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1. Introduction

The last half of the twenty’th century saw some dramatic improvements in cancer

treatment, including curative treatments for pediatric acute lymphocytic leukemia, Wilms

tumor, osteosarcoma, testicular cancer, Hodgkin’s disease, diffuse large B cell lymphoma

and other neoplasms.  Mortality for breast cancer has been reduced as a result of

improvements in chemoprevention, early detection and therapy. For many other solid

tumors, however, progress has been more limited. 

During this same period, however, biology has undergone the biotechnology revolution.

This has provided powerful new reagents, experimental techniques, instruments and

assays which have led to whole genome DNA sequencing and genome wide RNA

transcript quantification. Proteome wide protein quantification is within view.

The last half of the twentieth century also provided the development of the randomized

clinical trial, which has made medicine a science. Unfortunately, the developments in the

methodology of clinical trials were in many cases more powerful and effective than the

interventions that were brought to clinical trial for evaluation. The randomized clinical

trial protected us from the broad introduction of ineffective and toxic treatments,

however. It also enabled the identification of improved treatments and chemoprevention

of breast cancer that would not have been possible otherwise. 

It is important that the interventions brought to clinical trial in the twenty-first century

have a stronger scientific basis than has been the case to date. Even today, progress in

reducing cancer mortality is limited by an inadequate understanding of the molecular

basis of these diseases.
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The biotechnology revolution has provided new instrumentation and assays that have

facilitated the creation of extensive biological data resources. Biology is in the process of

becoming an information and system science, but there are important obstacles in

utilizing the data becoming available to create biological knowledge. The following

sections will explore some of these obstacles and opportunities in developing genomic-

based approaches to cancer prevention research.

2. Bioinformatics

Bioinformatics is an ambiguous term that refers to all aspects of the collection, analysis

and integration of biological information. It has components that include software

engineering, statistical analysis, and algorithm development. Many biologists and

organizations are confused about bioinformatics, don’t appreciate it’s diversity and are

struggling to determine how to select staff or structure a bioinformatics group. A

common mis-conception is too narrow a focus on software engineering. It doesn’t work

to hire software engineers to build analysis tools unless they have access to professional

advise about data analysis. That advice should generally come from statisticians involved

in data analysis and methodology development. A second common misconception about

bioinformatics is that it can be effectively structured as a service component. This is

certainly not true for the statistical analysis and algorithm development components of

bioinformatics. Viewing bioinformatics as a service component that can be purchased

reflects a lack of appreciation for the significance of the changing nature of biology.

Taking advantage of the revolution that is taking place in biology requires recognition

that the statistical and computational scientists working in bioinformatics must be full

members of a research team interacting with wet-lab experimentalists on a collaborative

basis and conducting self-initiated research on bioinformatics methodology. 

Some biologists view bioinformatics as a service activity for creating analysis tools for

use by experimentalists. Whereas analysis tools are important, there are many problems,
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which require inter-disciplinary collaboration in order to fully understand and utilize the

data. This type of collaboration is difficult to achieve in many laboratory environments

but has been successfully accomplished between biostatisticians and clinical investigators

in clinical trial research. Inter-disciplinary collaboration requires not only mutual respect,

but also substantial training of statistical and computational scientists in biology and of

biologists in statistical and computational matters. It also requires funding of

bioinformatics groups as research groups, interacting with experimentalists and also

doing research to extend the methodology of bioinformatics.  Understanding the complex

interactions among genes and among cells will require a greater use of mathematical

methods, not for quantification, but for elucidating the principles involved. This effort

will require an environment that encourages the best minds to get involved in

bioinformatics activities. Those organizations that holding onto outdated views and old

hierarchical organizational structures will not be able to take advantage of the

opportunities offered in the genomic era.

3. DNA Microarrays

DNA microarrays can be used to quantify the abundance of mRNA transcripts for each

gene of the human genome in a sample of cells. Although the assay and methods for data

analysis are active areas of research, microarrays are currently useful and very powerful.

