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Abstract

Detailed genetic characterizations of specimens from healthy or diseased individuals may hold the

key to predicting which healthy individuals will develop disease or which diseased individuals will

respond to therapy.  For example, cDNA microarrays allow simultaneous measurement of

expression levels of thousands of genes on a single specimen, producing a “gene expression

profile”.  Frequently an objective of such a study is to identify which genes among the thousands

measured are differentially expressed in one group as compared to another.  Statistically, this

presents an enormous multiple comparisons problem.  Here we propose two new statistical

procedures for controlling the number of spurious findings.  

We analyze a microarray data set consisting of measurements on approximately 9000 genes

in paired tumor specimens, collected both before and after chemotherapy on 20 breast cancer

patients.  Our interest was to identify genes that were differentially expressed after chemotherapy

as compared to before chemotherapy.  

A straightforward approach to the identification of differentially expressed genes is to

perform a univariate analysis of group mean differences for each gene, and then identify those

genes that are most statistically significant.  Using nominal significance levels (unadjusted for the

multiple comparisons) will lead to the identification of many genes that truly are not differentially

expressed, “false discoveries”.  However, control of the familywise error rate (e.g., using the

Bonferonni inequality) seems too extreme.  Since the identified genes will be further studied for

biologic relevance, a reasonable strategy is to allow a small number of false discoveries, or a small

proportion of the identified genes to be false discoveries.  Although previous work has considered

control for the expected proportion of false discoveries, we show these methods may be inadequate. 
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We propose two stepwise permutation-based procedures designed to control the actual number or

proportion of false discoveries with specified confidence.  

Applying these new methods to the breast tumor microarray example, we were able to

identify 28 genes (more than twice the number identified by a Bonferroni procedure) that we can

state with high confidence are differentially expressed comparing before to after chemotherapy.  In

addition, simulation studies evaluate the procedures and demonstrate that their use results in

substantial gain in sensitivity to detect truly differentially expressed genes even when allowing as

few as one or two false discoveries.  The methods described are broadly applicable to the problem

of identifying which variables of any large set of measured variables differ between pre-specified

groups.  

KEY WORDS: False discovery; Multiple comparisons; Stepwise procedure;

Permutation method; Gene expression; Microarray 
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1. INTRODUCTION

Technological advances have made possible detailed genetic characterization of biological

specimens.  For example, cDNA microarray technology (Schena, Shalon, Davis, and Brown 1995)

permits the simultaneous evaluation of expression levels of thousands of genes on a single

specimen, generating a gene expression “profile” for that specimen. The cDNA microarray

technology has now been applied to profile numerous human cancer specimens; it is hoped that

gene expression profiles of tumors might aid in distinguishing aggressive from indolent tumors and

might guide choice of therapies.  Another exciting opportunity comes with the completion of the

initial sequencing and analysis of the human genome.  More than 1.4 million single nucleotide

polymorphisms (SNPs) in the human DNA sequence have been now identified (International

Human Genome Sequencing Consortium 2001).  Differing patterns of SNPs might be related to

risk of developing disease or predict response to, or toxicity from, drug therapies.  A typical

experimental approach in these settings would be to select specimens from two or more groups it

was desired to compare, and then to measure a large number of characteristics on each specimen.

Often one would want to identify characteristics that univariately are significantly different

between the groups.  The issue we address in this paper is how one can identify individual

characteristics that are significantly different between groups of specimens while maintaining

control over spurious findings amid the potentially enormous number of comparisons being made.  

The particular example we consider in this paper consists of gene expression profiles

obtained by cDNA microarray analysis of approximately 9000 genes for 40 paired breast tumor

specimens.  The specimens were collected on 20 breast cancer patients, before and after

chemotherapy.  Our interest is in identifying genes whose expression levels differed significantly

after chemotherapy as compared to before.  The example data are continuous, log-transformed
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expression ratios that measure the relative abundance of each gene’s mRNA in the test specimen

compared to a reference sample using a two-color fluorescent probe hybridization system (Schena

et al. 1995).  We note, however, that the general approaches described in this paper are very

broadly applicable to both continuous and discrete data, and to censored data.    

If one were to simply conduct univariate tests of characteristics, for example gene

expression levels, using conventional significance levels, there would be an enormous multiple

comparisons problem.  Some genes would likely be claimed significantly differentially expressed

when, in truth, they were not differentially expressed.  Such false claims of significance are often

called “false discoveries”.  One can use a procedure to account for these multiple comparisons and

control the probability of any false discovery.  This overall probability of any error is usually

referred to as the familywise error (FWE) rate.  A Bonferroni adjustment to the p-values, or

preferably less conservative stepwise procedures such as those described by Westfall and Young

(1993, pp. 72-74) and Troendle (1996) can be used to control the familywise error rate.  For

example, Callow, Dudoit, Gong, Speed, and Rubin (2000) have applied the Westfall and Young

method to microarray data.  These procedures will guarantee that the probability of any false

discovery is less than the designated significance level, e.g., .05.  However, the criterion of not

making any false discovery is too stringent for most microarray investigations, in which the

identification of these genes will be followed by further study of them.  On the other hand, making

no adjustment for multiple comparisons could generate many false leads.  

