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nterpretation of Genomic
ata: Questions and Answers

ichard Simon

Using a question and answer format we describe important aspects of using genomic
technologies in cancer research. The main challenges are not managing the mass of data,
but rather the design, analysis, and accurate reporting of studies that result in increased
biological knowledge and medical utility. Many analysis issues address the use of expres-
sion microarrays but are also applicable to other whole genome assays. Microarray-based
clinical investigations have generated both unrealistic hype and excessive skepticism.
Genomic technologies are tremendously powerful and will play instrumental roles in
elucidating the mechanisms of oncogenesis and in bringing on an era of predictive
medicine in which treatments are tailored to individual tumors. Achieving these goals
involves challenges in rethinking many paradigms for the conduct of basic and clinical
cancer research and for the organization of interdisciplinary collaboration.
Semin Hematol 45:196-204 © 2008 Elsevier Inc. All rights reserved.
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his chapter will address some key issues on the use of
genomic technology in biomedicine. The focus will be on

ancer therapeutics, although many issues have broader rel-
vance. Study design for both developmental and validation
tudies will be addressed, as well as topics in the analysis of
enomic data: matching analysis strategy to study objective,
imitations of traditional statistical tools for whole genome
ssays, and recommended analysis methods. A question and
nswer format is used with division into general introductory
opics, queries about biologically focused “gene finding”
tudies, and questions about medically focused studies using
enomics for predictive medicine.

ntroductory Issues
hat is the difference between

enomic data and genetic data?
enomic data provides information about the genome of a
ell or group of cells. This includes both the genetic polymor-
hisms that are transmitted from parent to offspring as well
s information about the somatic alterations resulting from
utational and epigenetic events.
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hy are genomic data important?
ancer is a disease caused by altered DNA. Some of these
lterations may be inherited and some somatic. Genetic as-
ociation studies attempt to identify the genetic polymor-
hisms that increase the risk of cancer. These contribute to
nderstanding the molecular basis of the disease and permit

dentification of individuals for whom intensive surveillance
r chemoprevention strategies may be appropriate. The
enomics of tumors are studied in order to understand the
olecular basis of the disease, to identify new therapeutic

argets, and to develop means of selecting the right treatment
or the right patient.

s “the right treatment for the
ight patient” hype or substance?
oth. The phrase originated outside of oncology, where it
as interpreted to mean personalizing therapy based on the
enetic makeup of the patient. In oncology, personalization
f therapy has mostly been based on the genomics of the
umor, not the genetics of the patient. The tumors originating
n a given anatomical site are generally heterogeneous among
atients; tumor genomics provides relevant information
bout that heterogeneity. In some areas of oncology targeted
edicine is already a reality. For example, in breast cancer,

reatment is often selected based on estrogen receptor status
nd HER2 gene amplification.1,2 Using genomics effectively
or treatment selection depends critically on the predictive
ccuracy of the genomic test and the medical context. To

ithhold a potentially curative treatment from a patient
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Interpretation of genomic data 197
ased on a test with less than perfect negative predictive value
ould be a serious mistake. A genomic test is only warranted

f its predictive accuracy adds substantially to that of existing
ractice guidelines.3 Extensive clinical studies are needed to
emonstrate that a genomic test is ready and appropriate for
linical use.4

hat kinds of genomic data are available?
tarting around 1996, DNA expression microarrays began to
rovide estimates of the abundance of mRNA transcripts ge-
ome wide. Today arrays are available to measure transcript
bundance information for each exon of each gene in the
enome. Within the past several years comparative genomic
ybridization arrays and single-nucleotide polymorphism
SNP) arrays have been used to identify copy number varia-
ions and loss of heterozygosity on a genome-wide basis.
enome-wide genotyping is in use for identifying SNPs and

n the next few years it will be economically feasible to com-
letely resequence the genomes in individual tumors.

