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An evaluation of resampling methods
for assessment of survival risk prediction
in high-dimensional settings‡,§

Jyothi Subramanian and Richard Simon∗†

Resampling techniques are often used to provide an initial assessment of accuracy for prognostic prediction models developed
using high-dimensional genomic data with binary outcomes. Risk prediction is most important, however, in medical applications
and frequently the outcome measure is a right-censored time-to-event variable such as survival. Although several methods have
been developed for survival risk prediction with high-dimensional genomic data, there has been little evaluation of the use of
resampling techniques for the assessment of such models. Using real and simulated datasets, we compared several resampling
techniques for their ability to estimate the accuracy of risk prediction models. Our study showed that accuracy estimates for
popular resampling methods, such as sample splitting and leave-one-out cross validation (Loo CV), have a higher mean square
error than for other methods. Moreover, the large variability of the split-sample and Loo CV may make the point estimates
of accuracy obtained using these methods unreliable and hence should be interpreted carefully. A k-fold cross-validation with
k =5 or 10 was seen to provide a good balance between bias and variability for a wide range of data settings and should be
more widely adopted in practice. Published in 2010 by John Wiley & Sons, Ltd.
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1. Introduction

Prediction of prognosis from high-dimensional genomic or proteomic data is a subject of intense research in many
disease areas, especially cancer [1--4]. Classifiers that substantially improve the predictive ability of traditional
clinico-pathological prognostic factors can help inform improved treatment decisions for individual patients. The
outcome variable in prognostic studies is often a time-to-event measure (death or disease recurrence) and the
objective is to classify patients into risk groups given the genomic data and other relevant clinico-pathological
factors as explanatory variables. However, since most statistical modeling methods were not developed for high-
dimensional settings where the number of candidate explanatory variables p is greater than the number of cases
n(p�n), naïve usage of these methods can lead to serious model overfitting and severely biased performance
estimates [5, 6].

Modeling high-dimensional data proceeds through three broad steps: (i) dimension reduction, (ii) model building,
and (iii) model assessment. The most commonly used strategy to evaluate the association of a time-to-event response
with explanatory variables is Cox’s proportional hazards regression [7]. A number of feature selection/dimension
reduction/coefficient shrinkage methods have been studied in conjunction with proportional hazards regression to
overcome the problem of overfitting with high-dimensional data. These include supervised principal components [8],
ridge regression [9], Lasso [10], and least angle regression [11]. Although evaluating a predictive model using fully
independent data is always advisable, internal validation is often useful as an intermediate step to obtain an initial
assessment of the prediction accuracy. An initial estimate of the predictive accuracy of the model can be obtained using
resampling techniques.
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Resampling methods are based on a division of the available data into a training set and a test set; while the training set
is used for feature selection and model building, the test set is used only for model assessment. Resampling techniques
include split-sample, cross validation (CV), and bootstrap-based methods. The study by Molinaro et al. [12] provides
an extensive comparison of a variety of resampling methods for prediction error estimation in high-dimensional settings
with a binary response variable. However, no comparative study on the usefulness of resampling methods for assessing
survival prediction models in high-dimensional settings has been reported.

An abundance of prognostic gene expression signatures are being published in many disease areas, and many of them
report accuracy estimates obtained through resampling. Hence, a systematic study of resampling methods for assessment
of survival models becomes important. In many of the published reports on prognostic signatures, the initial assessment
is most often conducted using the split-sample or the leave-one-out (Loo) CV technique (for example, [1, 2, 13, 14]).
Hence it is also important to analyze how these methods compare to other simple resampling techniques, such as the
k-fold CV.

In this paper, we report the results of a systematic investigation into the behavior of several resampling methods for
estimating the accuracy of survival prediction models in high-dimensional settings. These results provide an insight into
the behavior of the commonly used techniques and suggest alternatives to be adopted in practice.