A reasonable compromise is to use a procedure that will allow some false discoveries, but

not too many.  A simple procedure is to lower the nominal significance level and appeal to

Bonferroni, e.g., using an significance level of .001 would ensure in expectation at most 10 false

discoveries with 10,000 variables.  A slightly more complex procedure attempts to control for the
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expected proportion of discoveries (identified genes) that are false discoveries (with the proportion

set to 0 when no genes are identified): Order the univariate p-values from the k variables,

PPP k )()2()1( ... <<< .   To keep the expected false discovery proportion less than γ (e.g., γ = .10),

identify as differentially expressed those genes that are associated with the indices 1, 2, ..., i, where

i is the largest index satisfying γikP i <)( .  This procedure is attributed to Eklund by Seeger (1968)

and was studied by Benjamini and Hochberg (1995).  Tusher, Tibshirani, and Chu (2001) present a

procedure they call SAM (Significance Analysis of Microarrays) for estimating a false discovery

rate from data, but they do not discuss the statistical properties of their procedure.  Procedures

targeting control of the expected number or proportion of false discoveries rather than the actual

number or proportion can give a false sense of security.  This is demonstrated in Tables 1 and 2 for

simulated data with 10,000 variables.  In Table 1, we consider using a univariate nominal

significance level of .001.  The expected number of false discoveries is less than or equal to 10, but

the spread of the distribution of the actual number of false discoveries becomes quite large when

the correlation between the variables increases.  For example, there is a 10% chance of having 18

or more false discoveries with block correlation .5.  The same problem arises when controlling the

expected false discovery proportion.  Table 2 displays the distribution of the actual false discovery

proportion when using the simple procedure described above to control the expected false

discovery proportion to be less than .10.  Even with no correlation the results here are troubling:

10% of the time the false discovery proportion will be .29 or more.

In this paper we discuss methods for controlling the actual (rather than expected) number

and proportion of false discoveries.  We prove that our procedure for the former guarantees control,

and our procedure for the latter achieves asymptotic control.  That is, application of these methods

will allow statements such as “with 95% confidence, the number of false discoveries does not
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exceed 2” or “with approximate 95% confidence, the proportion of false discoveries does not

exceed .10”.  In section 2 we describe our procedures for controlling the number and proportion of

false discoveries and provide justifications for the algorithms. The methods are applied to the

analysis of the pre-post chemotherapy breast cancer specimens in section 3.  In section 4, we

describe some limited simulation studies to assess our procedures and to compare them to

procedures designed to control the FWE error rate.  We end with a discussion in section 5.   

   

2. CONTROLLING FALSE DISCOVERIES

We assume that for each variable we have performed an appropriate univariate statistical

test of the null hypothesis that the distribution of that variable is the same across the groups, and we

have obtained a p-value associated with that test.  For example, if the data consist of continuous

gene expression levels, t-tests or Wilcoxon tests might be performed for each gene.  If the data

consist of binary variables, each indicating the presence or absence of a particular marker, then chi-

squared tests or Fisher’s exact tests may be used.  The tests may be for paired data (as in our breast

cancer example) or unpaired data depending on the design.  Let 

PPP k )()2()1( ... <<< (1)

be the ordered p-values from the univariate tests based on the k variables, and let H(1), H(2), . . ., H(k)

denote the hypotheses in the corresponding order.   For now, we assume that there are no ties in the

p-values (as would be the case if the variables were continuous and parametric hypothesis tests

were used).  For any subset },...,,{ 21 tttT j=  of },...,2,1{ kK = , consider the multivariate

permutation distribution of p-values },...,,{
21 jttt PPP ′′′  that would be generated by permuting the

group labels on the specimens and calculating the test statistics on the variables with indices in T

using the permuted data.  For paired data, these permutations are obtained by switching the
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characteristic profiles within each pair.  Therefore, for our paired breast tumor example,

permutations are performed by switching the before and after gene expression profiles.  For the

unpaired or multi-group case, permutations are performed by shuffling the group membership

labels.  Note that in each case, the characteristic profiles measured on any given specimen remain

intact so as to preserve the correlation among the measured characteristics.  

We now present two procedures.  Procedure A is designed to control the number of false

discoveries, and Procedure B is designed to control the proportion of false discoveries.  Both

Procedures A and B described below are “step-down” permutation methods.  That is, they proceed

from smallest p-value to largest, which is equivalent to “stepping down” from the largest test

statistic to the smallest.  

2.1 Controlling the Number of False Discoveries

Procedure A:  Suppose we wish to be 1-α confident that the number of false discoveries is ≤ u (u >

0).  Let y uT
α

,
denote the α quantile of the distribution of the (u+1)st smallest of the

},...,,{
21 jttt PPP ′′′ under the multivariate permutation distribution.  (Since the permutation distribution

is discrete, the exact α quantile will typically be unobtainable, so we let y uT
α

,
be the largest

obtainable α* quantile with α* < α.)  We reject null hypotheses sequentially, in order of smallest to

largest p-value as follows:

Automatically reject H(1), H(2), . . ., H(u).  For r > u, having rejected H(r-1), reject H(r) if

yP r ur
<)( ,

α where 

=y ur
α

, min( y ukrriii u

α
)},(),...,1(),(),(),...,(),{( 21 + |{ iii u<<< ...21 } ⊂ {1, 2, . . ., r-1}), (2)



9

and subscript (ij) denotes the index associated with the ij-th ordered p-value from among the full set

of p-values.  Once a hypothesis is not rejected, all further hypotheses are not rejected.  