s the challenge how
o manage all of this data?
anaging the data is not the main challenge. The amount of

ata is well within the capability of modern information tech-
ology. For example, the BRB-ArrayTools software package
eveloped by the author (available at http://linus.nci.nih.
ov) can easily handle 1,000 expression profiles of 50,000
ranscripts to develop predictive classifiers, fully cross-vali-
ated, on a personal computer within minutes.5 The much
reater challenge is the proper design, analysis, interpreta-
ion, and reporting of studies to utilize the technology in a
ay that provides meaningful biological information and di-

gnostic tests that have real medical utility.6 A recent review
y Dupuy and Simon indicated that half of published papers
elating expression profiling to cancer outcome contained at
east one error sufficiently serious as to raise questions about
he conclusions of the study.7 Because of the number of vari-
bles measured with genome-wide assays, there is great op-
ortunity for discovery but also great risk of reaching mis-

eading conclusions. The statistical analysis of such data is
ery challenging and it is critical that authors make their data,
oth the genomic data and the clinical data, publicly avail-
ble for others to independently verify their claims and to
tilize their data in meta-analyses. The restrictions on data
haring that have been practiced for clinical trials data are not
esirable for whole-genome assay studies. Some journals re-
uire sharing, but it should be an absolute requirement for all
ancer periodicals.

sn’t cluster analysis the way to
nalyze gene expression profiles?
he recent report by Dupuy and Simon7 identified inappro-
riate use of cluster analysis as one of the most common flaws

n published studies relating microarray gene expression to
ancer outcome. The overuse of cluster analysis is indicative
f a more fundamental problem that limits the effective use of

enomic technology, the lack of adequate interdisciplinary (
ollaboration. Analysis of genome-wide data is complex, and
ew biologists or clinical investigators have the appropriate
raining for this task. Many of the design and analysis prob-
ems presented by genomic data are also new for statisticians,
nd application of standard statistical approaches to high-
imensional genomic data often gives unsatisfactory results.
tatisticians who invested substantial time learning about
edicine made crucial contributions to cancer clinical trials.
aking such contributions to biology and genomic medicine
ill require the same type of effort. Unfortunately, the orga-
izational structures of many of our institutions are not well
uited to effective interdisciplinary collaboration. Organiza-
ions sometimes overemphasize software engineering and da-
abase building and underemphasize high-level statistical
enomics collaboration. Many cancer research groups have
ot made the resource commitments necessary to attract the
est qualified individuals and to foster effective multidisci-
linary collaboration.

an biologists and clinical
nvestigators analyze genome-wide data?
ultidisciplinary collaboration is most effective when there

s substantial overlap of knowledge. One of the challenges in
iomedicine today is training and retraining scientists in the
ffective use of whole-genome data. The challenge is not
eally in doing the assays, because assays quickly become
ommodities that can be ordered. Issues of how to design
tudies and analyze data involving genome-wide technology
re important for biologists and clinical investigators, not just
tatisticians and computational scientists. One of the main
bjectives of BRB-ArrayTools5 is to provide biomedical sci-
ntists a software tool for such training. It is also important
hat clinical scientists learn enough to be appropriately crit-
cal readers of the published literature; there are serious prob-
ems in some papers published in even the most prominent
ournals.7 Many young biologists and clinical investigators
re eager to develop their expertise in this area; the goal is
mportant, but achieving it requires an investment of time.

hat are the appropriate analysis methods?
he right methods and the right specimens depend on the
bjective of the study. Microarray expression profiling has
llowed entirely new kinds of biological investigations. Tra-
itionally, in studying biological mechanisms the focus was
n a small number of proteins, development of assays to
easure them, and then design of an experiment to test a
ypothesis about how the concentrations of the proteins
ould vary under the experimental conditions. Today, one

an measure the abundance of all transcripts in a single assay.
onsequently, less focused kinds of experimentation are pos-

ible. Although microarray based studies do not require
ene- or protein-specific hypotheses, a clear objective is still
mportant in order to design an interpretable experiment
ith appropriate samples and an appropriate analysis. Many
ses of microarrays can be categorized as (1) class discovery,

2) gene finding or class comparison, and (3) prediction.

