Seminars in

HEMATOLOGY

Interpretation of Genomic

Data: Questions and Answers

Richard Simon

Using a question and answer format we describe important aspects of using genomic
technologies in cancer research. The main challenges are not managing the mass of data,
but rather the design, analysis, and accurate reporting of studies that result in increased
biological knowledge and medical utility. Many analysis issues address the use of expres-
sion microarrays but are also applicable to other whole genome assays. Microarray-based
clinical investigations have generated both unrealistic hype and excessive skepticism.
Genomic technologies are tremendously powerful and will play instrumental roles in
elucidating the mechanisms of oncogenesis and in bringing on an era of predictive
medicine in which treatments are tailored to individual tumors. Achieving these goals
involves challenges in rethinking many paradigms for the conduct of basic and clinical
cancer research and for the organization of interdisciplinary collaboration.
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his chapter will address some key issues on the use of

genomic technology in biomedicine. The focus will be on
cancer therapeutics, although many issues have broader rel-
evance. Study design for both developmental and validation
studies will be addressed, as well as topics in the analysis of
genomic data: matching analysis strategy to study objective,
limitations of traditional statistical tools for whole genome
assays, and recommended analysis methods. A question and
answer format is used with division into general introductory
topics, queries about biologically focused “gene finding”
studies, and questions about medically focused studies using
genomics for predictive medicine.

Introductory Issues

What is the difference between
genomic data and genetic data?

Genomic data provides information about the genome of a
cell or group of cells. This includes both the genetic polymor-
phisms that are transmitted from parent to offspring as well
as information about the somatic alterations resulting from
mutational and epigenetic events.
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Why are genomic data important?

Cancer is a disease caused by altered DNA. Some of these
alterations may be inherited and some somatic. Genetic as-
sociation studies attempt to identify the genetic polymor-
phisms that increase the risk of cancer. These contribute to
understanding the molecular basis of the disease and permit
identification of individuals for whom intensive surveillance
or chemoprevention strategies may be appropriate. The
genomics of tumors are studied in order to understand the
molecular basis of the disease, to identify new therapeutic
targets, and to develop means of selecting the right treatment
for the right patient.

Is “the right treatment for the

right patient” hype or substance?

Both. The phrase originated outside of oncology, where it
was interpreted to mean personalizing therapy based on the
genetic makeup of the patient. In oncology, personalization
of therapy has mostly been based on the genomics of the
tumor, not the genetics of the patient. The tumors originating
in a given anatomical site are generally heterogeneous among
patients; tumor genomics provides relevant information
about that heterogeneity. In some areas of oncology targeted
medicine is already a reality. For example, in breast cancer,
treatment is often selected based on estrogen receptor status
and HER2 gene amplification.!? Using genomics effectively
for treatment selection depends critically on the predictive
accuracy of the genomic test and the medical context. To
withhold a potentially curative treatment from a patient
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based on a test with less than perfect negative predictive value
would be a serious mistake. A genomic test is only warranted
if its predictive accuracy adds substantially to that of existing
practice guidelines.? Extensive clinical studies are needed to
demonstrate that a genomic test is ready and appropriate for
clinical use.*

What kinds of genomic data are available?
Starting around 1996, DNA expression microarrays began to
provide estimates of the abundance of mRNA transcripts ge-
nome wide. Today arrays are available to measure transcript
abundance information for each exon of each gene in the
genome. Within the past several years comparative genomic
hybridization arrays and single-nucleotide polymorphism
(SNP) arrays have been used to identify copy number varia-
tions and loss of heterozygosity on a genome-wide basis.
Genome-wide genotyping is in use for identifying SNPs and
in the next few years it will be economically feasible to com-
pletely resequence the genomes in individual tumors.

Is the challenge how
to manage all of this data?

Managing the data is not the main challenge. The amount of
data is well within the capability of modern information tech-
nology. For example, the BRB-ArrayTools software package
developed by the author (available at http://linus.nci.nih.
gov) can easily handle 1,000 expression profiles of 50,000
transcripts to develop predictive classifiers, fully cross-vali-
dated, on a personal computer within minutes.> The much
greater challenge is the proper design, analysis, interpreta-
tion, and reporting of studies to utilize the technology in a
way that provides meaningful biological information and di-
agnostic tests that have real medical utility.® A recent review
by Dupuy and Simon indicated that half of published papers
relating expression profiling to cancer outcome contained at
least one error sufficiently serious as to raise questions about
the conclusions of the study.” Because of the number of vari-
ables measured with genome-wide assays, there is great op-
portunity for discovery but also great risk of reaching mis-
leading conclusions. The statistical analysis of such data is
very challenging and it is critical that authors make their data,
both the genomic data and the clinical data, publicly avail-
able for others to independently verify their claims and to
utilize their data in meta-analyses. The restrictions on data
sharing that have been practiced for clinical trials data are not
desirable for whole-genome assay studies. Some journals re-
quire sharing, but it should be an absolute requirement for all
cancer periodicals.

Isn’t cluster analysis the way to

analyze gene expression profiles?