For u = 0, we define Procedure A to be the usual stepwise procedure for controlling the familywise

error.  That is, reject H(1) if yP K
α

0,)1( < , and having rejected H(r-1), reject H(r) if yP krrr
α

0)},(),...,1(),{()( +< .

Proposition A:  Procedure A controls the number of false discoveries to be less than or equal to u

with confidence 1-α.  

Proof of Proposition A:  Let s be the rank of the p-value in the ordered list (1) corresponding to

(u+1)st smallest p-value associated with a variable that satisfies the null hypothesis.  Let 0K be the

set of indices corresponding to the variables that satisfy the null hypothesis.  In particular, the

variable associated with H(s) is in K0 and there are u other variables in K0 associated with u of the

H(1), H(2), . . ., H(s-1).  Then

Pr(more than u true null hypotheses are rejected )

 = Pr(H(1), H(2), . . ., H(s) are rejected)

)Pr( ,)(
α

uss yP <≤

)Pr( ,)( 0

α
uKs yP <≤

α≤ ,

where the penultimate inequality is true because αα
uKus yy ,, 0

≤ .  The probability in the next-to-last

line depends only on the marginal joint distribution of the p-values in K0, in particular the (u+1)st

smallest p-value in the set K0, which is by definition P(s).  Therefore, the permutation distribution of
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the (u+1)st smallest of the },{ 0KtPt ∈′ can be used as a reference distribution, verifying the last

inequality.  

If the variables or p-values are discrete, there can be ties in the p-values given in (1), but

this does not present a problem.  Regardless of the ordering of the tied variables in (1), if the

hypothesis associated with the first variable in the order is rejected, then the hypotheses associated

with the other tied variables will also be rejected because the minimization (2) will be over smaller

sets for the other variables.  In addition, which of the tied variables is considered first for rejection

will not matter, as the permutation distribution will include all of them when considering the first

rejection. Also, if the first of the tied variables fails to reject, the procedure ceases and no further

hypotheses are rejected, so that the situation in which the first tied variable fails to reject, and the

later tied variables do reject, need not be considered.

We have used univariate p-values in (1) and (2) upon which to base our permutation tests.

Any univariate statistic could be used here to distinguish between the groups, e.g., the absolute

difference between two group means or the absolute difference between two proportions for binary

data.  The only requirement is that the same statistic is used for the },{ KtPt ∈′ generated on the

permuted data.  Obviously, using a statistic that captures well the evidence of group differences

should result in more power to make true discoveries.  

The computational burden implicit in (2) can be large if 







u

r
 is not small.  A conservative

procedure in these situations would be to set αα
uKur yy ,, = .  When kr << , we expect the

conservatism of this less computationally intensive procedure to be minimal.  We examine this in

section 4 with some limited simulations.  
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As an alternative to fixing α in advance, one can obtain an “adjusted significance level” for

each hypothesis.  This adjusted significance level associated with hypothesis H(r) represents the

smallest significance level at which H(r) would be rejected under the procedure.   We first calculate

the tentative adjusted significance level *
)(rp  as follows.  For r ≤ u, set *

)(rp  = 0.  For r > u, *
)(rp  is

defined as the smallest α such that α
urr yP ,)( < where α

ury , is obtained from the generated permutation

distribution.  The adjusted significance level for H(r) is then defined as max ),...,,( *
)(

*
)2(

*
)1( rppp .  This

last maximization step is required because of the sequential nature of the rejection procedure.  

2.2 Controlling the Proportion of False Discoveries

Intuitively, Procedure A could be applied in an iterative way to control the false discovery

proportion (FDP) which we define as the number of null hypotheses rejected divided by the total

number of hypotheses rejected.  If no hypotheses are rejected, we define FDP = 0.  Note that the

expected value of the FDP is the false discovery rate (FDR) that has been previously studied by

Benjamini and Hochberg (1995).  Suppose that the goal is to have 1-α confidence that the false

discovery proportion is less than some value γ.  Then, if the rth ordered hypothesis is the last one to

be rejected by the procedure, we want to be 1-α confident that no more than |[rγ]| false discoveries

are among those r rejected hypotheses, where the notation |[x]| denotes the greatest integer less than

or equal to x.  

Procedure B:  Suppose we wish to be 1-α confident that the proportion of false discoveries is no

more than γ (γ > 0).  Reject H(1) if 
α

0,)1( KyP < .  Having rejected H(r-1), reject H(r) if either |[rγ]| >

|[(r−1)γ]| or α
γ |][|,)( rrr yP < .
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Proposition B:  If the univariate tests are consistent, Procedure B asymptotically controls the

proportion of false discoveries to be less than or equal to γ with confidence 1-α, where the

asymptotic control is as sample size increases under fixed null and alternatives, and fixed number

of variables.  

