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The growing recognition that human diseases are molecularly heterogeneous has stimulated
interest in the development of prognostic and predictive classifiers for patient selection and
stratification. In the process of classifier development, it has been repeatedly emphasized that
in situations where the number of candidate predictor variables is much larger than the
number of observations, the apparent (training set, resubstitution) accuracy of the classifiers
can be highly optimistically biased and hence, classification accuracy should be reported based
on evaluation of the classifier on a separate test set or using complete cross-validation. Such
evaluation methods have however not been the norm in the case of low-dimensional, p b n
data that arise, for example, in clinical trials when a classifier is developed on a combination of
clinico-pathological variables and a small number of genetic biomarkers selected from an
understanding of the biology of the disease. We undertook simulation studies to investigate
the existence and extent of the problem of overfitting with low-dimensional data. The results
indicate that overfitting can be a serious problem even for low-dimensional data, especially if
the relationship of outcome to the set of predictor variables is not strong. We hence encourage
the adoption of either a separate test set or complete cross-validation to evaluate classifier
accuracy, even when the number of candidate predictor variables is substantially smaller than
the number of cases.
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1. Introduction

In many disease areas, and especially in oncology, recogni-
tion of the molecular heterogeneity of the disease has fueled
the search for prognostic and predictive classifiers that identify
patients who require new treatment regimens and who are
likely to benefit from specific new regimens. Such classifiers
can be used for selection and stratification of patients in
clinical trials and for structuring the analysis plan of clinical
trials. Advances in genomic technologies has moreover made it
possible tomeasure gene expression levels for tens of thousands
of genes, and these have been used in combination with
traditional clinico-pathological variables to develop composite
Inc.
pharmacogenomic classifiers that could potentially be useful in
the design and analysis of clinical trials [1]. The number of cases
available for classifier development, however, remains much
less, usually of the order of hundreds or less. This is commonly
referred to as the high-dimensional, low sample size (HDLSS)
(i.e., p ≫ n) setting.

Overfitting, which is characterized by high accuracy for a
classifier when evaluated on the training set but low accuracy
when evaluated on a separate test set, has been recognized as
a problem in p ≫ n settings [2]. In HDLSS settings, it has
been repeatedly emphasized that the apparent (training set,
resubstitution) accuracy of a classifier is highly optimistically
biased and hence should never be reported and that accuracy
should be estimated based on the evaluation of the classifier
on separate test sets or through complete resampling in
which the model is redeveloped for each resampling [2,3].
The use of resampling techniques or independent test sets for
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the evaluation of prediction accuracy are however not
widespread in the traditional p b n situations, even though
overfitting is likely to be a problem in these settings also [4,5].
In the context of clinical trials, prediction problems with p b n
can arise, for example, when a classifier is developed on a
combination of clinico-pathological and a small number of
candidate genetic biomarker variables selected based on an
understanding of the biology of the disease.When p is less than
n, there exist rules of thumb, for example, specifying that the
effective1 sample size for training should be at least 10 times
the number of candidate predictors [6,7]. However, these rules
of thumb appear to have been developed for ensuring stability
of regression coefficients [8,9] and it is not clear whether
adoption of these rules also avoid overfitting.

We conducted simulation studies to investigate the
existence and extent of the problem of overfitting under
traditional low-dimensional settings. As p increases and
starts exceeding n, traditional classification techniques like
logistic regression or Fisher's linear discriminant analysis
cannot be directly applied and some form of variable
selection and/or shrinkage estimation becomes mandatory
[4,5,10]. Shrinkage based approaches in fact are reported
to be preferable in comparison to p-value based variable
selection methods [5]. In our simulations, we study overfitting
as a function of the ratio of p to the effective sample size,
with and without feature selection. The results of these
simulations and the significance of the results are reported
in this paper.

2. Material and methods

2.1. Binary class prediction

In the binary class prediction problem we have a training
set {Xi, Yi} of n observations where Yi ε {0, 1} is the outcome
class label and Xi = (xi1, xi2, …, xip) is a p-dimensional vector
of predictor variables (features). The goal is to build a rule
utilizing the information in X in order to predict Y. The rule
is often known as a classifier. By developing the classifier on
the training set of data, future unobserved outcomes can be
predicted based on their corresponding measured predictor
variables. Many methods exist for developing classifiers,
including linear and quadratic discriminant analysis, logistic
regression, decision trees, support vector machines, and
others [11]. Additionally, variable selection may also be
used in order to reduce the number of predictors in the
classifier.