The recent report by Dupuy and Simon” identified inappro-
priate use of cluster analysis as one of the most common flaws
in published studies relating microarray gene expression to
cancer outcome. The overuse of cluster analysis is indicative
of amore fundamental problem that limits the effective use of
genomic technology, the lack of adequate interdisciplinary

collaboration. Analysis of genome-wide data is complex, and
few biologists or clinical investigators have the appropriate
training for this task. Many of the design and analysis prob-
lems presented by genomic data are also new for statisticians,
and application of standard statistical approaches to high-
dimensional genomic data often gives unsatisfactory results.
Statisticians who invested substantial time learning about
medicine made crucial contributions to cancer clinical trials.
Making such contributions to biology and genomic medicine
will require the same type of effort. Unfortunately, the orga-
nizational structures of many of our institutions are not well
suited to effective interdisciplinary collaboration. Organiza-
tions sometimes overemphasize software engineering and da-
tabase building and underemphasize high-level statistical
genomics collaboration. Many cancer research groups have
not made the resource commitments necessary to attract the
best qualified individuals and to foster effective multidisci-
plinary collaboration.

Can biologists and clinical
investigators analyze genome-wide data?

Multidisciplinary collaboration is most effective when there
is substantial overlap of knowledge. One of the challenges in
biomedicine today is training and retraining scientists in the
effective use of whole-genome data. The challenge is not
really in doing the assays, because assays quickly become
commodities that can be ordered. Issues of how to design
studies and analyze data involving genome-wide technology
are important for biologists and clinical investigators, not just
statisticians and computational scientists. One of the main
objectives of BRB-ArrayTools® is to provide biomedical sci-
entists a software tool for such training. It is also important
that clinical scientists learn enough to be appropriately crit-
ical readers of the published literature; there are serious prob-
lems in some papers published in even the most prominent
journals.” Many young biologists and clinical investigators
are eager to develop their expertise in this area; the goal is
important, but achieving it requires an investment of time.

What are the appropriate analysis methods?

The right methods and the right specimens depend on the
objective of the study. Microarray expression profiling has
allowed entirely new kinds of biological investigations. Tra-
ditionally, in studying biological mechanisms the focus was
on a small number of proteins, development of assays to
measure them, and then design of an experiment to test a
hypothesis about how the concentrations of the proteins
would vary under the experimental conditions. Today, one
can measure the abundance of all transcripts in a single assay.
Consequently, less focused kinds of experimentation are pos-
sible. Although microarray based studies do not require
gene- or protein-specific hypotheses, a clear objective is still
important in order to design an interpretable experiment
with appropriate samples and an appropriate analysis. Many
uses of microarrays can be categorized as (1) class discovery,
(2) gene finding or class comparison, and (3) prediction.
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What is class discovery?

Finding genes that are co-regulated or are in the same path-
way can sometimes be accomplished by sorting genes into
groups with similar expression profiles across a set of condi-
tions. Many “cluster analysis” algorithms have been devel-
oped to accomplish this sorting. Cluster analysis algorithms
are sometimes used to sort samples into groups based on
similarity of their expression profiles over the set of genes.
Clustering samples generally does not use any phenotype
information about the samples. However, cluster analysis
methods always result in clusters, and there is generally no
appropriate way of “validating” a cluster analysis except by
seeing whether the resulting clusters differ with regard to a
known phenotype.

In seeking gene expression—based groupings of samples
that correlate with a phenotype, it is generally much better to
use “supervised” prediction methods, so-called because they
use the phenotype class information explicitly. Often there
may only be a small number of genes whose expression is
correlated with the phenotype, and unsupervised cluster
analysis will not group the samples in ways that correlate
with the phenotype. A serious common mistake is to cluster
the samples with regard to the genes found to be correlated
with the phenotype. Showing that the samples can be thereby
clustered into groups that differ with regard to the phenotype
is erroneously used as evidence of the relevance of the se-
lected genes. This practice violates the principle of separating
the data used for developing a classifier from the data used for
testing it. Since the same data are used for identifying the
genes and for clustering the samples with regard to the se-
lected set of genes, the process is invalid. As pointed out by
Dupuy and Simon, this is one of the most frequent serious
errors in studies relating gene expression to cancer outcome.’

Gene Finding

What methods are
appropriate for gene finding problems?

Gene finding includes studies of mechanisms, like what
genes are induced during wound-healing, or what genes are
differentially expressed in normal mouse breast epithelium
compared to a breast tumor in a genetically engineered
mouse. Gene finding is sometimes called class comparison.
For comparing gene expression between two classes of sam-
ples, familiar statistical measures such as significance tests of
difference in mean expression between the classes can be
employed. It is important, however, to take into account that
differential expression is being compared for tens of thou-
sands of genes. Hence the usual threshold of .05 for statistical
significance is not appropriate. Using the .05 threshold there
will be 500 false positive genes declared differentially ex-
pressed per 10,000 genes tested. This average false positive
rate is independent of the correlation of expression among
the genes. A threshold of statistical significance of .001 in-
stead of .05 results in only 10 false positives per 10,000 genes
tested on average.

For gene finding it has become standard to control the
“false discovery rate.” If n genes are reported in a publication
to be differentially expressed between the classes and if m are
false positives, then m/n is the false discovery rate. The sim-
plest way to control the false discovery rate is by using the
method of Benjamini and Hochberg.® Suppose that a publi-
cation reports n genes as differentially expressed and all have
a P value less than p*. Then an approximation to the false
discovery rate is Np*/n where N denotes the number of genes
tested for differential expression. This is based on estimating
the number of false positives as p* times the number of genes
tested, N. This calculation is generally somewhat conserva-
tive since some of the N genes are actually differentially ex-
pressed and other approximations are also used.”!® Other
methods for finding genes that are differentially expressed,
such as SAM!! and the multivariate permutation test,!? con-
trol the false discovery rate in a more sophisticated manner
that takes into account the correlation among genes. The
multivariate permutation test of Korn et al, SAM, the Ben-
jamini Hochberg method, as well as more complex analysis of
variance methods are available in BRB-ArrayTools.