Proof of Proposition B:  Let S be the rank of the p-value in the ordered list (1) corresponding to the

first time that if hypotheses 1, 2, . . . , S were rejected, then the false discovery proportion would be

larger than γ at that point.  S is a random variable that depends on the complete set of k tests.  Note

that the variable associated with H(S) is in K0, and that there are |[Sγ]| other variables in K0

associated with |[Sγ]| of the H(1), H(2), . . ., H(S-1).  Also note that H(S) cannot

be an “automatic rejection” because if |[Sγ]| > |[(S-1)γ]|, then the false discovery proportion would

be larger than γ for hypothesis (S-1).   The proof of Procedure B follows from 

Pr[FDP > γ]

≤ Pr[H(1), H(2), . . ., H(S) are rejected]

≤ Pr[ α
γ |][|,)( SSS yP < ]

≤ Pr[ α
γ |][|,)( 0 SKS yP < ]  → α under the stated asymptotics.

The first inequality is not an equality as it was in the proof of Proposition A because the procedure

may continue rejecting beyond H(S) leading to the possibility that the false discovery proportion

may subsequently fall below γ.  If |[Sγ]| were a constant rather than a random quantity, then the last

probability would be less than α without the need for asymptotics.  However, it is not a constant,

and it is possible to construct counterexamples with the last probability exceeding α.  This does not
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rule out the possibility that Procedure B does control at α the probability of FDP exceeding γ

because there are several other inequalities in the proof.  But, at present, we appeal to an asymptotic

argument.  If we consider asymptotics of increasing sample size with fixed number of variables and

fixed null and alternative hypotheses, then S will approach a constant s with probability one since

the p-values corresponding to the variables associated with nonnull hypotheses will appear first in

the ordered list (1).  Under these asymptotics, the last probability will approach a value less than or

equal to α.  We examine the small sample properties of this procedure in some limited simulation

studies in section 4.  

The issue of tied p-values is more subtle here than for Procedure A because of the automatic

rejections, i.e. when |[rγ]| > |[(r-1)γ]|.  If the p-value associated with an automatically rejected

hypothesis is tied with the next p-value to be considered, then depending upon the arbitrary order of

the variables with the tied p-values, the procedure might or might not reject the hypothesis

immediately following the automatic rejection.  We recommend in this situation that all possible

ordering of the variables with tied p-values be considered, and the one that leads to the most

rejections be used.  If we have two tied p-values and consider both orderings, then we have two

possible values of α
γ |][|, SSy , say 1,

|][|,
α

γSSy  and 2,
|][|,

α
γSSy .  Therefore, in the proof of Procedure B, we can

replace the line Pr[ α
γ |][|,)( SSS yP < ] with Pr[ 1,

|][|,)(
α

γSSS yP <  or 2,
|][|,)(

α
γSSS yP < ].  However, since 1,

|][|,
α

γSSy

and 2,
|][|,

α
γSSy  are each less than α

γ |][|,0 SKy , the next line in the proof follows.  

We can obtain an adjusted significance level for each hypothesis using a method similar to

that employed for Procedure A.  This adjusted significance level associated with hypothesis H(r)

represents the smallest significance level at which H(r) would be rejected under the procedure.   We

first calculate the tentative adjusted significance level *
)(rp  as follows.  If |[rγ]| > |[(r-1)γ]|, *

)(rp  = 0. 
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If  |[rγ]| = |[(r-1)γ]|, then *
)(rp  is defined as the smallest α such that α

urr yP ,)( < where α
ury , is obtained

from the generated permutation distribution.  The adjusted significance level for H(r) is then defined

as max ),...,,( *
)(

*
)2(

*
)1( rppp .  

3. APPLICATION TO MICROARRAY DATA FROM 20 PAIRED BREAST TUMORS

We demonstrate the methods on a subset of a previously published data set involving gene

expression from cDNA microarrays using specimens from 65 breast tumors from 42 individuals

(Perou et al. 2000). Our analysis is based on data from 20 individuals with specimens taken both

before and after a 16-week course of doxorubicin chemotherapy.  The microarray analyses generate

two gene expression profiles for each specimen, one before, and one after chemotherapy.  Each

profile consists of log expression ratios measured on approximately 9000 genes.  Based on a cluster

analysis of these profiles, Perou et al. (2000, p. 747) note "Gene expression patterns in two tumor

samples from the same individual were almost always more similar to each other than either was to

any other sample."  This similarity does not eliminate the equally interesting possibility of finding

large and statistically significant differences in gene expression in the 20 paired pre vs. post

chemotherapy specimens.  Genes showing different expression before compared to after

chemotherapy will henceforth be referred to as “differentially expressed”, and the goal of our

analysis will be to identify these differentially expressed genes.  

The primary data were obtained at <http://genome-www.stanford.edu/molecularportraits/>.

Fluorescent intensities for the two labeled samples (test and reference samples) are recorded in two

channels.  Typically, a red and green image is produced to display the intensities in the two

channels.  For each channel and each spot (gene) on the array, both foreground (feature) and
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background intensity measures are given, and a “signal” can be calculated as the foreground

intensity minus the background intensity.  An important first step in the analysis of microarray data

is careful examination of the red and green images of individual spots on the array to determine the

quality of the fluorescence measurements.  Due to experimental artifacts such as dust specs,

scratches, bubbles, or poor adherence of the DNA to the glass slide, some spots will need to be

flagged and not used in the data analysis.  This spot flagging had already been performed by the

original investigators, and the flagging data was supplied.  Data from spots flagged and not used by

the original investigators were also not used here.  Spots labeled as “EMPTY” were not used in any

analyses.  