For cancer prevention research, DNA microarrays can be used to elucidate the sequence

of changes in gene expression that occur as tumors develop, to identify molecular targets

for preventive strategies, and to identify candidate biomarkers for surrogate endpoints in

developmental prevention trials. 

There are a number of myths prevalent concerning DNA microarrays. Some of these are

listed in Table 1. The first is that the greatest challenge in the use of DNA microarrays is

management of the large volume of data generated. Whereas effective data management

is essential, it can be accomplished using established principals of software engineering

and there are an increasing number of commercial and academic database systems
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available for managing microarray data. The more conceptually challenging problem is

determining how to design the experiments, analyze the resulting data so as to obtain

reliable information, and to combine sources of information to obtain answers to

important biological questions. 

A second myth is that pattern recognition is the appropriate paradigm for microarray

analysis. Some hold the view that one feeds unstructured specimens into a pattern

recognition algorithm to identify unexpected regularities and to provide answers to un-

asked questions. This view does not provide a prescription for effective use of

microarrays. The microarray is an assay; experiments and analyses must be carefully

planned as when using any assay. Microarrays are generally not used to test gene-specific

hypotheses. Gene-specific mechanistic hypotheses can often be better addressed using

other more sensitive assays. But effective microarray based research has clear objectives,

and those objectives drive both the planning of the experiment and the analysis plan. For

example, if one wants to identify genes that are dis-regulated early in oncogenesis, then

one needs samples of tissue taken at early times during the development of an invasive

cancer. The type and number of samples as well as the analysis plan should be

determined based on the objectives.   

A third myth is that cluster analysis is the generally appropriate method of analysis of

microarray data. The microarray is useful for experiments with a wide variety of

objectives. Cluster analysis is useful for identifying co-expressed genes and for trying to

determine whether a disease is uniform with regard to gene expression, but for many

other objectives, cluster analysis is inappropriate. Cluster analysis is not a very powerful

approach for comparing expression profiles among pre-defined classes of samples. For

example, one may be interested in finding genes that are differentially expressed between

tumor and normal samples. The distance metrics used in cluster analysis are generally

global distance metrics based on all of the genes or the genes that show variability across

the set of samples. This metric may not be sensitive to differences in the relatively few

genes that discriminate among the pre-defined classes. Cluster analysis is a non-

supervised method, in the sense that it does not utilize information about which sample is



6

in which pre-defined class. Supervised methods for comparing the classes to determine

differentially expressed genes and to build multivariate classifiers based on these genes

are generally more powerful for such problems. 
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Microarray Myths

• The greatest challenge is managing the mass of
microarray data

• Pattern recognition is the appropriate paradigm for the
analysis of microarray data

• Cluster analysis is generally useful for analysis of
microarray data

• Microarray data analysis is about looking for red or
green spots

• That pre-packaged analysis tools are a substitute for
collaboration with statistical scientists in complex
problems
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The fourth microarray myth listed in Table 1 is that microarray data analysis is about

looking for red and green spots. Early use of cDNA microarrays were based on single

arrays in which RNA from a collection of wild type cells was labeled with one florescent

dye (e.g. Cy3) and hybridized against RNA from a mutated cell type, labeled with a

different florescent dye (eg. Cy5). Computer software that performs the image analysis of

the pixel level data computes two numbers at each pixel location on the slide. One

number is the intensity of the fluorescence when illuminated with laser light of the

intensity that causes the Cy3 dye to fluoresce and the other number is the intensity when

the slide is illuminated with light that causes the Cy5 dye to fluoresce. The relative

magnitude of these two numbers can be color coded and displayed. Usually the color-

coding used ranges from green to red. The spots in which there is more mRNA from one

sample relative to the other will appear either reddish or greenish. 