http://www.linus.nci.nih.gov
http://www.linus.nci.nih.gov
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198 R. Simon
hat is class discovery?
inding genes that are co-regulated or are in the same path-
ay can sometimes be accomplished by sorting genes into
roups with similar expression profiles across a set of condi-
ions. Many “cluster analysis” algorithms have been devel-
ped to accomplish this sorting. Cluster analysis algorithms
re sometimes used to sort samples into groups based on
imilarity of their expression profiles over the set of genes.
lustering samples generally does not use any phenotype

nformation about the samples. However, cluster analysis
ethods always result in clusters, and there is generally no

ppropriate way of “validating” a cluster analysis except by
eeing whether the resulting clusters differ with regard to a
nown phenotype.
In seeking gene expression–based groupings of samples

hat correlate with a phenotype, it is generally much better to
se “supervised” prediction methods, so-called because they
se the phenotype class information explicitly. Often there
ay only be a small number of genes whose expression is

orrelated with the phenotype, and unsupervised cluster
nalysis will not group the samples in ways that correlate
ith the phenotype. A serious common mistake is to cluster

he samples with regard to the genes found to be correlated
ith the phenotype. Showing that the samples can be thereby

lustered into groups that differ with regard to the phenotype
s erroneously used as evidence of the relevance of the se-
ected genes. This practice violates the principle of separating
he data used for developing a classifier from the data used for
esting it. Since the same data are used for identifying the
enes and for clustering the samples with regard to the se-
ected set of genes, the process is invalid. As pointed out by
upuy and Simon, this is one of the most frequent serious
rrors in studies relating gene expression to cancer outcome.7

ene Finding
hat methods are

ppropriate for gene finding problems?
ene finding includes studies of mechanisms, like what
enes are induced during wound-healing, or what genes are
ifferentially expressed in normal mouse breast epithelium
ompared to a breast tumor in a genetically engineered
ouse. Gene finding is sometimes called class comparison.
or comparing gene expression between two classes of sam-
les, familiar statistical measures such as significance tests of
ifference in mean expression between the classes can be
mployed. It is important, however, to take into account that
ifferential expression is being compared for tens of thou-
ands of genes. Hence the usual threshold of .05 for statistical
ignificance is not appropriate. Using the .05 threshold there
ill be 500 false positive genes declared differentially ex-
ressed per 10,000 genes tested. This average false positive
ate is independent of the correlation of expression among
he genes. A threshold of statistical significance of .001 in-
tead of .05 results in only 10 false positives per 10,000 genes

ested on average. c
For gene finding it has become standard to control the
false discovery rate.” If n genes are reported in a publication
o be differentially expressed between the classes and if m are
alse positives, then m/n is the false discovery rate. The sim-
lest way to control the false discovery rate is by using the
ethod of Benjamini and Hochberg.8 Suppose that a publi-

ation reports n genes as differentially expressed and all have
P value less than p*. Then an approximation to the false
iscovery rate is Np*/n where N denotes the number of genes
ested for differential expression. This is based on estimating
he number of false positives as p* times the number of genes
ested, N. This calculation is generally somewhat conserva-
ive since some of the N genes are actually differentially ex-
ressed and other approximations are also used.9,10 Other
ethods for finding genes that are differentially expressed,

uch as SAM11 and the multivariate permutation test,12 con-
rol the false discovery rate in a more sophisticated manner
hat takes into account the correlation among genes. The
ultivariate permutation test of Korn et al, SAM, the Ben-

amini Hochberg method, as well as more complex analysis of
ariance methods are available in BRB-ArrayTools.5