2. Methods

2.1. Development of prognosis prediction models

The data consists of a sample of n patients, with follow-up times t1, . . ., tn , and event indicators �1, . . .,�n , where �i =1
if the event (recurrence or death) occurred at ti and �i =0 if the observation was right-censored at ti . Also available is
the n× p covariate matrix X , representing the gene expression measurements and other clinically important variables.
The objective is to predict future survival or disease recurrence using X . In the proportional hazard model [7], the hazard
function is modeled as a function of the covariates:

h(t |X )=h0(t)exp(�T X ), (1)

where h0(t) is an unspecified baseline hazard function that is assumed to be the same for all patients and � is the parameter
vector. In the traditional setting with n>p, the parameter vector and the baseline hazard function are estimated using
partial likelihood maximization and the Breslow estimator [15], respectively. However, in situations where p�n, this
can result in a seriously over-fitted model with little predictive value. Three-dimension reduction/coefficient shrinkage
strategies that have gained popularity in p�n settings are considered in our study:

(i) Univariate selection (UniCox): In this approach, univariate Cox regression analysis is conducted for all covariates
considering one covariate at a time. The covariates are then ordered based on the p-value from the score test
[16]. Following this, either a pre-fixed number of covariates or covariates whose p-values fall below a threshold
are chosen as the reduced feature set. The final step is to fit a multivariate Cox regression model with the selected
covariates.

(ii) Supervised principal components regression (SuperPCR): SuperPCR [8] is a modification of conventional principal
components regression (PCR), to overcome a possible drawback that the usual principal components may not be
associated with the response. In SuperPCR, covariates correlated with survival are first selected through univariate
Cox regression. A multivariate Cox regression model is then fit on the first few principal components of this
reduced set of covariates.

(iii) Least absolute shrinkage and selection operator (Lasso): Lasso is a penalized estimation approach for regres-
sion models that constrains the L1 norm of the regression coefficients [10]. This method is attractive in
the p�n settings as it simultaneously performs variable selection and shrinkage, by shrinking all regres-
sion coefficients towards zero and setting many of them equal to zero, depending on the size of the penalty
employed.

2.2. Measures of assessment for prognosis prediction

The most frequently reported measures for assessing the predictive ability of prognostic models are the hazard ratio
and the p-value from a log-rank test for the separation of Kaplan–Meier survival curves. Both of these measures have
serious limitations. The hazard ratio is a measure of association and not a measure of predictive ability. Strong statistical
associations do not necessarily imply that the model can discriminate effectively between patients with good and poor
prognosis [17]. The log-rank test requires the specification of a cut-off for defining the high and low risk groups, which
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can be quite arbitrary. Also, this test is invalid for cross-validated measurements [18]. A more appropriate approach for
the evaluation of a continuous-valued prognostic factor is the time-dependent ROC curve [19], defined as follows:

Let r =�T X denote the risk score estimated through proportional hazards regression. To construct the time-dependent
ROC curve, sensitivity and specificity are considered as time-dependent functions and are defined as

sensitivity (c, t) = P{r>c|T <t}, (2)

specificity (c, t) = P{r�c|T �t}. (3)

A plot of sensitivity(c, t) versus 1—specificity(c, t) for all values of the cut-off c leads us to the time-dependent ROC
curve, ROC(t) for time t . As outlined in Heagerty et al. [19], the conditional probabilities in (2) and (3) can be estimated
by the nearest neighbor estimator for the bivariate distribution function F(c, t) as proposed in [20]. The area under the
ROC(t) denoted by AUC(t) can then be used as a summary measure for comparing different prognostic models, larger
AUC(t)s imply better predictions. For some examples of the use of this approach for comparing prognosis prediction
models and for figures illustrating the time-dependent ROC curve, the reader is referred to [21, 22]. The AUC(t) was
used as the final quantity of interest in this study for comparing and assessing prognostic models.

2.3. Resampling techniques

Denote the sample of size n consisting of the survival times, event indicators and gene expression measurements for
n patients by Sn and let A(Sn) denote the accuracy (as measured by the AUC(t)) of the prognostic model for future
samples given the sample Sn . In the absence of an independent large dataset, an estimate for A(Sn) is obtained through
resampling from the original sample Sn . We denote the resampling-based estimate of A(Sn) by ÂRS(Sn).