2.2. Simulations

For all our simulations, the number of candidate predictors,
p was fixed at 10. Of the 10 predictors, 5 predictors were
informative and the remaining 5 were non-informative. The
number of samples in the training set, n, was varied from 20 to
1 For the linear regression problem, the effective sample size is the actual
sample size. In the case of proportional hazards regression, the effective
sample size is the number of events, and in case of binary class prediction,
the effective sample size is the number of observations in the smaller of the
two classes [4].
1000. Half of the samples (i.e. n/2) were randomly assigned
to class 0 (Y = 0) and the other half to class 1 (Y = 1). The
effective sample size in our simulations was thus n/2. The
informative predictors were generated from N(0, I5) for
class 0 and N(μ, I5) for class 1. The non-informative
predictors were generated from N(0, I5) for both class 0
and class 1. Separate simulations were carried out for the
values of μ in 0, 0.25 and 0.5 to represent the null signal
and signals of increasing strength from moderate to high.
Additionally, a simulation was conducted with two infor-
mative predictors with μ = 0.25 and three informative
predictors with μ = 0.5.

To study the sensitivity of results to correlation among
predictors, additional simulations were carried out with block
diagonal correlation structures, where the informative and
non-informative predictors were assumed to be correlated
with pairwise common correlation coefficient r. Values of
r = 0.25 and 0.75 were used.

Diagonal linear discriminant analysis (DLDA) was used as
the classification method [10]. DLDA corresponds to Fisher's
linear discriminant analysis where the class specific densities
are assumed to have the same diagonal covariance matrix. In
DLDA, a new samplewith feature vector X⁎ = (x⁎1, x⁎2,…, x⁎p)
is assigned to class 0 if

Xp
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and otherwise assigned to class 1. DLDA has the advantage
that for p predictors, only p variances need to be estimated.
In contrast to this, Fisher's linear discriminant analysis
requires the estimation of p(p + 1)/2 elements of the
covariance matrix. DLDA is commonly used in p N n settings
as it is more robust to overfitting compared to Fisher's
LDA and often results in greater predictive accuracy even
when the features are correlated [11]. For p N n problems,
ordinary logistic regression too cannot be used because the
design matrix is singular. Stepwise logistic regression tends
to provide substantially overfit models in that setting and
so penalized version of logistic regression are often used to
shrink the regression coefficients.

DLDA was used in our simulations because of its
stability in p b n problems and its resistance to overfitting
compared to Fisher's LDA and stepwise logistic regression
in p N n problems. When the class specific covariance
matrices are equal and diagonal, DLDA is equivalent to
logistic regression.

Since, typically, some form of variable selection is
incorporated even in the low-dimensional case; simulations
were conducted with and without variable selection to
study the impact of variable selection on overfitting. The
variable selection methods studied were:

(i) selecting variables with the largest k absolute value
univariate t-test statistics with k = 3 or 5.

(ii) using cross-validation to select the optimal number of
variables in the model.



Fig. 1. Illustration of overfit in prediction models under the null. The dashed
line represents the accuracy of classification as evaluated in the test set and
the solid lines represent the accuracy of classification in the training set. The
error bars represent ±1 standard deviation.
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(iii) using a nearest shrunken centroid classifier [12] which
applies soft thresholding shrinkage.

Variable selection using a p-value cutoff is often used to
limit the number of predictors in the model. However, using
a fixed number of predictors in the model enables us to
more clearly evaluate how overfitting depends on the
number of predictors in the model than would be possible
using a p-value cutoff. In the case of (ii), the number of
variables giving the best cross-validated prediction accuracy
was identified by computing the cross-validated prediction
accuracy after including variables with the largest k absolute
value univariate t-test statistics for all values of k from 1 to
10 and selecting the number of variables to be the value of k
giving the maximum cross-validated prediction accuracy.
This approach is similar to optimizing the significance level
α for variable selection in a cross-validation loop [10], but
again instead of optimizing α, we optimize the number of
variables in the model directly. The nearest centroid
classification method can be thought of as an extension of
nearest centroid classification based on the Euclidean
distance metric but with shrunken class centroids used in
the place of actual class centroids. The shrinkage applied
plays the role of reducing the number of variables in the
classifier. The amount of shrinkage was chosen through
cross-validation [12].

The ratio of the effective sample size to the number of
candidate predictor variables was denoted by ρ and the
extent of overfitting was evaluated for a large range of
values of ρ. The classifier was developed from the training
data either using all the variables or after pre-selection of
variables. In every case, the true prediction accuracy of the
classifier was evaluated on a large independent test set of
1000 observations (500 observations each in class 0 and
class 1) that followed the same distribution as the training
set. Generating such a large test is possible when the model
generating the data is known and a large test set can in turn
provide a precise and reliable estimate of the true prediction
accuracy.

