g

)
=

1
R

(τ2
g + σ2

g)

3.4.4 BIB design with 5 varieties, no subsampling

Array 1 Array 2 Array 3 Array 4 Array 5

r111 r223 r335 r447 r519

r122 r234 r346 r458 r55(10)

Array 6 Array 7 Array 8 Array 9 Array 10 ...

r63(11) r74(13) r82(15) r95(17) r(10)5(19) ...

r61(12) r71(14) r84(16) r92(18) r(10)3(20) ...

Step 1: Suppose we have four samples per variety. A computation shows that
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V̂ G1g =
1
5
(r111 − r122 + r519 − r55(10) + r61(12) − r63(11) + r71(14) − r74(13))

V̂ G2g =
1
5
(r122 − r111 + r223 − r234 + r82(15) − r84(16) + r92(18) − r95(17))

V̂ G1g − V̂ G2g =
2
5
(r111 − r122) +

1
5

(
r519 − r55(10) + r61(12) − r63(11) + r71(14) − r74(13)

−r223 + r234 − r82(15) + r84(16) − r92(18) + r95(17)

)

var
(
V̂ G1g − V̂ G2g

)
=

4
5
(τ2

g + σ2
g)

Step 2: Repeat the balanced incomplete block R times.

var
(
V̂ G1g − V̂ G2g

)
=

4
5R

(τ2
g + σ2

g)

3.4.5 Two varieties in a balanced complete block design, with subsampling

Array 1 Array 2 ...

r111 r222 ...

r122 r211 ...

Step 1: Suppose we have one sample from each variety, and two aliquots per sample.
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V̂ G1g − V̂ G2g = r̄·1 − r̄·2

=
1
2
(r111 + r211 − r122 − r222)

=
1
2
(2V1 + 2F1 + γ111 + γ211 − 2V2 − 2F2 − γ122 − γ222)

= V1 − V2 +
1
2
(2F1 − 2F2) +

1
2
(γ111 + γ211 − γ122 − γ222)

var
(
V̂ G1g − V̂ G2g

)
= 2τ2

g + σ2
g

Step 2: Repeat this pattern R times using new samples.

var
(
V̂ G1g − V̂ G2g

)
=

2
R

τ2
g +

1
R

σ2
g

3.4.6 Three varieties in a BIB design, with subsampling

Array 1 Array 2 Array 3 ...

r111 r222 r333 ...

r122 r233 r311 ...
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Step 1: Suppose we have one sample from each variety, with two aliquots per sample.

V̂ G1g =
1
3
(r111 − r122 + r316 − r335)

V̂ G2g =
1
3
(r122 − r111 + r222 − r233)

V̂ G1g − V̂ G2g =
2
3
(r111 − r122) +

1
3
(r311 − r333 − r222 + r233)

=
2
3
(V1 − V2 + F1 − F2 + γ111 − γ122)

+
1
3
(V1 − V2 + F1 − F2 + γ311 − γ333 − γ222 + γ233)

var
(
V̂ G1g − V̂ G2g

)
= 2τ2

g +
4
3
σ2

g

Step 2: Repeat this pattern R times with new samples.

var
(
V̂ G1g − V̂ G2g

)
=

2
R

τ2
g +

4
3R

σ2
g



Supplement: Comparison of Microarray Designs 26

3.4.7 Four varieties in a BIB design, with subsampling

Array 1 Array 2 Array 3 Array 4 Array 5 Array 6 ...

r111 r222 r333 r433 r511 r644 ...

r122 r233 r344 r411 r544 r622 ...

Step 1: Suppose we have one sample from each variety, and three aliquots from each sample.

V̂ G1g =
1
4
(r111 − r122 − r444 + r411 + r511 − r5,3,3)

V̂ G2g =
1
4
(r122 − r111 + r222 − r233 + r6,2,2 − r6,4,4)

V̂ G1g − V̂ G2g =
1
2
(r111 − r122) +

1
4
(r411 − r444 + r511 − r533 + r233 − r222 + r644 − r622)

var
(
V̂ G1g − V̂ G2g

)
= 2τ2

g + σ2
g

Step 2: Repeat the pattern R times with new samples.

var
(
V̂ G1g − V̂ G2g

)
=

2
R

τ2
g +

1
R

σ2
g
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3.4.8 Five varieties in a BIB design, with subsampling

Array 1 Array 2 Array 3 Array 4 Array 5

r111 r222 r333 r444 r511

r122 r233 r344 r455 r555

Array 6 Array 7 Array 8 Array 9 Array 10 ...

r633 r744 r822 r955 r(10)55 ...

r611 r711 r844 r922 r(10)33 ...