In the so-called resubstitution estimate/training estimate, Âresub(Sn), all points in the sample Sn are used for feature
selection, model building as well as estimation of accuracy. Hence, Âresub(Sn) is too optimistic, especially with high-
dimensional data and complex modeling algorithms.

In the split-sample resampling method, a subset Sm(m<n) is chosen randomly from Sn . The model is trained on
points from the complement Sn/Sm and assessed on points in Sm .

In resampling based on the k-fold CV, Sn is partitioned into k subsets, Sni, i =1,2, . . .,k, (k�n). Each subset is in
turn left out during model building. The model is trained on the union of the remaining k−1 subsets and predictions are
obtained for the left out subset. After the k rounds of training and testing are complete, all the test set predictions are
used to estimate the accuracy. There are two ways in which the k-fold CV estimate of AUC(t) can be computed—the
pooling strategy and the averaging strategy [23]. In the pooling strategy, all the test set risk-score predictions are first
collected and AUC(t) is calculated on this combined set. In the averaging strategy, AUC(t)s are first computed for each
test set and are then averaged. In our analysis, the pooling strategy was used to compute the AUC(t).

The Loo CV is a special case of k-fold CV, where k =n, i.e. a single observation is left out each time. In this case
the AUC(t) can be estimated using only the pooling strategy.

Other resampling methods that have been explored in the case of binary response are Monte Carlo CV and different
variations of bootstrap resampling, such as bootstrap CV and the 0.632+ estimator. No substantial improvements over
standard CV techniques have been reported for these methods for high-dimensional data in the case of binary response
classification problems [12]. Moreover, depending on the number of bootstrap samples taken, the bootstrap methods
may be more computationally expensive than even the Loo CV for assessing risk prediction models in p�n settings,
for small and moderate n. Hence these methods were not evaluated in our study.

2.4. Datasets

(i) Lung cancer data: This data is based on a multicenter study on prognostic factors in lung adenocarcinoma
(https://caarraydb.nci.nih.gov/caarray/publicExperimentDetailAction.do?expId=1015945236141280) [24]. Only
data from the University of Michigan Cancer Center (MI) and the Memorial Sloan-Kettering Cancer (MSK)
were considered in our study, leading to 280 samples. Gene normalization and filtering was carried out
using BRB-Array tools (developed by Dr Richard Simon and the BRB-ArrayTools Development Team [25],
http://linus.nci.nih.gov/BRB-ArrayTools.html), and resulted in 13 538 genes. For our analyses, only the first
5000 genes with the highest overall variance were considered.

(ii) Diffuse large B-cell lymphoma (DLBCL) data: This data is based on a prognostic study on DLBCL [1] and
contains survival information and expression levels of 7399 genes on 240 patients. The dataset was downloaded
from BRB-array tools data archive [26] (http://linus.nci.nih.gov/∼brb/DataArchive_New.html). After median
normalization, 5000 genes with the largest variance overall were considered for our analyses.
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(iii) Simulated data, High-signal: Survival times were generated from a uniform distribution U (2, 200). Each
observation was censored with probability 0.2. Expression values for the first 10 genes were then computed
as the function of the survival time, t as (ln(t)/�)+ε with �=1.5 and ε∼ N (0, 0.5). These 10 genes form
the informative genes. Expression levels for additional 990 genes were generated from a multivariate normal
distribution N (�,�), where � was chosen to be the mean expression of the first 10 genes and sigma was the
identity matrix, I990. These 990 genes form the uninformative or noise genes.

(iv) Simulated data, Null: Survival times were generated from a uniform distribution U (2, 200). Each observa-
tion was censored with probability 0.2. Expression levels for 1000 genes were generated from a multivariate
normal distribution N (0, I1000). Thus, in this dataset there is no association between the survival times and
covariates.

