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APPENDIX  A 
 
                                                       SAMPLE SIZE CALCULATION 
 
The presentation below is for the untargeted design. The same methodology applies to the targeted 
design. 
  
The means and variances of random variables X  and Y  which represent respectively the control 

and the treatment outcomes are calculated as follows by using the formula established by Pearson 

[1] for the calculation of mixture means and variances:  
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( ) (2 22 2 2 2
1 0 1 0( ) (1 ) (1 ) (1 )t T TV Y σ γσ γ σ γ γ µ µ σ γ γ µ µ≡ = + − + − − = + − − )T T   

where γ is the frequency of R- patients in the population, 2σ  is the common response variance,  0µ  

is the mean  response for R- patients in the control group,  1µ  is the mean response for R+ patients  

in the control group, 0Tµ  is the mean response for R- patients in the treatment group, and 1Tµ   is 

that  for R+ patients in the treatment group. 
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1. PARAMETRIC CASE 

 
 
The difference of means (effect size) between the control and the treatment responses, which 
represents the treatment effect is:  
 

( )0 0 1 1( ) ( ) (1 )( ) (1 )T Td E Y E X γ µ µ γ µ µ γδ γ= − = − + − − = + − ∆   where  ( )0 0Tµ µ− = δ  and 

1 1( )Tµ µ− = ∆  
 
Note: δ is the potential benefit (depending of the scenario) for R- patients and  ∆ is the benefit for 
R+ patients.  
 
If we denote by X  and Y the random variables which describe the estimated mean responses  for 

the control and the treatment groups respectively, )(XEmc =  and  the theoretical 

means, then the usual Central Limit Theorem implies that 

)(YEmt =

X ~ , 2( , / )
ccN m nσ Y ~  

where n is the size for control group assumed to be the same for that of treatment group. 

2( , / )t tN m nσ

Thus for given type I error α, the null hypothesis  of no difference in means between control 

and treatment groups is rejected if  

0H

( ) 2 2
1 / 2/ c tn X Y Z ασ σ −− + >   

where 1 / 2z α−  is the standard normal distribution  α /2 percentile.   

For a given power 1-β, the calculation of the required sample size without screening  is done by 

using classical method established for normal distributions [2, 3], as follows: 

1 / 2 12 2 2 2

( ) ( (1 ) ) 1 1 (
c t c t

n X Y nP Z )Zα β
γδ γ β

σ σ σ σ
− −
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where Φ  is the cumulative distribution function of the standard normal distribution. So 
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Thus   
1 / 2 12 2
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c t
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+ − ∆
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+
−   

 
Substituting in the values for 2

cσ  and 2
tσ  and simplifying gives equation (2) of the manuscript: 
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We can obtain equation (3) of the manuscript by setting γ=0, namely:  
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The ratio of randomized patients (equation noted (4 ) in the manuscript) is: 
  

( )
[ ]

2 2 2
1 0 1 0 1 1

2 2
0 0 1 1

2 2 2
1 0 0 1 1 1

2
0 0 1 1
2 2 2

1 0 0 1

0 0

2 (1 ) ( ) ( ) (

( ) (1 )( ) 2

[1 [ (1 ) / 2 ][( ) ( ) ]]( )
[ ( ) (1 )( )]

[1 [ (1 ) / 2 ][( ) ( ) ]]
[1 (( ) /

T T T

t T T

T T T

T T

T T

T

n
n

2

2

)σ γ γ µ µ µ µ µ µ

γ µ µ γ µ µ σ

γ γ σ µ µ µ µ µ µ
γ µ µ γ µ µ

γ γ σ µ µ µ µ
γ γ µ µ

⎡ ⎤+ − − + − −⎣ ⎦=
− + − −

+ − − + − −
=

− + − −

+ − − + −
=

− + − 2
1 1

2 2 2
1 0 0 1

2
0 0 1 1

( ))]

[1 [ (1 ) / 2 ][( ) ( ) ]]
[1 (1 (( ) /( )))]

T

T T

T T

µ µ

γ γ σ µ µ µ µ
γ µ µ µ µ

−

+ − − + −
=

− − − −

 

 
 
 

2. NON PARAMETRIC CASE 
 

 
In the non parametric case, the standard formula [4] for power calculation for the two-sample 
Wilcoxon test is as follows: 
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 where the different quantities in the 

equation are described in the manuscript. 
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If the desired power is 1-β, then   
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if the correction continuity term 0.5 is ignored. 
 
Given the type I error α and the power 1-β, the sample size is calculated by solving the equation 
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where 2n+1 is replaced by 2n. 
 
Thus n is simplified in the numerator and the denominator and the variance of  (equation (7) in 
the manuscript) is replaced by its value and so 

XYW
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Thus,  
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This leads to the following equation which must be satisfied by n 
 

2 2 2 2 2 2
1 1 1 / 2 1 / 2 2 3 1 1 1 1(0.5 ) 2(0.5 ) / 6 (( / 6) ( 2 ) (1 ) 0p n p Z n n Z p p p Z Z p pα α β β− − − −− + − + − + − − − 1 =  

It is solved numerically with  Matlab. 
 
 

 
APPENDIX B 

 
MONTE CARLO SIMULATION 
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The probabilities 1p , 2p ,  3p  in manuscript  equations  (6) and (7) are calculated as follows for the 
untargeted design with the matlab code: 
 

0 max 0 ( max)a nX I randn nµ σ= +  

1 max 0 ( max)
( max)

( )

b nX I randn n
V rand n
W V

µ σ

γ

= +
=
= <

 

The observed responses for the control group are 
.* (1 ).*a bX W X W X= + −  

 
Similarly for the treated group 

0 max 0 ( max)a T nY I randn nµ σ= +  

1 max 0 ( max)
( max)

( )

b T nY I randn n
V rand n
W V

µ σ

γ

= +
=
= <

 

The observed responses for the control group are 
.* (1 ).*a bY W Y W Y= + −  

1X  is generated independently but identically as X ,  is generated independently but identically 

as . 

1Y

Y
 

1p 2( ( )) / maxsum sum X Y n= <  

2p =  2
1( (( ) & ( ))) / maxsum sum X Y X Y n< <

3p =  2
1( (( ) & ( ))) / maxsum sum X Y X Y n< <

 
where maxnI  is the nmax by nmax  matrix with each element equal to 1,  rand(nmax) is a nmax by 
nmax matrix containing uniform(0,1) random numbers,  randn(nmax) is a nmax by nmax  matrix 
containing standard normal random numbers.  sum sum  is the sum of all matrix elements. W is a 
boolean matrix indicating whether entries come from R- or R+. The symbol .* denotes the matrix 
multiplication element by element. The simulation is conducted with nmax=1000 which provides 

 replicates. 610
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