Class comparison methods are not limited to finding genes
hat are differentially expressed between two classes. There
ay be more than two classes or one may be interested in

enes whose expression is correlated with a quantitative vari-
ble or a censored variable such as survival time. In time-
ourse experiments, the interest may be in genes the expres-
ion of which changes with time after an experimental
ntervention.13 Also of interest may be genes whose expres-
ion varies with time differently for two classes of samples. All
an be viewed as gene-finding problems. Although the statis-
ical measures of correlation of gene expression with pheno-
ype depend on the nature of the problem, the control of the
umber or proportion of false positives is always important.
ailure to provide adequate control of false positives was one
f the three most common serious problems in expression
rofiling studies reported by Dupuy and Simon.7

ow many samples are needed
or gene finding with expression data?
or comparing classes, representative samples are needed
rom each class. In general, the biological variability in ex-
ression among samples of the same class is much greater
han the variability among technical replicates (among repli-
ate arrays of the same mRNA sample). The statistical power
f gene finding studies primarily depends on the number of
iological replicates, and it is often appropriate to not per-
orm any technical replicates. These issues, particularly for
ual-label arrays, are described by Dobbin et al.14,15 The
umber of cases needed in each class depends on the fold
ifference in mean expression to be detected and the degree
f biological variation in expression within each class. Often
he studies are sized to detect a twofold mean difference in
xpression. The intra-class variation differs among genes and
s greater for human tissues than for cell lines. Dobbin et al15

rovide simple formulas based on controlling the false dis-

overy rate by using a stringent type one error level for sam-
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Interpretation of genomic data 199
le size planning and these methods are available in BRB-
rrayTools.5 Shih et al16 have also shown that pooling of
amples is rarely desirable unless necessary to obtain enough
NA for the assay.

ow are lists of differentially
xpressed genes related to pathways?
raditionally, first a list of differentially expressed genes is
enerated, and then software tools and genomic websites are
sed to annotate the genes appearing on the list. However,
his approach has some serious limitations. To limit the false
iscovery rate, genes are usually included in the list only if
heir P value for differential expression is statistically signifi-
ant at a stringent threshold, but many genes are differen-
ially expressed but not to the extent required for inclusion in
he gene lists. A popular alternative uses pathway informa-
ion directly in the evaluation of differential expression, not
ost hoc to annotate the gene lists. Gene set enhancement
nalysis17 is one method of this type. It focuses attention on a
pecified set of genes and computes a summary statistic of the
xtent to which the set is enriched in genes that rank high
ith regard to overexpression in the first class compared to

he second class. However, in computing that enrichment
core a binary categorization of genes as differentially ex-
ressed or not differentially expressed is not enforced. The
ethod then computes the significance of the degree of sum-
ary enrichment relative to the expectation if no genes were
ifferentially expressed among classes. Gene sets that are sig-
ificantly enriched relative to that null distribution are iden-
ified. Tian et al18 pointed out that there are various null
ypotheses that could be tested, and that measuring enrich-
ent or differential expression relative to the global null
ypothesis that no genes are differentially expressed may not
e useful in cases where there are many differentially ex-
ressed genes. Numerous alternative methods have been re-
orted.19-21 BRB-ArrayTools contains several methods for
his purpose to evaluate the relationship of differential gene
xpression among classes to a variety of gene sets, including
ene ontology categories, Biocarta signaling pathways, Kegg
etabolic pathways, Broad Institute signatures, transcription

actor targets, microRNA targets, and genes whose protein
roducts contain a PFAM protein domain.22

rediction
ow do prediction problems
iffer from gene finding problems?
rediction problems arise in many medical applications, as
or example to predict which tumors are likely to respond to
given drug. Prediction may be thought of as a two-class
roblem with one class consisting of samples from patients
ho have responded to treatment and the other class of sam-
les from non-responders. Although one component of de-
eloping a predictive classifier is selection of the informative
enes to include, predictive problems are actually quite dif-
erent from class comparison problems. In class comparison

roblems it is important to control the false discovery rate. In v
rediction problems, however, the objective is accurate pre-
iction for independent data, not limiting the false discovery
ate to an arbitrarily specified value. Thus the appropriate
riteria for gene selection in prediction problems are different
rom those for class comparison problems. For example, in
rediction it is often much more serious to miss informative
enes than to include some false discoveries.23 Class compar-
son or gene finding problems often have as their object un-
erstanding biological mechanisms. In some cases, it is much
asier to develop an accurate predictor than to understand
he biological basis of why the predictor works. (Understand-
ng biological mechanisms is quite difficult and many excel-
ent biologists have spent a career trying to understand ex-
erimental systems that are much simpler than mammalian
ells.)