2.5. Analysis

The objective of our study was to investigate the usefulness of various resampling methods for estimating the accuracy
of survival prediction models in p�n settings on datasets with varying sample sizes and signal-to-noise ratios, while
incorporating some form of dimension reduction. The resampling methods evaluated were the split-sample (with two-third
of the data for training and one-third for testing), k-fold CV with k =2, 5, and 10, and the Loo CV. In high-dimensional
settings, it is imperative that feature selection/dimension reduction occurs based only on the training data and is repeated
completely within each resampling loop; otherwise substantial bias will be introduced [5]. This is known as complete
resampling and was adopted throughout our study. In our simulations, we mimic the situation where a large independent
sample is available to estimate the true accuracy of a model. The resampling-based accuracy estimates are then compared
to this estimate of true accuracy. All AUC(t)s were evaluated at t =180 months. The entire study procedure is outlined
in steps 1 to 3. Steps 1–3 were repeated hundred times.

(i) For the real datasets, from the full dataset of size N (N =280 for the lung cancer and 240 for the DLBCL
dataset), random sample Sr

n of size n was drawn without replacement, where r denotes the r th replication. This
was done separately for n =40, 80, and 160. Sampling was stratified so that there were equal numbers of event
times and censored times in each sample. In the case of simulated datasets, Sr

n was generated as explained in
Section 2.4.

(ii) For each resampling strategy, the resampling AUC(t)s, ÂRS(Sr
n) were computed as outlined in steps (a) to (e):

(a) Observations from Sr
n were randomly allocated to the training and test set as per the resampling plan.

(b) For each modeling strategy (UniCox/SuperPCR/Lasso), the coefficient estimates �̂train were obtained using
only observations from the training set.

(c) Risk scores were predicted for observations in the test set as �̂
T
trainxtest.

(d) In the case of split-sample, the predicted risk scores for the m test set cases was obtained using the above
method. In the case of k-fold and Loo CV, steps (b) and (c) were repeated for each partition of Sr

n into the
training and test set and the risk scores were predicted for all n cases in Sr

n .
(e) The ROC(t) and the area under the curve AUC(t) were computed using the predicted risk scores, as outlined

in Section 2.2. The R package survival ROC [27] was used to compute the ROC(t) and AUC(t).

(iii) For each modeling strategy, prognostic models were then developed using all the observations in Sr
n . For the

simulated datasets, A(Sr
n) was estimated based on generating a large independent test set of 500 observations

with the same distribution as the training set. For the real datasets, A(Sr
n) was estimated by the out-of-sample

estimate obtained by applying the prognostic model developed using Sr
n to the samples not included in Sr

n . We
denote these estimates of A(Sr

n) by Â(Sr
n).

The expected values of Â(Sn) and ÂRS(Sn) were estimated, respectively, as

Ân = 1

100

100∑

r=1
Â(Sr

n), ÂRS
n = 1

100

100∑

r=1
ÂRS(Sr

n).

The bias and MSE were estimated, respectively, as

Bias= 1

100

100∑

r=1
( ÂRS(Sr

n)− Â(Sr
n)), MSE= 1

100

100∑

r=1
( ÂRS(Sr

n)− Â(Sr
n))

2
.

The MSE can be decomposed as a sum of the squared bias and the variance. Hence, for a low MSE, both the bias
and variance need to be low. Permutation t-tests were performed to test whether the bias is significantly different from
zero. A p-value less than 0.01 was considered significant.
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To fit proportional hazards regression models in the case of UniCox and SuperPCR we used the coxph function from
the R package survival [28]. In the case of UniCox, covariates corresponding to the 10 smallest p-values from univariate
Cox regression were chosen for the final multivariate model. For SuperPCR, the first three principal components from
10 covariates with the smallest p-values from univariate Cox regression were selected for the final model. In both cases
the p-values were based on the score test. In the case of Lasso, the Lasso implementation for Cox regression available
through the R package penalized [29] was used. The value of the penalty parameter was chosen so that the resulting
model had 10 non-zero coefficients. Ideally, optimized values for these parameters can be obtained using CV within
each resampling loop. However, since our study was not designed to be a comparison of the performance of modeling
strategies, the parameters were preset and no attempt was made to optimize them.

All computations were carried out using R (version 2.8.0) [30]. The snow package [31] was used to parallelize all
CV loops.