Step 1:

V̂ G1g =
1
5
(r111 − r122 + r511 − r555 + r611 − r633 + r711 − r744)

V̂ G2g =
1
5
(r122 − r111 + r222 − r233 + r822 − r844 + r922 − r955)

V̂ G1g − V̂ G2g =
2
5
(r111 − r122) +

1
5
(r511 − r555 + r611 − r633 + r711 − r744 − r222 + r233 − r822 + r844 − r922 + r955)

var
(
V̂ G1g − V̂ G2g

)
= 2τ2

g +
4
5
σ2

g

Step 2

var
(
V̂ G1g − V̂ G2g

)
=

2
R

τ2
g +

4
5R

σ2
g
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3.5 Efficiency Calculations for Loop Designs

3.5.1 Two or three varieties in a loop

The loop design is the same as the BIB design when there are two or three varieties.

3.5.2 Four varieties in a loop (w.r.t. varieties), without subsampling

Array 1 Array 2 Array 3 Array 4 ...

r111 r223 r335 r447 ...

r122 r234 r346 r418 ...

Step 1: Suppose we have two samples from each variety. A calculation shows that:

V̂ G1g =
3
8
(r111 − r122 + r418 − r447)− 1

8
(r234 − r223 + r335 − r346)

V̂ G2g =
3
8
(r122 − r111 + r223 − r234)− 1

8
(r346 − r335 + r447 − r418)

V̂ G1g − V̂ G2g =
3
4
(r111 − r122) +

1
4
(r418 − r447 + r234 − r223 + r346 − r335)

var
(
V̂ G1g − V̂ G2g

)
=

3
2
(τ2

g + σ2
g)

V̂ G3g =
3
8
(r234 − r223 + r335 − r346)− 1

8
(r111 − r122 + r418 − r447)

V̂ G1g − V̂ G3g =
1
2
(r111 − r122 + r418 − r447 − r234 + r223 − r335 + r346)

var
(
V̂ G1g − V̂ G3g

)
= 2(τ2

g + σ2
g)
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Step 2: Suppose there are R replications of this design with new samples.

var
(
V̂ G1g − V̂ G2g

)
=

3
2R

(τ2
g + σ2

g)

var
(
V̂ G1g − V̂ G3g

)
=

2
R

(τ2
g + σ2

g)

3.5.3 Four varieties in a loop (w.r.t. samples), with two aliquots per sample and the

samples arranged in a loop design to allow for clustering

Array 1 Array 2 Array 3 Array 4 ...

r111 r222 r333 r444 ...

r122 r233 r344 r411 ...

Step 1: Suppose there is one sample from each variety and two aliquots from each sample.

V̂ G1g =
3
8
(r111 − r122 + r411 − r444)− 1

8
(r233 − r222 + r333 − r344)

V̂ G2g =
3
8
(r122 − r111 + r222 − r233)− 1

8
(r344 − r333 + r444 − r411)

V̂ G1g − V̂ G2g =
3
4
(r111 − r122) +

1
4
(r411 − r444 + r233 − r222 + r344 − r333)
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var(V̂ G1g − V̂ G2g) = 2τ2
g +

3
2
σ2

g

V̂ G1g − V̂ G3g =
1
2
(r111 − r122 + r411 − r444 − r233 + r222 − r333 + r344)

var
(
V̂ G1g − V̂ G3g

)
= 2τ2

g + 2σ2
g

Step 2: Suppose there are R replications of the design with new samples.

var
(
V̂ G1g − V̂ G2g

)
=

2
R

τ2
g +

3
2R

σ2
g

var
(
V̂ G1g − V̂ G3g

)
=

2
R

τ2
g +

2
R

σ2
g

Step 3: Note that looping with respect to samples (instead of varieties) will result in a slightly

different pattern with respect to the sample index than performing replications. However, because

this change does not effect the array or variety indexes, the variance of variety contrasts will be the

same as the variance calculated in step 2.
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3.5.4 Five varieties in a loop (w.r.t. varieties), without subsampling

Array 1 Array 2 Array 3 Array 4 Array 5 ...

r111 r223 r335 r447 r519 ...

r122 r234 r346 r458 r55(10) ...

Step 1: Suppose there are four samples from each variety.