Class comparison methods are not limited to finding genes
that are differentially expressed between two classes. There
may be more than two classes or one may be interested in
genes whose expression is correlated with a quantitative vari-
able or a censored variable such as survival time. In time-
course experiments, the interest may be in genes the expres-
sion of which changes with time after an experimental
intervention.!? Also of interest may be genes whose expres-
sion varies with time differently for two classes of samples. All
can be viewed as gene-finding problems. Although the statis-
tical measures of correlation of gene expression with pheno-
type depend on the nature of the problem, the control of the
number or proportion of false positives is always important.
Failure to provide adequate control of false positives was one
of the three most common serious problems in expression
profiling studies reported by Dupuy and Simon.”

How many samples are needed
for gene finding with expression data?

For comparing classes, representative samples are needed
from each class. In general, the biological variability in ex-
pression among samples of the same class is much greater
than the variability among technical replicates (among repli-
cate arrays of the same mRNA sample). The statistical power
of gene finding studies primarily depends on the number of
biological replicates, and it is often appropriate to not per-
form any technical replicates. These issues, particularly for
dual-label arrays, are described by Dobbin et al.!*!> The
number of cases needed in each class depends on the fold
difference in mean expression to be detected and the degree
of biological variation in expression within each class. Often
the studies are sized to detect a twofold mean difference in
expression. The intra-class variation differs among genes and
is greater for human tissues than for cell lines. Dobbin et al'
provide simple formulas based on controlling the false dis-
covery rate by using a stringent type one error level for sam-
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ple size planning and these methods are available in BRB-
ArrayTools.”> Shih et al'® have also shown that pooling of
samples is rarely desirable unless necessary to obtain enough
RNA for the assay.

How are lists of differentially

expressed genes related to pathways?
Traditionally, first a list of differentially expressed genes is
generated, and then software tools and genomic websites are
used to annotate the genes appearing on the list. However,
this approach has some serious limitations. To limit the false
discovery rate, genes are usually included in the list only if
their P value for differential expression is statistically signifi-
cant at a stringent threshold, but many genes are differen-
tially expressed but not to the extent required for inclusion in
the gene lists. A popular alternative uses pathway informa-
tion directly in the evaluation of differential expression, not
post hoc to annotate the gene lists. Gene set enhancement
analysis!” is one method of this type. It focuses attention on a
specified set of genes and computes a summary statistic of the
extent to which the set is enriched in genes that rank high
with regard to overexpression in the first class compared to
the second class. However, in computing that enrichment
score a binary categorization of genes as differentially ex-
pressed or not differentially expressed is not enforced. The
method then computes the significance of the degree of sum-
mary enrichment relative to the expectation if no genes were
differentially expressed among classes. Gene sets that are sig-
nificantly enriched relative to that null distribution are iden-
tified. Tian et al'® pointed out that there are various null
hypotheses that could be tested, and that measuring enrich-
ment or differential expression relative to the global null
hypothesis that no genes are differentially expressed may not
be useful in cases where there are many differentially ex-
pressed genes. Numerous alternative methods have been re-
ported.'®2! BRB-ArrayTools contains several methods for
this purpose to evaluate the relationship of differential gene
expression among classes to a variety of gene sets, including
gene ontology categories, Biocarta signaling pathways, Kegg
metabolic pathways, Broad Institute signatures, transcription
factor targets, microRNA targets, and genes whose protein
products contain a PFAM protein domain.??

Prediction

How do prediction problems

differ from gene finding problems?

Prediction problems arise in many medical applications, as
for example to predict which tumors are likely to respond to
a given drug. Prediction may be thought of as a two-class
problem with one class consisting of samples from patients
who have responded to treatment and the other class of sam-
ples from non-responders. Although one component of de-
veloping a predictive classifier is selection of the informative
genes to include, predictive problems are actually quite dif-
ferent from class comparison problems. In class comparison
problems it is important to control the false discovery rate. In

prediction problems, however, the objective is accurate pre-
diction for independent data, not limiting the false discovery
rate to an arbitrarily specified value. Thus the appropriate
criteria for gene selection in prediction problems are different
from those for class comparison problems. For example, in
prediction it is often much more serious to miss informative
genes than to include some false discoveries.?* Class compar-
ison or gene finding problems often have as their object un-
derstanding biological mechanisms. In some cases, it is much
easier to develop an accurate predictor than to understand
the biological basis of why the predictor works. (Understand-
ing biological mechanisms is quite difficult and many excel-
lent biologists have spent a career trying to understand ex-
perimental systems that are much simpler than mammalian
cells.)

What kinds of
predictive classifiers are best?

A class predictor, or classifier based on gene expression data,
is a function that predicts a class from an expression profile.
Specification of a class predictor requires (1) detailed de-
scription of the genes whose expression levels are to be uti-
lized in the prediction; (2) selection of the mathematical form
used to combine the expression levels of the component
genes; and (3) specification of the parameters such as weights
placed on expression levels of individual genes and threshold
values used in the prediction. A predictive classifier is more
than a set of genes. The development of a predictor has some
similarities to logistic regression analysis. Statistical regres-
sion models have in the past usually been built using data in
which the number of cases (n) is large relative to the number
of candidate variables (p). However, in the development of
class predictors using gene expression data, the number of
candidate predictors is generally orders of magnitude greater
than the number of cases. This has two important implica-
tions. First, only simple class prediction functions should be
considered. Second, the data used for evaluating the class
predictor must be distinct from the data used for its develop-
ment. It is almost always possible to develop a class predictor
even on completely random data that will fit that same data
almost perfectly but be completely useless for prediction with
independent data!