3. Results

By design, the high-signal and null datasets have the highest and lowest signal-to-noise ratios, respectively. Furthermore,
an inspection of the expected AUC(t) estimates, Ân (Table I) and a plot of the learning curves for the datasets (Figure
S1, Supplementary Information) showed that the four datasets can be arranged in the order of decreasing signal strength
as High signal > Lung cancer > DLBCL > Null. Hence, apart from the influence of feature selection methods and
sample sizes, we could also study the impact of signal-to-noise ratios on the resampling AUC(t) estimates.

3.1. Distribution of the resampling estimates

The distribution of the AUC(t) estimates is illustrated in Figures 1 and 2 for SuperPCR and in Figures S2 and S3
(Supplementary Information) for UniCox and Lasso, respectively. It can be seen that the distribution of ÂRS(Sn) is very
broad for all the resampling methods as compared to the distribution of Â(Sn). At n =40, the split-sample and Loo CV
estimates have the broadest distribution. Although the variance due to resampling decreases as n increases to 160, the
variance is still much higher than the variance of Â(Sn), especially for the split-sample and Loo CV, and especially with
the null dataset (Table I).

This variability due to resampling has the undesirable consequence of leading much more frequently to highly
pessimistic or highly optimistic resampling AUC(t) estimates than that observed in Â(Sn) (Figure 3). For example, at
very small sample sizes (n =40), the split-sample or Loo CV based AUC(t) estimates for the null data can be highly
optimistic or pessimistic around 15–20 per cent of the time each. Even when the sample size is increased to 160,
pessimistic AUC(t) estimates can be seen to occur around 8–10 per cent of the time for the split-sample and Loo CV
methods. Although this effect is greatest when the signal is zero, it can also be observed for real datasets with moderate
signals (Figure 4, for the lung cancer dataset).

3.2. Bias due to resampling

The bias in the resampling AUC(t) estimates are compared in Figure 5.
High-signal dataset: The resampling AUC(t) estimates for the high-signal dataset are associated with a significant

negative bias. The negative bias reflects the fact that the accuracy of a model based on a dataset of n cases is being
estimated using models based on much smaller training sets. The negative bias is greatest for the split-sample and the
2-fold CV, reflecting the larger difference between the actual training set and full dataset for these methods.

Null dataset: The bias due to resampling is not statistically significant for this data, demonstrating that the resampling
methods investigated in this study give valid estimates of the true prediction accuracy, i.e. are not systematically optimistic
under the null.

Lung cancer and DLBCL datasets: In the case of these real microarray datasets the split-sample and k-fold CV based
estimates of accuracy are associated with significant negative bias, especially at the highest sample size when the signal
in the training data allows active learning to take place.

In almost all cases where the bias is statistically significant, the magnitude of the bias is greatest for the Lasso. In
most cases the estimated expected true AUC(t), Ân , is higher for Lasso than that for other modeling strategies. However
the estimated expected resampling AUC(t), ÂRS

n , is in most cases lower for Lasso. Both these factors contribute to the
significant negative bias. It can be seen that for high-signal data, the learning curve is steeper for Lasso than for other
modeling methods (Figure S1, Supplementary Information). This shows that while Lasso makes the most effective use
of data points, this property also makes Lasso quite sensitive to removal of data points.
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Figure 1. Distribution of the estimated resampling and true AUC(t) for SuperPCR: (top) high-signal data and (bottom) null data.

3.3. MSE due to resampling

The MSEs for the resampling AUC(t) estimates are compared in Figure 6.
High-signal dataset: The split-sample method has the greatest MSE among all resampling methods. The high bias

and variance of the split-sample method contributes to this large MSE. At the lowest sample size, 2-fold CV has a higher
MSE than Loo, 10-fold, or 5-fold CV, but as the sample size increases, the MSEs for 2-fold CV become equivalent to
the other CV methods. Among the modeling methods, in most cases the MSE is largest for Lasso due to the larger bias
for Lasso.