A second data quality issue is the problem of low intensity spots.  In particular, when

foreground intensity is close to background intensity, and consequently the signal is low, it is

known that the measurements tend to be unreliable.  We have found it helpful to examine plots of

signal in channel 1 versus signal in channel 2 for each array.  Figure 1 shows such a plot for one of

the arrays.  A “fanning” of the point scatter in the lower left corner indicates the range in which

signal is lost amid the noise.  This plot and the many others examined (not shown) suggested that

signal measurements less than 100 (2 on the log base 10 scale) should not be considered reliable.

We chose to exclude from the analysis spots for which signal was less than 100 in both channels.  If

signal was less than 100 in only one channel, the spot was used with the signal in that channel set to

100.    

Also noticeable in Figure 1 is a shift of the scatter of points to slightly below the 45 degree

line.  This shift typically results from differences in signal intensities in the two channels due to

nuisance factors such as different physical properties of the two fluorescent dyes (for example,

different efficiencies of dye incorporation or different rates of degradation), different photo-
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multiplier tube settings for scanning, or differences in the starting amounts of the two fluorescently

labeled samples; it indicates the need for data normalization.  An expression ratio for each gene

was formed as channel 2 divided by channel 1 signal for that gene.  Ratios were then median

normalized within each array by dividing the ratios by the median of the ratios from non-excluded

spots for that array.  

Genes for which data were missing from more than half of the 20 paired tumor specimens

were eliminated from consideration. This left 8029 genes for analysis.  All p-values were calculated

on log transformed median-normalized expression ratios.

Table 3 shows the genes with the 28 smallest unadjusted paired t-test p-values for testing

the null hypothesis that the mean pre and post chemotherapy expression of the gene is the same.

Geometric means are also provided along with GenBank accession numbers.  Information on these

genes can be found by searching on the accession numbers at

<http://www.ncbi.nlm.nih.gov/UniGene/>.  It is interesting to note that the first 24 genes

identified have more expression post-chemotherapy than pre-chemotherapy, and all of the

specimens for 4 of the genes showed more expression after the chemotherapy (Figure 2).  This list

of 28 genes is the set identified by application of our Procedure B controlling the proportion of

false discoveries to be no more than γ = .10 with approximate 95% confidence (α = .05).  Table 4

provides a comparison of the lists of genes identified under several methods:  Bonferroni, step-

down FWE control (equivalent to our Procedure A with u = 0 and α = .05), Procedure A with u = 1

and α = .05, Procedure A with u = 2 and α = .05, and Procedure B with γ = .10 and α = .05.

Permutations in this paired data setting consist of switching the before- and after-chemotherapy

expression profiles.  Thus, there are 220 possible permutations of the profile data.  We used Monte

Carlo sampling to randomly select 19,999 of these permutations.  Adjusted p-values are given
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under each method, with values in bold type denoting rejected hypotheses (α< .05).  Setting the

confidence level at 95%, the number of rejections ranges from 11 to 28, with the Bonferroni

method yielding the least and Procedure B, tied with Procedure A with  u = 2, yielding the most.

By exploiting the correlations among genes, the step-down FWE procedure was able to reject 6

more genes than the Bonferroni procedure.  Allowing just one false discovery allowed

identification of an additional 6 genes, and allowing 2 or 10% false discoveries allowed

identification of an additional 5 genes, for a total of 28.    The results presented in Table 4 all used

the less computational conservative ( αα
uKur yy ,, = ) versions of Procedures A and B.  Calculation of

all results in Table 4 took approximately 18 minutes on a 866 MHz pentium III processor with 1

GB of memory.  The fully computational method was also run and took nearly 5 hours on the same

computer.  Comparing the conservative to the fully computational procedure, the resulting p-values

were very similar and the same numbers of hypotheses were rejected.   

4. SIMULATION STUDIES

We conducted several simulations to assess the performance of Procedures A and B and to

compare them to the procedure to control the FWE rate.  Specifically, we evaluated the same

procedures that we applied to the breast tumor data in the previous section.  Similar to the paired

breast tumor example, we considered cases in which 8000 hypotheses were to be tested, and we

assumed 20 paired specimens.  The paired difference data were generated as multivariate Gaussian

with a variety of block correlation structures.  The blocks of correlated variables can be viewed, for

example, as representing genes that are in the same pathway or that are co-regulated.  Variables are

independent between blocks.  Both positive and negative correlations were considered.  We varied

the number of differentially expressed genes (nonnull variables), and the patterns of correlations
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among those differentially expressed genes.  Each simulation was repeated 10000 times.  For

purposes of computational feasibility, 99 resamplings were performed at each stage, and the

conservative method of critical value calculation ( αα
uKur yy ,, = ) was used except where noted

otherwise.  The effect of using 99 resamplings was investigated in some limited simulation studies,

and the results were found not to differ substantially from using 199 resamplings.  