The most commonly used approach to selecting genes to
include in the predictive classifier is to use the genes that by
themselves most correlate with the outcome or the pheno-
type class. Traditionally, procedures like stepwise regression
methods are used to select variables that make independent
contributions to prediction. In traditional regression model-
ing, there is careful consideration of whether variables should
be transformed and whether interactions among the effects of
combinations of variables should be included in the model.
This type of modeling requires large sample sizes. An ac-
cepted rule for traditional regression modeling is to have at
least 10 times the number of cases as variables. With whole-
genome assays, we have tens of thousands of variables, and
the expression of each gene represented on a microarray is a
variable. Consequently, the 10 to 1 ratio would require hun-
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dreds of thousands of cases for analysis, clearly an impossi-
bility. As a result, the kind of regression modeling that stat-
isticians have employed for problems with many cases and
few variables does not work well for genomic problems. Ac-
curate prediction is possible in high dimensional (p>>n)
problems, but different methods of predictive modeling must
be utilized to avoid over-fitting the data.

Numerous algorithms have been used effectively with
DNA microarray data for class prediction. Many of the widely
used classifiers combine the expression levels of the genes
selected as informative for discrimination using a weighted
linear function

I(x) = E WiXi ey
=e

where x; denotes the log-expression for the i’th gene, w; is the
weight given to that gene, and the summation is over the set
G of genes selected for inclusion in the classifier. For a two-
class problem, there is also a threshold value d; a sample with
expression profile defined by a vector x of values is predicted
to be in class 1 or class 2 depending on whether (1) is less
than the threshold d or greater than d, respectively. Many of
the widely used classifiers are of the form shown in equation
(1); they differ with regard to how the weights are deter-
mined.

Dudoit et al,?** in comparing many classification algo-
rithms, found that the simplest methods, diagonal linear dis-
criminant analysis and nearest neighbor classification, usu-
ally performed as well or better than did more complex
methods. Nearest neighbor methods are not of the linear
form shown in equation (1); they are based on computing
similarity of a sample available for classification to samples in
a training set. Often Euclidean distance is used as the simi-
larity measure, but it is calculated with regard to the set of
genes selected during training as being informative for dis-
tinguishing the classes. The PAM method of Tusher et al is a
popular form of nearest neighbor classification.!' Ben-Dor
et al?® also found that nearest neighbor classification gener-
ally performed as well or better than did more complicated
approaches. Similar results were found by Wessels et al.?

There is a substantial literature on complex methods for
selecting small subsets of genes that work well together to
provide accurate predictions. Such methods would be useful
because a predictor based on a small number of genes may be
more biologically interpretable than one based on hundreds
of genes. It would also be easier to convert such a predictor to
a reverse transcriptase—polymerase chain reaction (RT-PCR)
platform so that it could be used with formalin-fixed paraffin-
preserved tissue. Unfortunately, attempts to independently
verify the performance of some of these methods have been
disappointing.?-?8

How is a predictive classifier validated?

A cardinal principle for evaluating a predictive classifier is
that the data used for developing the classifier should not be
used in any way in testing the classifier. The simple split-
sample method achieves this aim by partitioning the study
samples into two parts. The separation is often done ran-

domly, with half to two thirds of the cases used for develop-
ing the classifier and the remainder of the cases used for
testing. The cases in the test set should not be used for deter-
mining which variables to include in the classifier, and they
should not be used to compare different classifiers built in the
training set. The cases in the test set should not be used in any
way until a single completely specified model has been de-
veloped using the training data. At that time, the classifier is
applied to the cases in the test set. For example, with an
expression profile classifier, the classifier is applied to the
expression profiles of the cases in the test set and each of
them is classified as a responder or non-responder to the
therapy. The patients in the test set have received the treat-
ment in question and therefore which predictive classifica-
tions were correct and how many were incorrect can be enu-
merated. In using the split-sample method properly, a single
classifier should be defined on the training data; it is not valid
to develop multiple classifiers and then use their perfor-
mance on the test data to select among the classifiers.?

There are more complex forms of dividing the data into
training and testing portions. These cross-validation or re-
sampling methods use the data more efficiently than in the
simple division described above.*® Cross-validation generally
partitions the data into a large training set and a small test set.
A classifier is developed on the training set and then applied
to the cases in the test set to estimate the error rate; the
procedure is repeated for numerous training-test partitions
and the prediction error estimates are averaged. Molinaro et
al showed that for small data sets (<100 cases), leave-one-
out cross-validation or 10-fold cross-validation provided
much more accurate estimates of prediction accuracy than
did either the split-sample approach or averaging results over
random replicated split-sample partitions. Michiels et al’!
suggested that multiple training-test partitions be used.
However, the split-sample approach is mostly useful when a
completely defined algorithm for developing the classifier is
not available. When there is a single training set—test set
partition, numerous analyses on the training set can be per-
formed in order to develop a classifier, and biological consid-
erations of which genes to include can be introduced before
deciding on the single classifier to be evaluated on the test set.
However, with multiple training-test partitions, that type of
flexible approach to model development is not feasible. If
there is a completely defined algorithm for classifier develop-
ment, it is generally better to use one of the cross-validation
approaches to estimate the error rate because the replicated
split sample approach does not provide as efficient use of the
available data.