Null dataset: As there is no significant bias with the null dataset, the MSE is dominated by the variance. Hence,
due to their high variance, the split-sample and the Loo CV have the largest MSE. As the variance of the k-fold CV
decreases as k decreases from 10 to 2, the MSE also decreases as k decreases.

Lung cancer and DLBCL datasets: For small sample sizes, the split-sample and the Loo CV have higher MSE than
the k-fold CV. As the sample size increases, the MSEs for the various resampling methods become equivalent.

4. Discussion

In a comparative study of resampling methods for prediction error estimation in the case of binary response classification
problems, Molinaro et al. [12] concluded that for small samples the split-sample and 2-fold CV methods perform poorly
and that Loo CV performed well with regard to bias as well as MSE for a wide range of data settings. Although Loo CV
has previously been criticized for its high variability [32, 33], its low bias compared with the other methods dominated
the MSE comparisons in many of the comparisons made by Molinaro et al. [12]. The case of a null dataset was also not
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Figure 2. Distribution of the estimated resampling and true AUC(t) for SuperPCR: (top) lung
cancer data and (bottom) DLBCL data.

investigated by Molinaro et al. In a null setting, none of the methods are biased and the larger variance of Loo CV would
have dominated the MSE. All the previous studies cited deal only with the binary response classification problem with
the misclassification rate being the error measure. The misclassification rate used for evaluating classification models is
an error counting estimate and this is considered to add to the variability of resampling, especially for smaller samples
[32]. It is thus necessary to investigate whether the results obtained for high-dimensional classification problems can be
directly extended to survival prediction where alternate accuracy measures are used and where there is further loss of
information due to censoring.

In this paper, we have compared the performance of several resampling methods for survival risk prediction. The
evaluation has been carried out for high-dimensional data for a wide range of sample sizes, signal content, and dimension
reduction methods. Although sample sizes used in microarray studies are increasing, there are still many studies that are
based on small samples. In a review of 90 microarray studies with cancer outcome data, 65 per cent of the publications
had less than 50 patients and only 6 per cent of the publications had more than 100 patients [34]. The general conclusions
from our study are summarized below:

1. For null datasets where survival outcome is independent of gene expression, none of the resampling methods
investigated are associated with any systematic bias and hence all the resampling methods investigated, including
the Loo CV are valid. Thus our simulation studies dispel the widespread (mis)-perception that CV, and especially,
the Loo CV can be optimistically biased. Here we emphasize again that for the resampling methods to be valid,
feature selection/dimension reduction must be conducted based only on the training data and must be completely
repeated within each resampling loop. Failure to do so will result in highly optimistically biased estimates.
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Figure 3. In the case of the null dataset, the AUC(t) is expected to be around 0.5. The variation in the resampling AUC(t)
estimates can, however, lead to too pessimistic or too optimistic estimates. The number of times ÂRS(Sn) is too pessimistic
(below 0.3, black bars) or too optimistic (above 0.7, light gray bars) in a total of 100 replications for the null dataset is shown.

In comparison to this, the number of times Â(Sn) is below 0.3 or above 0.7 is nil: (a) n =40; (b) n =80; and (c) n =160.

Figure 4. The variation in the resampling AUC(t) estimates more frequently leads to too pessimistic or too
optimistic estimates. The number of times ÂRS(Sn) is too pessimistic (below 0.3, black bars) or too optimistic
(above 0.7, light gray bars) in a total of 100 replications for the lung cancer dataset is compared with the

number of times Â(Sn) is below 0.3 or above 0.7: (a) n =40; (b) n =80; and (c) n =160.

2. Although we ruled out the presence of optimistic bias for any of the resampling schemes, the variance due to
resampling can make the point estimates of accuracy unreliable, especially for the split-sample and the Loo CV
and when the sample size is also small. Hence, in addition to point estimates of prediction accuracy it becomes
important to also report confidence intervals. As suggested by Heagerty et al. [19], confidence bands for AUC(t)
can be obtained by bootstrapping.