In Table 5, performance of the methods is assessed under a block exchangeable correlation

structure with 30 nonnull variables out of 8000.  All procedures satisfied the targeted 95%

confidence, with very little conservatism.  The increased sensitivity afforded by allowing even one

or two false discoveries is striking, for example an absolute increase of over 20% as compared to

the procedure controlling the FWE when the within-block correlation was 0 or .5.  Several variants

of these cases were also examined and are now described (results not shown).  For the results in

Table 5, the 30 nonnull variables were all placed within the same block, that is, they were

correlated.  For the case with correlation .5, when we distributed the nonnull variables one per

block (uncorrelated), the results were very similar.  The sensitivities and levels were also very

similar when a block size of 20 rather than 100 was used.  An interesting result was obtained when

the number of nonnull variables was reduced to 5.  In this case, the performance of Procedure A to

control for no more than 1 or 2 errors was essentially the same as before, but the sensitivity

advantage of Procedure B was lost, as it became nearly equivalent to the FWE procedure; even one

false rejection would result in 20% false discoveries, which exceeds the allowable 10%.  A

simulation under the complete null, i.e., no nonnull variables, with block correlation .5 verified that

stated confidence levels were maintained by each procedure.  Also, the mean numbers of false

discoveries were .05, 1.07, and 2.09 for the procedures controlling for 0, 1, and 2 false discoveries,

respectively.  
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A case of negatively correlated variables in combination with positively correlated variables

was also considered.  As in Table 5, there were 30 nonnull variables out of 8000.  Results are

presented in Table 6, and they are very similar to those given in Table 5.  Confidence levels are

maintained, and substantial sensitivity is gained by using the procedures that allow a few false

discoveries.  

We also assessed the difference between the conservative procedure and the fully

computational procedure for the case of block correlation structure with correlation .5 and 30

nonnull variables.  We found that the two computational methods had essentially the same

performance in terms of sensitivity to detect nonnull variables.  
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5.  DISCUSSION

This paper has considered both the control of the absolute number of false discoveries as

well as the control of the false discovery proportion.  Investigators may prefer one or the other of

these types of control.  For example, if an investigator considers 10 false discoveries out of 100

discoveries acceptable but not 10 false discoveries out of 12 discoveries, then he or she would be

more interested in controlling the false discovery proportion.  On the other hand, if following up 10

false discoveries is considered acceptable to find even one true discovery, then control of the

number of false discoveries would be more appropriate and more sensitive.  Also, when it is

expected that there are few truly differentially expressed genes (nonnull hypotheses), the

discreteness of the false discovery proportion should be kept in mind when setting the bound γ.  For

example, setting γ = .10 with 5 nonnull variables is essentially equivalent to allowing no false

discoveries.  

The sensitivity gains from allowing even one or two false discoveries or a small proportion

of false discoveries can be very large.  This was clearly evident in Table 5 in the cases of low to

moderate correlation where the sensitivity to detect nonnull variables increased from approximately

65% to about 85% by allowing just one false discovery, and to over 90% if two false discoveries

were allowed.  In the breast cancer example, the number of identified genes allowing either 2 or

10% false discoveries was more than 1.5 times the number identified when controlling the FWE

and more than 2.5 times the number identified by the Bonferroni procedure.  

The main potential downside of these procedures is the computational burden, but we don’t

view this as a serious disadvantage.  In section 2.1 we suggest the computational simplification of

setting αα
uKur yy ,, =  when kr << .  In our breast tumor example, the slight conservatism that this

might have introduced did not alter the number of differentially expressed genes we were able to
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identify compared to using the fully computational procedure.  Applying all of the conservative

procedures on our example data required only 18 minutes in computer time.  Also, our simulations

which all used the conservative simplification did not suggest any substantial conservatism in the

confidence levels or significant reduction in sensitivity for the cases we considered.  The degree of

conservatism would be most severe in a situation in which the number of nonnull variables is large

and a moderately large number or proportion of false discoveries is allowed.  Such situations are

not likely to be the norm, but further work might be needed to develop appropriate computational

simplifications or computationally more efficient algorithms for those cases.  For example, for

Procedure A, a potentially useful hybrid approach might be to use α
ury ,  up to a certain value of r,

say r*= 20 or 30, and then switch to the fixed critical value α
ur

y
,*  thereafter.  In any case,

undoubtedly a substantial amount of time has been invested to measure the large number of

variables on the many specimens, so even if a statistical procedure requires a few hours to

complete, the time seems well spent to improve the sensitivity for detecting important variables.  

Procedures A and B are immediately generalizable to a wide range of situations.  In our

example and simulations, we based the permutation procedures on parametric paired t-test p-values.

However, the procedures did not depend on any of the parametric assumptions.  Any orderable

univariate statistics can form the basis for the permutation procedure.  With appropriate choice of

univariate statistics, these methods apply to discrete data or even to censored data provided that the

censoring distributions are the same in the groups.  Unpaired or multi-group sampling designs are

handled by appropriately modifying the permutation method.  
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Table 1.  Simulated distribution of the number of false discoveries for 10,000 hypotheses tested
using univariate nominal significance levels of .001.  