There are many problems with analysis by color. One problem is that it assumes that you

can draw conclusions based on analysis of a single microarray. There are so many

sources of variation that are not represented by looking at a single microarray that this is

not usually the case. This confusion was enhanced by the publication of formulae and

“error models” that claimed to represent confidence intervals for the red to green ratio on

a single array. Unfortunately, these confidence intervals do not incorporate many

important sources of variability. RNA is easily degradable and differences in handling the

cells or tissues compared on an array can greatly influence the results. The labeling

reaction is also a major source of variability and it cannot be properly controlled when

analyzing a single array. Not only is there substantial variability involved in labeling,

there is also bias. The two labels commonly used, Cy3 and Cy5, have different affinities

for DNA and different sensitivities for fluorescence. The relative affinities are gene

dependent and the fluorescence bias varies based on the level of expression. One may

attempt to control some of these biases by “normalization” of the data, but normalizations

are imperfect and obtaining unbiased results generally requires multiple arrays and in

some cases dye-swap replication.  
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Generally the greatest source of variation in microarray studies is biological variation. If

you wish to compare tissue of tumors from a specified tissue to normal tissue of the same

type, you need to study multiple tumors and multiple normal tissues. If you do multiple

arrays with sub-aliquots of the same specimen of tumor and normal tissue, then you may

learn something about relative gene expression in those two RNA samples. You may be

able to control for the labeling bias and variation and the hybridization variation, but you

won’t know whether the differential expression found is the result of differential tissue

handling, or whether it applies more generally to tumors and normal tissues of that type.

Even for experiments involving cell lines instead of tissues, gene expression can

seriously vary with the confluence state at which the cells are harvested. As the cells start

to crowd and compete for nutrients, various pathways get turned on and others get turned

off. Hence, comparing expression in an RNA sample from one cell line to expression in

an RNA sample from a different cell line, unless the experiment is replicated at the

biological level of repeating growth and harvest of the cells, we will not know whether

the results are more than experimental artifacts. The amount of replication appropriate

depends on the degree of variability from all sources and is discussed somewhat by

Simon et al. (1) along with other aspects of the design of microarray experiments. There

is value in doing some replication of arrays at a lower level, duplicate arrays for the same

RNA samples independently labeled, in order to assure that your experimental technique,

instrumentation and reagents are working properly. 

The final myth listed in Table 1 is that software analysis tools are a substitute for

collaboration with professional statistical scientists on major studies using microarrays.

Many biologists perform a small number of microarrays in order to get a view of gene

expression in order to plan more definitive experiments using either microarrays or other

technologies. It is important that good software analysis tools be available for such use.

We have developed BRB-Array Tools (2) as a DNA microarray analysis package for use

by biologists. BRB-Array Tools is also intended as a tool for helping to educated

biologists in good statistical practices in analysis of microarray data. There are too few

available statisticians experienced in the analysis of microarray data and often if falls to
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biologists to analyze their own data. For many experiments, however, collaboration with

professional statisticians experienced in the design and analysis of microarray data is very

important. Studies involving DNA microarrays are in many ways more complicated than

clinical trials or cohort studies. There are many more opportunities to miss-analyze the

data and publish erroneous conclusions. There are many signal processing analysis steps

which require careful examination of the raw data. These include image analysis of

pixels, background adjustment, quantification of signal, normalization, combining probe

signals on Affymetrix arrays, identification of artifacts and quality assessment. There are

many types of experimental artifacts. There are also many competing methods of

analysis, not all of which are equally good. The available software packages cannot be

relied upon to produce good data automatically for all sets of arrays. There are equally

many complex issues of data analysis after the signal processing stage. These include

issues such as what analysis methods to use, how to control for multiple comparisons,

how to evaluate a multivariate classifier and how to perform and validate cluster analysis.

Some available software packages do not handle these issues effectively or even validly.

Many packages over-emphasize cluster analysis for problems where it is inappropriate.

The Affymetrix software currently available does not even provide for the comparison of

expression levels of genes in two sets of samples by a standard statistical test. It provides

only for comparison of individual samples.    