hat kinds of
redictive classifiers are best?
class predictor, or classifier based on gene expression data,

s a function that predicts a class from an expression profile.
pecification of a class predictor requires (1) detailed de-
cription of the genes whose expression levels are to be uti-
ized in the prediction; (2) selection of the mathematical form
sed to combine the expression levels of the component
enes; and (3) specification of the parameters such as weights
laced on expression levels of individual genes and threshold
alues used in the prediction. A predictive classifier is more
han a set of genes. The development of a predictor has some
imilarities to logistic regression analysis. Statistical regres-
ion models have in the past usually been built using data in
hich the number of cases (n) is large relative to the number
f candidate variables (p). However, in the development of
lass predictors using gene expression data, the number of
andidate predictors is generally orders of magnitude greater
han the number of cases. This has two important implica-
ions. First, only simple class prediction functions should be
onsidered. Second, the data used for evaluating the class
redictor must be distinct from the data used for its develop-
ent. It is almost always possible to develop a class predictor

ven on completely random data that will fit that same data
lmost perfectly but be completely useless for prediction with
ndependent data!

The most commonly used approach to selecting genes to
nclude in the predictive classifier is to use the genes that by
hemselves most correlate with the outcome or the pheno-
ype class. Traditionally, procedures like stepwise regression
ethods are used to select variables that make independent

ontributions to prediction. In traditional regression model-
ng, there is careful consideration of whether variables should
e transformed and whether interactions among the effects of
ombinations of variables should be included in the model.
his type of modeling requires large sample sizes. An ac-
epted rule for traditional regression modeling is to have at
east 10 times the number of cases as variables. With whole-
enome assays, we have tens of thousands of variables, and
he expression of each gene represented on a microarray is a

ariable. Consequently, the 10 to 1 ratio would require hun-
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200 R. Simon
reds of thousands of cases for analysis, clearly an impossi-
ility. As a result, the kind of regression modeling that stat-

sticians have employed for problems with many cases and
ew variables does not work well for genomic problems. Ac-
urate prediction is possible in high dimensional (p��n)
roblems, but different methods of predictive modeling must
e utilized to avoid over-fitting the data.
Numerous algorithms have been used effectively with

NA microarray data for class prediction. Many of the widely
sed classifiers combine the expression levels of the genes
elected as informative for discrimination using a weighted
inear function

l(x
�

) � �
i�G

wixi (1)

here xi denotes the log-expression for the i’th gene, wi is the
eight given to that gene, and the summation is over the set
of genes selected for inclusion in the classifier. For a two-

lass problem, there is also a threshold value d; a sample with
xpression profile defined by a vector x of values is predicted
o be in class 1 or class 2 depending on whether (1) is less
han the threshold d or greater than d, respectively. Many of
he widely used classifiers are of the form shown in equation
1); they differ with regard to how the weights are deter-
ined.
Dudoit et al,24,25 in comparing many classification algo-

ithms, found that the simplest methods, diagonal linear dis-
riminant analysis and nearest neighbor classification, usu-
lly performed as well or better than did more complex
ethods. Nearest neighbor methods are not of the linear

orm shown in equation (1); they are based on computing
imilarity of a sample available for classification to samples in
training set. Often Euclidean distance is used as the simi-

arity measure, but it is calculated with regard to the set of
enes selected during training as being informative for dis-
inguishing the classes. The PAM method of Tusher et al is a
opular form of nearest neighbor classification.11 Ben-Dor
t al26 also found that nearest neighbor classification gener-
lly performed as well or better than did more complicated
pproaches. Similar results were found by Wessels et al.27