In order to adhere to the key principle of not employing
the same data to both develop and evaluate a classifier, it is
essential that for each training-test partition the data in the
test set is not used in any way.>?-3* Hence a model should be
developed from scratch in each training set; in other words,
multiple classifiers are developed in the process of perform-
ing cross-validation and these classifiers will in general in-
volve different sets of genes. It is completely invalid to select
the genes beforehand using all the data and then to just
cross-validate the model building process for that restricted
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set of genes. Radmacher et al*®> and Ambroise and
McLachlan?? demonstrated that such pre-selection results in
severely biased estimates of prediction accuracy. In spite of
this severe bias, this error is made in many developmental
classifier studies.” The estimate of prediction accuracy result-
ing from complete cross-validation is an internally valid and
unbiased estimate of the prediction accuracy for the model
developed using the full set of data. A wide variety of classi-
fication models, variable selection algorithms, and complete
cross-validation methods are available in BRB-ArrayTools.>

How can you determine whether a
predictive classifier is statistically
significant?

For predictive classifiers, “statistically significant” should
mean “predicts more accurately than chance.” If a separate
test set of cases is available, then it is easy to compute whether
the prediction accuracy in the test set fulfills this criterion.
However, the prevalence of the classes needs to be taken into
account. For example, if 20% of cases are responders, then
one can be correct 80% of the time by always predicting
non-response. If cross-validation is used, the statistical sig-
nificance of the cross-validated estimate of prediction error
can be determined by repeating the cross-validation for per-
muted data as described by Radmacher et al*3; this approach
is preferable to the approach proposed by Michiels et al.3!

How can you determine whether a
predictive classifier adds predictive value to
standard prognostic factors?

Statistical significance of a predictive classifier should not be
evaluated by using cross-validated class predictions in a mul-
tivariate regression model. Many studies utilize this approach
to establish that the genomic prediction model provides “in-
dependent prediction value” over established covariates. The
approach is not valid, because the cross-validated predictions
are not independent® and because it mistakes statistical sig-
nificance of association measures with predictive value.*% It is
much more meaningful to evaluate the cross-validated pre-
dictions of a genomic classifier within the levels of an estab-
lished staging system.

Can predictive classifiers
be used with survival data?

Such classifiers are best developed without attempting to
convert survivals to binary categories. Several methods have
been developed for categorizing patients into risk groups
based on gene expression data.>"*® BRB-ArrayTools’ builds a
Cox proportional hazards model within each cross-validated
training set using the top principal components of the genes
that are most correlated with survival in that training set. This
model is used to classify the test-set cases as high or low risk.
After the cross-validation loops are complete, Kaplan-Meier
curves are constructed of the survivals of the cases classified
as high risk versus those classified as low risk. The statistical
significance of the difference between the cross-validated

Kaplan-Meier curves is determined by repeating the entire
procedure many times with the gene expression profiles per-
muted. Permutation is necessary because the standard log-
rank test is invalid for cross-validated Kaplan-Meier curves,
as the data sets are not independent. This approach is also
used to determine whether gene expression classifiers predict
survival risk better than do standard covariates, as well as to
build models using genes whose expression adds to those of
the covariates.

What is the difference between a
developmental study and a validation study?

Predictive classifiers are constructed in developmental stud-
ies; validation studies test pre-specified classifiers. Develop-
mental studies should provide some internal estimate of pre-
dictive accuracy for the classifier developed, usually based on
splitting the data into a training set and a test set or using
cross-validation. They are, however, both types of internal
validation. Taking one set of data collected and assayed un-
der carefully controlled research conditions and splitting it
into a training and testing set is not equivalent to evaluating
the predictive accuracy of a classifier on a new set of patients
from different centers with tissue collection and assay perfor-
mance more representative of “real world” conditions.*®

Developmental studies are often too limited in size, struc-
ture, and the nature of the cases to establish the medical
utility of a predictive classifier. Even in the pre-genomic era,
prognostic factor studies were often conducted using a con-
venience sample of available specimens from a heteroge-
neous group of patients who had received a variety of treat-
ments. Classifiers that are prognostic for such a mixed group
often have uncertain therapeutic relevance.?* The Oncotype
DX classifier is one example of a prognostic classifier that
does have therapeutic value*®-*! because it was developed and
validated using cases appropriate for a therapeutic decision
context. Predictive classifiers that identify which patients re-
spond to specific treatments are also often more valuable than
the more commonly reported prognostic studies of heteroge-
neous patients. Currently there is considerable interest in
using predictive classifiers to increase the efficiency and in-
formativeness of new drug development.*-+°

In planning a study to develop a predictive classifier, con-
siderable care should be given to selecting cases so that the
result has potential therapeutic relevance. Very often this
objective can be enhanced by selecting cases who partici-
pated in an appropriate clinical trial. Whereas developmental
studies often provide some measure of predictive accuracy
for the classifiers, such estimates may not establish real med-
ical utility.* Medical utility often requires establishing that
the predictive classifier is more effective than are standard
practice guidelines for enabling treatment selection that re-
sults in better patient outcome (or a similar outcome with less
adverse events). Establishing medical utility depends on
available treatment options and current standards of care. A
key step in developing a useful predictive classifier is identi-
fication of a key therapeutic decision setting that can poten-
tially be improved based on genomic data.
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How can medical utility
of a genomic test relative to
standard practice guidelines be evaluated?