2.3. Evaluation of prediction accuracy

Prediction models should be evaluated based on their
ability to predict the outcome class accurately for new
observations having similar distribution as the training
data. Prediction accuracy, not goodness of fit or statistical
significance of model fit, is the objective. Overall prediction
accuracy is defined as the percentage (or proportion) of
samples correctly classified and can be decomposed into
sensitivity and specificity. Though sensitivity and specific-
ity are also important evaluation measures of a classifica-
tion model, we focus on overall prediction accuracy to
illustrate our points. Prediction accuracy, computed on a
large completely independent test dataset gives an unbi-
ased measure of the performance of the classifier. The
difference between the apparent (resubstitution) predic-
tion accuracy and prediction accuracy as measured on an
independent test set is a measure of the degree of overfit to
the training sample.

The simulation was conducted by repeating each combi-
nation of conditions 100 times. The degree of overfit was
measured as the average difference in the prediction
accuracy of the classifier between the training set (apparent
accuracy) and the test set over the 100 replications.

Simulations were conducted using code written in R
(version 2.15.1) [13]. The dDA function from the sfsmisc library
was used for DLDA [14]. The pamr.train and pamr.cv functions
from the pamr library were used for nearest shrunken centroid
method [15].

3. Results

3.1. Simulation results: the null case

The results for the simulations under the null for all
uncorrelated predictors are illustrated in Fig. 1. It can be
seen that in this setting, the true average estimated
prediction accuracy (over the simulation replications) of
the prediction model as measured on the test set is 50%.
This is as it should be, since in the null situation no
variables are informative for the class label, Y, and as per
our design, the prevalence of the Y = 1 observations is
50%. When prediction accuracy is measured on the
training sets, however, the apparent accuracy is greater
than 50% in all cases. When the ratio of number of cases to
number of candidate variables ρ was 10, the apparent error
rate was over-estimated (on an average) by up to 8 percentage
points. The average degree of overfit is 6% when ρ increases to
20. The situation is similar irrespective of whether feature
selection was or was not part of themodeling process. Even for
values of ρ as high as 50, the average apparent accuracy does
not overlap with the true accuracy, though the difference
becomes small (an average of around 4% overfit). It is thus
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clear that, under the null, overfitting is a problem even for
low-dimensional data.

3.2. Simulation results: the alternative case

For independent predictors with moderate signals,
the average degree of overfit is around 5% when ρ equals
10, but decreases considerably for values of ρ N 20 or
more (Fig. 2a). Overfitting does not seem to be a serious
problem in those p b n situations with strong signal and
ρ ≥ 10. With an effective sample size of 100 for 10
candidate predictors, the degree of overfit is around 2%,
and continues to decrease slowly with further increase in ρ
(Figs. 2b and A2 in Appendix). In the case where we have a
mix of predictors, some with moderate and some with
strong signals, the degree of overfit for ρ of 10 is around
3 – 4% which is in between the degree of overfit for the all
moderate and the all strong signal predictor situations
(Fig. 2(c)). The degree of overfit seems to depend on the
extent of signal strength in the predictors and decreases
with increase in predictor signal. Again, as in the case of the
null, the degree of overfit does not differ whether feature
selection was or was not part of the modeling process. The
results also do not seem to show a dependency on the actual
feature selection method employed.

Simulations with correlated predictors also showed that
the degree of overfit has no dependence on the actual
feature selection method employed. Hence, results for the
case of correlated predictors are presented only for the
feature selection with nearest shrunken centroid (Figs. A1
and A2, Appendix). It can be observed that the degree of
overfit decreases, but not substantially, when the pairwise
correlation between predictors is high.

4. Discussion

Statisticians have long recognized overfitting as an
important problem in classifier development [4,5]. In partic-
ular, the problem of overfitting has been recognized as a
major concern in HDLSS settings [2]. Through simulations, we
have demonstrated overfitting to be a problem not just in the
HDLSS case, but also in the more traditional settings where
the number of candidate variables is much less than the
number of observations. We also studied the dependencies
between the degree of overfit to ρ (ratio of sample size to the
number of candidate predictor variables), predictor signal
strength and feature selection. We simulated data under a
variety of conditions but all simulations have limitations and
cannot be fully comprehensive. For the purposes of this
paper, however, it was necessary to know the true prediction
accuracy in order to evaluate degree of overfitting of the
models examined. Simulations enable the generation of a
large test set following the same distribution as the training
data to evaluate the expected true prediction accuracy.
Fig. 2. Illustration of overfit in prediction models under (a) moderate signal
(b) high signal and (c) combination of moderate and high signal predictors.
The dashed line represents the accuracy of classification as evaluated in the
test set and the solid lines represent the accuracy of classification in the
training set. The error bars represent ±1 standard deviation.