3. Some of the largest MSEs are seen for the split-sample method with small to moderate samples. This is because
split-sample suffers both from a high bias as well as a high variance. Whereas the high bias is due to the reduced
dataset available for training, the high variance is because of the small size of the test dataset. Hence split-sample
should not be a preferred method for the estimation of prediction accuracy.
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Figure 5. Bias in resampling AUC(t) estimates. Black symbols indicate statistically significant bias (p<0.01 from a permutation
t-test) and light gray symbols indicate bias not statistically significant.

Figure 6. Mean square error in the resampling AUC(t) estimates.

4. A k-fold CV tends to give conservative estimates of accuracy (is negatively biased) especially with moderate to
strong signals. With strong signals, this negative bias increases as k decreases from 10 to 2. With moderate to
strong signals, the reduction in the number of training samples affects the achievable classification accuracy. This
bias would dissipate as the sample size increases and the achievable classification accuracy plateaus. Although Loo
CV may have a slight advantage in terms of the bias for moderate to strong signals, this advantage dissipates as
signal strength decreases, and in the presence of weak signals coupled with small samples, the large variance of
Loo CV leads to a higher MSE.
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5. For moderate to large samples and moderate to high signal strength, the Loo and k-fold CV have equivalent MSEs.
An advantage of the 5-fold and 10-fold CV over Loo CV is computational speed. Also, the potential negative bias
of k-fold CV may be preferable to the more frequent optimistic point estimates resulting from the large variance
of Loo CV.

6. Lasso-based PH regression provided the largest AUC(t) estimates in the presence of high-signal implying that it
makes effective use of the data. However, this property also renders Lasso more sensitive to removal of data due
to resampling and hence conservatively biased for small training sets with strong signal datasets. In an earlier
study on an evaluation of seven different survival prediction strategies for high-dimensional gene-expression data,
penalized methods were found to be among the best performers [35]. In the earlier study, the penalty parameter
was optimized through CV, but model assessment was done using only the split-sample technique. It would thus
be worthwhile to perform a more in-depth study of penalized methods for survival prediction in high-dimensional
settings.

In the case of binary response classification, Loo CV was found to perform poorly when an unstable classifier like
CART was used in the presence of a weak signal [12]. This is because the large variance of Loo CV is accentuated when
used with an unstable classifier. Although the stability of all the modeling methods investigated in our paper was more
or less equivalent, we believe that as in the case of classification, for risk prediction too, the variance of the resampling
estimates of accuracy would increase in the presence of an unstable modeling method. Moreover, resampling techniques
that are inherently highly variable, such as the split-sample or the Loo CV, are likely to be affected more, especially if
the sample size is also small.

In gene expression based prognostic prediction, accuracy estimates using the split-sample and Loo CV methods are
frequently used and reported in publications. Based on the results of our analysis we discourage their use with survival
data, and especially with small training sets. Through our simulations, we have tried to provide information about the
key determinants that should influence choice of a resampling method for evaluating predictive accuracy of survival
risk models in high-dimension settings. For datasets with strong signals, bias predominates and a larger k (in case of a
k-fold CV) is favored. For datasets with weaker signals, variance predominates and a smaller k may be slightly favored,
especially if the sample size is also small. It would be hard to find a universal value of k that is suitable under all
sample sizes, datasets, and modeling strategies. However, our study does show that the 5- or 10-fold CV (and likely any
k in between) perform reasonably well for datasets of different sample sizes and different signal strengths. It is also not
advisable to fine tune the value of k for each dataset under study, as this would again lead to a biased reporting of results.
Hence we recommend that for an initial assessment of prognostic factor studies involving time-to-event responses, the
k-fold CV with k =5 or 10 should be more widely adopted.

More importantly, the point estimates of accuracy obtained through resampling should be supplemented by appropri-
ately computed confidence intervals for a proper interpretation of the results. In the case of high-dimensional classification
problems, Jiang et al. [36] reported on the inadequacies of many existing confidence interval methods and proposed
several confidence interval methods using a bootstrap case cross-validation procedure (BCCV) with and without bias
correction. However, there is limited experience on the application of these methods for the estimation of the time-
dependent AUC(t) with survival data. We would continue to focus on this important topic in our future investigations.
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