The gold standard evidence might be a controllzed clinical
trial in which patients are randomized to two groups. In one
group, treatment is determined using the genomic classifier;
in the other, treatment is determined by standard practice
guidelines. This type of clinical trial is generally very ineffi-
cient and requires so many patients as to be impractical.
Inefficiency is the result of many if not most patients receiv-
ing the same treatment regardless of randomizatiuon assign-
ment; consequently, a huge sample size is needed to detect
the small difference in overall outcome resulting from a dif-
ference for the patients whose treatment assignment actually
differs between the two groups. A more efficient design in-
volves measuring the genomic test in all patients before ran-
domization, and then only randomizing those whose treat-
ment as based on the genomic test is different from that based
on practice guidelines. This design is being currently used in
the MINDACT trial to test the medical utility of the 70-gene
signature developed by van’t Veer et al.**" Medical utility
can be evaluated separately for subgroups defined by the
ways practice guidelines differ from genomic classifier rec-
ommendation. For example the TAILORx trial evaluates
whether practice guideline-based chemotherapy can be with-
held from patients with node-negative, Her2/neu-negative,
estrogen receptor-positive breast cancer with Oncotype DX
recurrence score < 11.

If a sufficiently complete and adequately preserved set of
archived specimens is available from an appropriate clinical
trial, it may be possible to reliably evaluate medical utility by
performing a prospectively specified analysis using retro-
spective data. Technical validation of the robustness of the
assay for use with prospectively collected tissues could be
established separately. The advantage of such a prospective-
retrospective design is a strong motive for archiving tumor
specimens in all major randomized clinical trials.

Why do predictive classifiers

developed in different studies

for the same types of patients use

very different sets of genes for prediction?

Validating a predictive classifier means establishing that the
classifier predicts accurately for independent data—not that
the same genes would be selected in developing a classifier
with independent data. This point is often misunderstood
and is a source of inappropriate criticism of expression pro-
filing studies. Expression levels among genes are highly cor-
related. For regression model building in such settings, there
are many models that predict about equally well, even more
so for genomic studies where the number of candidate vari-
ables is large relative to the number of cases.*® It would take
enormous numbers of cases to distinguish the small differ-
ences in predictive accuracy among such models,* but it is a
very inappropriate criterion for sample size planning. Dob-
bin and Simon have shown that much smaller sample sizes

are generally adequate to develop predictive classifiers with
accuracy within 5 to 10 percentage points of the those that
could be achieved with unlimited cases.’®>! In the Dobbin
and Simon method, the sample size for a training set is
planned so as to develop the genomic classifier (the method is
available at http:/linus.nci.nih.gov/brb/samplesize/). A sub-
stantial number of additional cases will be needed for a test
set that provides precise estimates of sensitivity and specific-
ity, particularly to determine whether the classifier adds suf-
ficiently to the predictive accuracy of standard prognostic
factors.

Why are so many molecular
predictors available in the literature
but so few find a use in clinical practice?

Pasztai et al identified 939 articles on “prognostic factors” or
“prognostic markers” in breast cancer over 20 years, but only
three were widely used in practice.>? Kyzas et al reviewed 340
articles on prognostic marker meta-analyses and 1,575 arti-
cles on cancer prognostic markers published in 2005: more
than 90% of the articles reported statistically significant find-
ings>3! There are multiple factors that account for the discrep-
ancy between the many positive reports in the literature and
the lack of clinical utility of such markers.

One of the most important reasons for the discrepancy is
that prognostic factors that do not help in therapeutic deci-
sion making are not generally used. Most of the literature
reports are based on evaluating prognosis using “conve-
nience samples” of specimens from heterogeneous patients
without focus on specific therapeutic decisions. Prognostic
markers have potential value for therapeutic decision-mak-
ing only under very restricted circumstances. If one studies
prognosis for a set of patients who are receiving limited local
treatment only, then the prognostic marker may help identify
patients who do not need systemic therapy. Unless the prog-
nostic study is focused it is unlikely to be therapeutically
relevant.

Studies of predictive markers are likely to be more useful.
A predictive marker provides information on the likelihood
of benefit from a specific treatment. To study a predictive
marker using survival or disease-free survival as an end point,
a substantial number of specimens from patients in a ran-
domized clinical trial of the treatment of interest versus an
appropriate control treatment is needed. If objective tumor
response is the end point, then a randomized clinical trial is
not a requirement, but the specimens must be from patients
who received the treatment in question. Such studies are
much less common than are unfocused reports of prognostic
markers in mixed populations.

A second key reason for the discrepancy between the large
number of reports of prognostic or predictive markers and
low number used in practice is that for a test to be useful for
therapeutic decision-making, there generally need to be two
reasonable treatment options and this is often not the case. If
there is one good treatment and the prognosis for untreated
patients is poor, then few physicians will order a test to de-
termine who to leave untreated. In the case of Oncotype DX,
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the prognosis for many node-negative, estrogen receptor—
positive patients who received tamoxifen alone was good, so
for that population there were two viable treatment options,
tamoxifen alone or tamoxifen plus chemotherapy.*! In some
contexts, there may be two treatment options, but the test
does not have sufficient positive and negative predictive
value for clinical utility. Many developmental studies do not
even recognize the importance of predictive value and over-
emphasize statistical significance.”?

Finally, it is very difficult to sufficiently develop a test that
can be reliably used in routine medical practice. A robust
assay that can be used broadly must be developed and then
technically validated to show reproducibility and robustness
despite variations in tissue collection and reagents prospec-
tively establishing medical utility.