Percentile
Correlation, ρ Mean 10th 25th 50th 75th 90th

0 10.0 6 8 10 12 14
.5 9.9 3 5 8 13 18
.8 9.9 0 1 4 12 27
NOTE:  Test statistics are simulated under a global null as standard normal with block diagonal
correlation matrix, block size 100 and pairwise correlation ρ within a block.  The number of
simulated data sets is 10,000.
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Table 2.  Simulated distribution of the false discovery proportion for 10,000 hypotheses tested
using a simple step-up procedure to control the expected false discovery rate to be no more than
10%.  

Percentile
Correlation, ρ Mean 10th 25th 50th 75th 90th

0 .098 0 0 0 .18 .29
.5 .090 0 0 0 .13 .30
.8 .055 0 0 0 0 .17
NOTE:  Simulated test statistics are normally distributed with block diagonal correlation matrix,
block size 100, and pairwise correlation ρ within a block.  The first 10 test statistics have
standardized mean of 4, and the remaining have mean zero.  The number of simulated data sets is
10,000.  The step-up procedure applied is that described and studied by Benjamini and Hochberg
(1995).
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Table 3.  Genes identified when controlling false discovery proportion to be no more than
approximately 10% with approximately 95% confidence.

Gene expression ratio
(geometric mean)

Gene
rank

Accession
number

Number of
patients

Pre-
chemo

Post-
chemo

Ratio of
Post/Pre

Unadjusted
p-valuea

1 AA478553 19 0.74 2.21 2.98 .0000002
2 N23941 20 1.27 2.18 1.72 .0000005
3 W96134 20 1.66 3.08 1.85 .0000006
4 N95402 20 1.19 2.07 1.74 .0000011
5 AA040944 20 0.42 1.79 4.21 .0000011
6 AA442853 20 1.53 2.61 1.71 .0000012
7 AA134757 20 2.32 4.69 2.02 .0000021
8 AA418077 20 1.75 3.38 1.94 .0000027
9 R12840 20 0.50 1.77 3.55 .0000052
10 AI831083 20 1.24 2.48 2.00 .0000057
11 AA044993 20 0.65 1.37 2.09 .0000057
12 AA031596 20 1.19 2.06 1.73 .0000067
13 AA454868 18 2.95 5.05 1.71 .0000067
14 AA598794 20 0.72 1.52 2.10 .0000077
15 T74141 19 8.28 16.44 1.98 .0000097
16 H21041 20 0.95 1.83 1.93 .0000110
17 AA133129 20 0.68 1.37 2.01 .0000119
18 AA485377 20 0.52 1.33 2.56 .0000221
19 AA167222 20 4.21 9.62 2.29 .0000293
20 AA287695 19 1.27 2.18 1.72 .0000325
21 AA489234 20 1.31 1.95 1.49 .0000582
22 AA293362 20 1.71 2.94 1.72 .0000600
23 N94487 20 1.19 2.39 2.01 .0000658
24 H86754 19 2.00 3.79 1.89 .0000974
25 AA430629 19 1.82 1.25 0.69 .0001050
26 AA485743 20 1.20 0.92 0.77 .0001155
27 H82948 19 0.84 0.72 0.86 .0001209
28 H05099 19 0.97 0.77 0.80 .0001309
aBased on a paired Student’s t-test with degrees of freedom equal to one less than the number of
patients with paired data available for that gene.  
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Table 4.  Adjusted p-values for genes identified in Table 3.  
Adjusted P-value

Gene
rank

Accession
number Bonferroni

Step-down
FWE control
(Procedure A
with u = 0)

Procedure A:
Number of
false discoveries
not to exceed 1
(u = 1) 

Procedure A:
Number of
false discoveries
not to exceed 2
(u = 2)

Procedure B:
False discovery
proportion not to
exceed .10
(γ = .10)

1 AA478553 .0016 .0010 .0000 .0000 .0010
2 N23941 .0040 .0019 .0002 .0000 .0019
3 W96134 .0048 .0022 .0002 .0001 .0022
4 N95402 .0088 .0035 .0002 .0001 .0035
5 AA040944 .0088 .0035 .0002 .0001 .0035
6 AA442853 .0096 .0038 .0002 .0001 .0038
7 AA134757 .0169 .0068 .0002 .0001 .0068
8 AA418077 .0217 .0088 .0003 .0001 .0088
9 R12840 .0418 .0176 .0005 .0002 .0176
10 AI831083 .0458 .0189 .0007 .0002 .0176
11 AA044993 .0458 .0189 .0007 .0002 .0176
12 AA031596 .0538 .0223 .0008 .0002 .0176
13 AA454868 .0538 .0223 .0008 .0002 .0176
14 AA598794 .0618 .0254 .0010 .0002 .0176
15 T74141 .0779 .0318 .0016 .0003 .0176
16 H21041 .0883 .0375 .0021 .0003 .0176
17 AA133129 .0955 .0416 .0023 .0003 .0176
18 AA485377 .1774 .0753 .0070 .0014 .0176
19 AA167222 .2352 .1019 .0118 .0022 .0176
20 AA287695 .2609 .1137 .0143 .0026 .0176
21 AA489234 .4673 .2039 .0386 .0094 .0176
22 AA293362 .4817 .2090 .0409 .0099 .0176
23 N94487 .5283 .2267 .0472 .0121 .0176
24 H86754 .7820 .3158 .0879 .0276 .0276
25 AA430629 .8430 .3352 .0985 .0318 .0318
26 AA485743 .9273 .3591 .1127 .0382 .0382
27 H82948 .9707 .3724 .1210 .0423 .0423
28 H05099 1.00 .3959 .1352 .0492 .0492
NOTE:  All permutation procedures used 19,999 resampled permutations.  The computationally
conservative versions of Procedures A and B, i.e., αα