image of Fig.�2


Fig. A1. Effect of different correlation structures among predictors to the
degree of overfit for the null data. Correlation structures (A): all informative
predictors pairwise correlated with r = 0.25, non-informative predictors
uncorrelated (B) same as (A), but with r = 0.75 (C) informative and
non-informative predictors pairwise correlated with r = 0.25 (D) same as
(C), but with r = 0.75. The bars represent +1 standard deviation.
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Though evaluation of our findings on real data sets would be
ideal, a reliable estimate of the expected true prediction
accuracy would be difficult to obtain because of the absence
of a large test set. We have tried to use the results
from simulations to understand some of the important
features that affect overfitting rather than just cataloging
the simulation results.

In the simulations, feature selection did not have a strong
influence the degree of overfit. This is to some extent a
result of our selection of classifiers like DLDA and shrunken
centroids that are more resistant to overfitting than those
which explicitly or implicitly utilize correlation between
feature information [11]. The relevant p in assessing
whether overfitting is likely to be a problem is the number
of candidate variables, not the number of variables in the
model after variable selection. In fact, variable selection can
result in increasing model overfitting by overestimating the
magnitude of the selected variables unless it is accompanied by
shrinkage of model coefficients as it is with the shrunken
centroid method.

We did notice a dependency between the degree of
overfit and the signal strength in the predictors – the
degree of overfit increased with decreasing predictor signal
strength. The common rules of thumb suggested for
ensuring the stability of regression models do not neces-
sarily avoid overfitting, at least not under null and weak
signals and the degree of overfit becomes negligible only
under strong signal predictors. In the presence of high
correlation among the predictors, the degree of overfit
decreases, but not substantially. This decrease is probably
because the effective number of candidate predictors
decreases when they are correlated.

The only case when overfitting did not seem to be a
problem in low-dimensional situations was when the signal
in the predictors was strong and the ratio of the effective
sample size to the number of candidate predictors was also
greater than 10. Thus the rules of thumb formulated for
ensuring stability of regression coefficients seem to also
have a role in decreasing the degree of overfit, but only
under strong signals. Hence, reporting the apparent predic-
tion accuracy of a classifier should be avoided except in such
ideal settings.

In all our simulations, the event rates were fixed at 50%.
This was for the sake of simplicity. A higher or lower event
rate would decrease the effective sample size and hence,
for the same number of candidate predictors, larger
samples would be required to arrive at the same value of
ρ. We do not however expect the differences in event rates
to significantly alter the relationship between ρ and the
degree of overfit or to change the principal conclusions of
this study.

Our evaluations were based on using DLDA and shrunk-
en centroid classifiers. These are methods that have been
found in p N n studies to be relatively resistant to
overfitting. Stepwise logistic regression is often applied in
p b n classification problems. However, because stepwise
logistic regression is known to be much more prone to
overfitting than DLDA, we do not believe that our principal
conclusion that overfitting is often a problem in p b n
studies would be altered for studies based on stepwise
logistic regression.
5. Conclusion

Use of the apparent accuracy (i.e. training set estimated
accuracy) for models developed on low-dimensional data is
common in medical journals and is even more common
when attempting to develop predictive classifiers where
treatment by covariate interactions as well as main effects
are candidates for the model. We however encourage
authors to report prediction accuracy based on complete
cross-validation or evaluation on an independent test set to
avoid over-optimism, for low-dimensional problems except
in cases where the effective sample size is at least ten times
the number of candidate predictors and the proportion
of variability explained by the model is substantial. For
prospective development of a predictive classifier to be
used in a phase III trial for selecting or stratifying patients,
one often has a number of candidate variables, but the
number of cases available is often severely restrained by
the size of the phase II database. In some cases the classifier
development and classifier use for stratifying the popula-
tion for analysis are being combined into the phase III
clinical trial. In these situations, use of complete cross-
validation is often essential. The power of such an integrated
cross-validation based approach has been recently demon-
strated to illustrate the new paradigm of predictive analysis of
clinical trials for patient stratification using an example from a
prostate cancer trial [1].
Appendix A

image of Fig. A1


Fig. A2. Effect of different correlation structures among predictors to the
degree of overfit for the high signal data. Correlation structures (A): all
informative predictors pairwise correlated with r = 0.25, non-informative
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predictors uncorrelated (B) same as (A), but with r = 0.75 (C) informative
and non-informative predictors pairwise correlated with r = 0.25 (D) same

as (C), but with r = 0.75. The bars represent +1 standard deviation.
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