Conclusion

As pointed out by Dupuy and Simon, microarray-based clin-
ical investigations have generated both unrealistic hype and
excessive skepticism. Genomic technologies are tremen-
dously powerful and will play instrumental roles in elucidat-
ing the mechanisms of oncogenesis and in the coming era of
predictive medicine in which treatments are tailored to indi-
vidual tumors. Achieving these goals involves challenges in
rethinking many paradigms for the conduct of basic and
clinical cancer research and for the organization of interdis-
ciplinary collaboration. Whole-genome technology provides
power for both discovery and for generating erroneous
claims. We need to provide appropriate training and inter-
disciplinary research settings to enable laboratory and clini-
cal scientists to utilize genomic technology effectively in col-
laboration with statistical and computational scientists.

Acknowledgment

The author would like to acknowledge the valuable com-
ments of Dr John Ioannidis on an earlier draft of the manu-
script.

References

1. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch
M, Smith I, et al: Trastuzumab after adjuvant chemotherapy in HER2-
positive breast cancer. N Engl ] Med 353:1659-1672, 2005

2. Paik S, Taniyama Y, Geyer CE: Anthracyclines in the treatment of
HER2-negative breast cancer. ] Natl Cancer Inst 100:2-3, 2008

3. Kattan MW: Judging new markers by their ability to improve predictive
accuracy. J Natl Cancer Inst 95:634-635, 2003

4. Simon R: When is a genomic classifier ready for prime time? Nat Clin
Pract Oncol 1:2-3, 2004

5. SimonR, Lam A, Li MC, Ngan M, Menenzes S, Zhao Y: Analysis of gene
expression data using BRB-ArrayTools. Cancer Informatics 2:11-17,
2007

6. Simon R, Korn E, McShane L, Radmacher M, Wright G, Zhao Y: Design
and Analysis of DNA Microarray Investigations. New York, NY,
Springer Verlag, 2003

7. Dupuy A, Simon R: Critical review of published microarray studies for
cancer outcome and guidelines on statistical analysis and reporting.
J Natl Cancer Inst 99:147-157, 2007

8. Benjamini Y, Hochberg Y: Controlling the false discovery rate: A prac-
tical and powerful approach to multiple testing. J R Stat Soc B 57:289-
300, 1995

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Storey JD: A direct approach to false discovery rates. J R Stat Soc B
64:479-498, 2002

‘Wu B, Guan Z, Zhao H: Parametric and nonparametric FDR estimation
revisited. Biometrics 62:735-744, 2006

Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays
applied to the ionizing radiation response. Proc Natl Acad Sci 98:5116-
5121, 2001

Korn EL, Li MC, McShane LM, Simon R: An investigation of SAM and
the multivariate permutation test for controlling the false discovery
proportion. Stat Med 26:4428-4440, 2007

Storey JD, Xiao W, Leek JT, Tomkins RG, Davis RW: Significance
analysis of time course microarray experiments. Proc Natl Acad Sci
102:12837-12842, 2005

Shih JH, Michalowska AM, Dobbin K, Ye Y, Qui TH, Green JE: Ques-
tions and answers on design of dual-label microarrays for identifying
differentially expressed genes. J Natl Cancer Inst 95:1362-1369, 2003
Dobbin K, Simon R: Sample size determination in microarray experi-
ments for class comparison and prognostic classification. Biostatistics
6:27-38, 2005

Shih JH, Michalowska AM, Dobbin K, et al: Effects of pooling mRNA in
microarray class comparison. Bioinformatics 20:3318-3325, 2004
Subramanian A, Tamayo P, Mootha VK: Gene set enrichment analysis:
A knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci 102:15545-15550, 2005

Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ:
Discovering statistically significant pathways in expression profiling
studies. Proc Natl Acad Sci 102:13544-13549, 2005

Pavlidis P, Qin J, Arango V, Mann JJ, Sibille E: Using the gene ontology
for microarray data mining: A comparison of methods and application
to age effects in human prefrontal cortex. Neurochem Res 29:1213-
1222, 2004

Kong SW, Pu WT, Park PJ: A multivariate approach for integrating
genome-wide expression data and biological knowledge. Bioinformat-
ics 22:2373-2380, 2006

Goeman JJ, Buhlmann P: Analyzing gene expression data in terms of
gene sets: Methodological issues. Bioinformatics 23:980-987, 2007
Xu X, Zhao Y, Simon R: Gene sets expression comparison in BRB-
ArrayTools. Bioinformatics 24:137-139, 2008

Breiman L, Friedman JH, Olshen RA, Stone PJ: Classification and Re-
gression Trees. Belmont, CA, Wadsworth International Group, 1984
Dudoit S, Fridlyand J: Classification in microarray experiments, in
Speed T (ed): Statistical Analysis of Gene Expression Microarray Data.
Boca Raton, FL, Chapman & Hall/CRC, 2003, pp 93-158

Dudoit S, Fridlyand J, Speed TP: Comparison of discrimination meth-
ods for the classification of tumors using gene expression data. ] Am
Stat Assoc 97:77-87, 2002

Ben-Dor A, Bruhn L, Friedman N, Nachman I, Schummer M, Yakhini
Z: Tissue classification with gene expression profiles. J] Comput Biol
7:559-584, 2000

Wessels LFA, Reinders MJT, Hart AAM, Veenman CJ, Dai H, He T, et al:
A protocol for building and evaluating predictors of disease state based
on microarray data. Bioinformatics 21:3755-3762, 2005

Lai C, Reinders MJT, van’t Veer LJ, Wessels LF: A comparison of uni-
variate and multivariate gene selection techniques for classification of
cancer datasets. BMC Bioinformatics 7:235, 2006

Varma S, Simon R: Bias in error estimation when using cross-validation
for model selection. BMC Bioinformatics 7:91, 2006

Molinaro AM, Simon R, Pfeiffer RM: Prediction error estimation: A
comparison of resampling methods. Bioinformatics 21:3301-3307,
2005

Michiels S, Koscielny S, Hill C: Prediction of cancer outcome with
microarrays: A multiple validation strategy. Lancet 365:488-492, 2005
Ambroise C, McLachlan GJ: Selection bias in gene extraction on the
basis of microarray gene-expression data. Proc Natl Acad Sci 99:6562-
6566, 2002

Radmacher MD, McShane LM, Simon R: A paradigm for class predic-
tion using gene expression profiles. ] Comput Biol 9:505-512, 2002
Simon R, Radmacher MD, Dobbin K, McShane LM: Pitfalls in the use of



204

B. Simon

35.