V̂ G1g =
2
5
(r111 − r122 + r51,10 − r459)− 1

5
(r234 − r223 + r447 − r458)

V̂ G2g =
2
5
(r122 − r111 + r223 − r234)− 1

5
(r346 − r335 + r459 − r51,10)

V̂ G1g − V̂ G2g =
4
5
(r111 − r122) +

1
5
(r51,10 − r459 + r234 − r223 − r447 + r458 + r346 − r335)

var
(
V̂ G1g − V̂ G2g

)
=

8
5
(τ2

g + σ2
g)

V̂ G3g =
2
5
(r234 − r223 + r335 − r346)− 1

5
(r111 − r122 + r458 − r447)

V̂ G1g − V̂ G3g =
3
5
(r111 − r122 + r223 − r234) +

2
5
(r458 − r447 + r346 − r335 + r51,10 − r459)

var
(
V̂ G1g − V̂ G3g

)
=

12
5

(τ2
g + σ2

g)

Step 2: Suppose this pattern is repeated R times.

var
(
V̂ G1g − V̂ G2g

)
=

8
5R

(τ2
g + σ2

g)
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var
(
V̂ G1g − V̂ G3g

)
=

12
5R

(τ2
g + σ2

g)

3.6 Relative Efficiency Tables

Sample Contrast Relative Efficiencies: 10 Arrays

Distance 1 2 3 4 5

Rel Eff 2τ2
g +4σ2

g

2τ2
g +1.8σ2

g

2τ2
g +4σ2

g

2τ2
g +3.2σ2

g

2τ2
g +4σ2

g

2τ2
g +4.2σ2

g

2τ2
g +4σ2

g

2τ2
g +4.8σ2

g

2τ2
g +4σ2

g

2τ2
g +5σ2

g

Table 4: Ten Arrays: Loop versus reference design Relative efficiencies for individual sample con-

trasts = varreference(F̂G1g−F̂G2g)

varloop(F̂G1g−F̂G2g)
. Distance = 1 + (number of samples between the two samples of

interest in the loop, taking shortest route).
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Sample Contrast Relative Efficiencies: 20 Arrays

Distance 1 2 3 4 5

Rel Eff 2τ2
g +4σ2

g

2τ2
g +1.9σ2

g

2τ2
g +4σ2

g

2τ2
g +3.6σ2

g

2τ2
g +4σ2

g

2τ2
g +5.1σ2

g

2τ2
g +4σ2

g

2τ2
g +6.4σ2

g

2τ2
g +4σ2

g

2τ2
g +7.5σ2

g

Distance 6 7 8 9 10

Rel Eff 2τ2
g +4σ2

g

2τ2
g +8.4σ2

g

2τ2
g +4σ2

g

2τ2
g +9.1σ2

g

2τ2
g +4σ2

g

2τ2
g +9.6σ2

g

2τ2
g +4σ2

g

2τ2
g +9.9σ2

g

2τ2
g +4σ2

g

2τ2
g +10.0σ2

g

Table 5: Twenty Arrays: Loop versus reference design Relative efficiencies for individual sample

contrasts = varreference(F̂G1g−F̂G2g)

varloop(F̂G1g−F̂G2g)
. Distance = 1 + (number of samples between the two samples

of interest in the loop, taking shortest route).
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Reference vs. BIB Design

Number of Same Number of Same Non-Reference

Varieties Arrays Used Aliquots Used

2
2τ2

g + 4σ2
g

τ2
g +σ2

g

(2τ2
g + 4σ2

g )/2

τ2
g +σ2

g

3
2τ2

g + 4σ2
g

4
3
τ2
g + 4

3
σ2

g

(2τ2
g + 4σ2

g )/2

4
3
τ2
g + 4

3
σ2

g

4
(2τ2

g + 4σ2
g )/3

(τ2
g +σ2

g )/2

(2τ2
g + 4σ2

g )/3

(τ2
g +σ2

g )/1

5
(2τ2

g + 4σ2
g )/2

( 4
5
τ2
g + 4

5
σ2

g )/1

(2τ2
g + 4σ2

g )/4

( 4
5
τ2
g + 4

5
σ2

g )/1

Table 6: Relative efficiencies of variety contrasts =
varreference

(
V̂ G1g−V̂ G2g

)

varbib

(
V̂ G1g−V̂ G2g

) . Balanced block designs

use one aliquot per sample (to maximize efficiency).
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Reference vs. Loop Design

Number of Same Number of Same Non-Reference

Varieties Arrays Used Aliquots Used

2
2τ2

g + 4σ2
g

2τ2
g +σ2

g

2τ2
g + 2σ2

g

2τ2
g +σ2

g

3
2τ2

g + 4σ2
g

2τ2
g + 4

3
σ2

g

2τ2
g + 2σ2

g

2τ2
g + 4

3
σ2

g

4 (same)
2τ2

g + 4σ2
g

2τ2
g + 3

2
σ2

g

2τ2
g + 2σ2

g

2τ2
g + 3

2
σ2

g

4 (adjacent)
2τ2

g + 4σ2
g

2τ2
g +2σ2

g

2τ2
g + 2σ2

g

2τ2
g +2σ2

g

Table 7: Relative efficiencies of variety contrasts =
varreference

(
V̂ G1g−V̂ G2g

)

varloop

(
V̂ G1g−V̂ G2g

) . Loop designs use 2

aliquots per sample (to allow for clustering of samples).