uKur yy ,, = , were used.  Univariate p-values

upon which all procedures were based were computed using a paired Student’s t-test with degrees
of freedom equal to one less than the number of patients with paired data available for that gene.  P-
values in bold type correspond to tests that would be rejected under the given procedure at level
.05.  
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Table 5.  Simulation results applying Procedures A and B at level .05 to sets of 20 pairs of profiles
generated under block-exchangeable correlation structure.   

Step-down FWE
(Proc. A, u = 0)

Procedure A:
FDa ≤ 1 (u = 1)

Procedure A:
FD ≤ 2 (u = 2)

Procedure B:
FDPb ≤ .10 (γ = .10)

                           ρ = 0
Sensitivity (in %)
to detect nonnull 65.90 87.07 92.72 93.42
% of simulations
with FD > 0 5.04 29.50 55.37 63.56
% of simulations
with FD > 1 0.19 4.74 19.25 30.62
% of simulations
with FD > 2 0.00 0.53 4.68 12.29
% of simulations
with FDP > .10 0.02 0.20 1.45 4.51

                            ρ = .5
Sensitivity (in %)
to detect nonnull 66.64 85.57 91.10 87.08
% of simulations
with FD > 0 5.04 22.49 39.35 52.50
% of simulations
with FD > 1 0.34 4.83 13.53 26.90
% of simulations
with FD > 2 0.07 1.29 5.08 12.54
% of simulations
with FDP > .10 0.63 1.26 3.32 4.58

                            ρ = .9
Sensitivity (in %)
to detect nonnull 82.12 88.45 90.93 87.73
% of simulations
with FD > 0 4.79 8.90 11.66 70.53
% of simulations
with FD > 1 2.52 4.76 6.72 65.67
% of simulations
with FD > 2 1.82 3.44 4.71 59.17
% of simulations
with FDP > .10 1.92 3.53 4.53 4.87
NOTE:  Paired difference data were generated as 8000 Gaussian variables, each with variance 1, in
80 blocks of 100 correlated variables each.  Pairwise correlation between variables was ρ within a
block and 0 between blocks.  Thirty of the variables out of the 8000 tested had standardized mean
equal to 1.5, and the remaining had mean zero.  Percentages in bold type have nominal value
5.00%.  
aFD = number of false discoveries
bFDP =  false discovery proportion
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Table 6.  Simulation results applying Procedures A and B at level .05 to sets of 20 paired profiles
generated under correlation structure with mixed positive and negative correlations.   

Step-down FWE
(Proc. A, u = 0)

Procedure A:
FDa ≤ 1 (u = 1)

Procedure A:
FD ≤ 2 (u = 2)

Procedure B:
FDPb ≤ .10 (γ = .10)

Sensitivity (in %)
to detect nonnull 67.59 85.17 90.60 90.10
% of simulations
with FD > 0 4.85 20.57 35.28 44.31
% of simulations
with FD > 1 0.55 4.80 12.25 18.30
% of simulations
with FD > 2 0.16 1.60 5.15 8.41
% of simulations
with FDP > .10 0.25 1.14 3.17 4.75
NOTE:  Paired difference data were generated as 8000 Gaussian variables in 80 blocks of 100
correlated variables each.  Within each block, the set of variables is divided into thirds (33|33|34).
Any pair of variables within the same third have positive correlation equal to 2/3, and between
thirds, variables have negative correlation –1/3.  Between blocks, variables are independent.  Of the
100 variables in the first block, 10 variables in the first third, 10 in the second third, and 10 in the
last third each had standardized mean equal to 1.5.  All remaining variables had mean zero.  This
resulted in 30 correlated, nonnull variables, each with standardized mean equal to 1.5.  Percentages
in bold type have nominal value 5.00%.  
aFD = number of false discoveries
bFDP =  false discovery proportion
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Figure Legends

Figure 1.  Logarithm (base 10) of signal in channel 2 plotted versus logarithm of signal in channel 1

for the genes having measurements in both channels in microarray experiment #25 in the Perou

data set.  Signal is computed as foreground intensity minus background intensity.  Dashed line

represents the 45 degree line.  

Figure 2.  For each of the genes given in Table 3, plotted points are the ratios of the post-

chemotherapy to pre-chemotherapy gene expression for each of 18-20 patients, and arrows are the

geometric means of the post/pre ratios.  A) The 17 most significant genes, comprising the set

identified as differentially expressed by the level .05 step-down FWE procedure, or equivalently

Procedure A allowing no false discoveries with 95% confidence.   B) The 18th through 28th most

significant genes, which together with the first 17 comprise the set identified as differentially

expressed by Procedure B allowing no more than 10% false discoveries with approximate 95%

confidence.  
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Figure 1
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Figure 2A
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Figure 2B
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