In comparing expression levels of genes in two sets of samples, cognizance must be taken

of the multiple comparison issue. If one compares expression levels between two sets of

samples for 10,000 genes, then one expects 500 false positives statistically significant at

the 0.05 level. This is the expected number even-though the expression levels are

correlated among sets of some of the genes. The correlation effects the variance of the

distribution of the number of false positives, but not the expected number. Hence, the

conventional 0.05 significance level in comparing expression levels of individual genes is

not appropriate. Some investigators select genes differentially expressed between the two

classes at the 0.05 level, and then cluster the samples with regard to that gene set. This is

an erroneous way of evaluating whether the classes are different with regard to

expression profile. Even if two classes do not truly differ with regard to expression
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profile, there will be on average 500 (out of 10,000) genes significant at the 0.05 level

and the classes will cluster separately with regard to this set of false positive genes. 

There are many methods for controlling the number of false positives. One is to use a

stringent 0.001 threshold for declaring significance. There are other methods that

specifically control the “false discovery rate” which is the proportion of genes claimed to

be differentially expressed between the classes, which are false positives. Some methods

also take into account the correlation structure of expression level among genes and

thereby gain statistical power. 

There is substantial interest in developing multivariate classifiers of two or more pre-

defined classes based on gene expression levels. There is a substantial literature on

different types of mathematical functions that can be used as classifiers ranging from

linear discriminant functions to neural networks. These methods were not developed,

however, for problems where the number of candidate predictors vastly exceeds the

number of cases (samples). Many of the methods do not work well in that setting. The

key principles in developing an effective multivariate classifier are selection of

informative features and avoiding over-fitting the data. For contexts where the number of

candidate predictors (genes) is orders of magnitude greater than the number of cases,

complex methods that have many parameters to be determined from the data, such as

neural networks, often perform very poorly (3). 

It is essential to obtain an unbiased estimate of the misclassification rate of multivariate

classifiers in high dimensional situations with relatively few cases. Applying the

classifier to the same set of cases from which it was developed results in a severely

biased estimate of misclassification rate unless a cross-validation (or other bias reduction)

procedure is properly used. One simple type of cross-validation is to separate the data

into a training set and a validation set before any analysis is performed and to not look at

the validation set until a fully specified model is developed on the training set. The fully

specified classifier is then applied to the cases of the validation set, without any
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additional variable selection, fitting of parameter values or estimating cutoff values. An

unbiased estimate of misclassification rate can be obtained in this way. 

An alternative approach that can be used in some circumstances is algorithmic cross-

validation. For example, with algorithmic leave-one-out cross validation (4) one sample

is set aside as a singleton validation set. The classification model is developed from

scratch on the training set defined by the remaining samples. The classification model

developed on the training set is used to classify the validation sample that was excluded

from the training set. One then records whether that classification was correct or not. This

process is repeated n times, where n is the total number of samples. Each time a different

sample is excluded and a classification model developed from scratch using the same

algorithm on the training set consisting of the remaining samples. Leave-one-out cross-

validation is often performed incorrectly. “Developed from scratch,” means that all

variable selection and other steps must be re-performed on each training set. The

variables (genes) in the model will change for each training set. No pre-analysis that uses

the class labels can be performed using the entire dataset. Inexperienced data analysts

sometimes select the genes using the entire data, or select the principal components to be

used using the entire data. Then they cross-validate the parameters of the model. This

generally gives a quite biased estimate of the misclassification rate.

4. Conclusion

Biotechnology has given rise to genomic and important new tools, approaches and

opportunities for understanding the nature of cancers. Such understanding will lead us to

major improvements in reducing cancer mortality through prevention, early detection and

molecularly targeted treatment. Taking advantage of the opportunities available to us will

require, however, a greater appreciation of the changes that have taken place and the need

for closely interacting with statistical and computational scientists in a setting of

collaboration among equal research scientists.
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