36.

37.

38.

39.

40.

41.

42.

43.

DNA microarray data for diagnostic and prognostic classification. J Natl
Cancer Inst 95:14-18, 2003

Lusa L, McShane LM, Radmacher MD, Shih JH, Wright GW, Simon R:
Appropriateness of inference procedures based on within-sample vali-
dation for assessing gene expression microarray-based prognostic clas-
sifier performance. Stat Med 26:1102-1113, 2007

loannidis JPA: Is molecular profiling ready for use in clinical decision
making? Oncologist 12:301-311, 2007

Bair E, Tibshirani R: Semi-supervised methods to predict patient sur-
vival from gene expression data. PLoS Biol 2:511-522, 2004

Gui J, Li H: Penalized Cox regression analysis in the high-dimensional
and low-sample size settings, with applications to microarray gene
expression data. Bioinformatics 21:3001-3008, 2005

Simon R: Evaluating prognostic factor studies, in Gospodarowicz MK
(ed): Prognostic factors in cancer (ed 2). New York, NY, Wiley-Liss,
2002, pp 49-56

Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al: A multigene
assay to predict recurrence of tamoxifen-treated, node-negative breast
cancer. N Engl ] Med 351:2817-2826, 2004

Paik S: Development and clinical utility of a 21-gene recurrence score
prognostic assay in patients with early breast cancer treated with ta-
moxifen. Oncologist 12:631-635, 2007

Simon R: A roadmap for developing and validating therapeutically
relevant genomic classifiers. J Clin Oncol 23:7332-7341, 2005

Simon R, Maitournam A: Evaluating the efficiency of targeted designs
for randomized clinical trials: Supplement and correction. Clin Cancer
Res 12:3229, 2006

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Simon R, Maitournam A: Evaluating the efficiency of targeted designs
for randomized clinical trials. Clin Cancer Res 10:6759-6763, 2005
Freidlin B, Simon R: Adaptive signature design: An adaptive clinical
trial design for generating and prospectively testing a gene expression
signature for sensitive patients. Clin Cancer Res 11:7872-7878, 2005
van't Veer L], Dai H, van de Vijver MJ, He YD, Hart AA, Mab M, et al:
Gene expression profiling predicts clinical outcome of breast cancer.
Nature 415:530-536, 2002

Bogaerts J, Cardoso F, Buysa M, Braga S, Loi S, Harrison JA, et al: Gene
signature evaluation as a prognostic tool: Challenges in the design of
the MINDACT trial. Clin Pract Oncol 3:540-551, 2006

Fan C, Oh DS, Wessels L, et al: Concordance among gene-expression
based predictors for breast cancer. N Engl ] Med 355:560-569, 2006
Ein-Dor L, Zuk O, Domany E: Thousands of samples are needed to
generate a robust gene list for predicting outcome in cancer. Proc Natl
Acad Sci 103:5923-5928, 2006

Dobbin K, Simon R: Sample size planning for developing classifiers
using high dimensional DNA expression data. Biostatistics 8:101-117,
2007

Dobbin KK, Zhao Y, Simon RM: How large a training set is needed to
develop a classifier for microarray data? Clin Cancer Res 14:108-114,
2008

Pusztai L, Ayers M, Stec J, et al: Clinical application of cDNA microar-
rays in oncology. Oncologist 8:252-258, 2003

Kyzas PA, Denaxa-Kyza D, loannidis JP: Almost all articles on cancer
prognostic markers quote statistically significant results. Eur J Cancer
43:2559-2579, 2007



	Interpretation of Genomic Data: Questions and Answers
	Introductory Issues
	What is the difference between genomic data and genetic data?
	Why are genomic data important?
	Is “the right treatment for the right patient” hype or substance?
	What kinds of genomic data are available?
	Is the challenge how to manage all of this data?
	Isn’t cluster analysis the way to analyze gene expression profiles?
	Can biologists and clinical investigators analyze genome-wide data?
	What are the appropriate analysis methods?
	What is class discovery?

	Gene Finding
	What methods are appropriate for gene finding problems?
	How many samples are needed for gene finding with expression data?
	How are lists of differentially expressed genes related to pathways?

	Prediction
	How do prediction problems differ from gene finding problems?
	What kinds of predictive classifiers are best?
	How is a predictive classifier validated?
	How can you determine whether a predictive classifier is statistically significant?
	How can you determine whether a predictive classifier adds predictive value to standard prognostic factors?
	Can predictive classifiers be used with survival data?
	What is the difference between a developmental study and a validation study?
	How can medical utility of a genomic test relative to standard practice guidelines be evaluated?
	Why do predictive classifiers developed in different studies for the same types of patients use very different sets of genes for prediction?
	Why are so many molecular predictors available in the literature but so few find a use in clinical practice?

	Conclusion
	Acknowledgment
	References