There is a substantial literature on complex methods for
electing small subsets of genes that work well together to
rovide accurate predictions. Such methods would be useful
ecause a predictor based on a small number of genes may be
ore biologically interpretable than one based on hundreds

f genes. It would also be easier to convert such a predictor to
reverse transcriptase–polymerase chain reaction (RT-PCR)
latform so that it could be used with formalin-fixed paraffin-
reserved tissue. Unfortunately, attempts to independently
erify the performance of some of these methods have been
isappointing.27,28

ow is a predictive classifier validated?
cardinal principle for evaluating a predictive classifier is

hat the data used for developing the classifier should not be
sed in any way in testing the classifier. The simple split-
ample method achieves this aim by partitioning the study

amples into two parts. The separation is often done ran- c
omly, with half to two thirds of the cases used for develop-
ng the classifier and the remainder of the cases used for
esting. The cases in the test set should not be used for deter-
ining which variables to include in the classifier, and they

hould not be used to compare different classifiers built in the
raining set. The cases in the test set should not be used in any
ay until a single completely specified model has been de-
eloped using the training data. At that time, the classifier is
pplied to the cases in the test set. For example, with an
xpression profile classifier, the classifier is applied to the
xpression profiles of the cases in the test set and each of
hem is classified as a responder or non-responder to the
herapy. The patients in the test set have received the treat-
ent in question and therefore which predictive classifica-

ions were correct and how many were incorrect can be enu-
erated. In using the split-sample method properly, a single

lassifier should be defined on the training data; it is not valid
o develop multiple classifiers and then use their perfor-
ance on the test data to select among the classifiers.29

There are more complex forms of dividing the data into
raining and testing portions. These cross-validation or re-
ampling methods use the data more efficiently than in the
imple division described above.30 Cross-validation generally
artitions the data into a large training set and a small test set.
classifier is developed on the training set and then applied

o the cases in the test set to estimate the error rate; the
rocedure is repeated for numerous training-test partitions
nd the prediction error estimates are averaged. Molinaro et
l showed that for small data sets (�100 cases), leave-one-
ut cross-validation or 10-fold cross-validation provided
uch more accurate estimates of prediction accuracy than
id either the split-sample approach or averaging results over
andom replicated split-sample partitions. Michiels et al31

uggested that multiple training-test partitions be used.
owever, the split-sample approach is mostly useful when a

ompletely defined algorithm for developing the classifier is
ot available. When there is a single training set–test set
artition, numerous analyses on the training set can be per-
ormed in order to develop a classifier, and biological consid-
rations of which genes to include can be introduced before
eciding on the single classifier to be evaluated on the test set.
owever, with multiple training-test partitions, that type of
exible approach to model development is not feasible. If
here is a completely defined algorithm for classifier develop-
ent, it is generally better to use one of the cross-validation

pproaches to estimate the error rate because the replicated
plit sample approach does not provide as efficient use of the
vailable data.

In order to adhere to the key principle of not employing
he same data to both develop and evaluate a classifier, it is
ssential that for each training-test partition the data in the
est set is not used in any way.32-34 Hence a model should be
eveloped from scratch in each training set; in other words,
ultiple classifiers are developed in the process of perform-

ng cross-validation and these classifiers will in general in-
olve different sets of genes. It is completely invalid to select
he genes beforehand using all the data and then to just

ross-validate the model building process for that restricted
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Interpretation of genomic data 201
et of genes. Radmacher et al33 and Ambroise and
cLachlan32 demonstrated that such pre-selection results in

everely biased estimates of prediction accuracy. In spite of
his severe bias, this error is made in many developmental
lassifier studies.7 The estimate of prediction accuracy result-
ng from complete cross-validation is an internally valid and
nbiased estimate of the prediction accuracy for the model
eveloped using the full set of data. A wide variety of classi-
cation models, variable selection algorithms, and complete
ross-validation methods are available in BRB-ArrayTools.5

ow can you determine whether a
redictive classifier is statistically
ignificant?
or predictive classifiers, “statistically significant” should
ean “predicts more accurately than chance.” If a separate

est set of cases is available, then it is easy to compute whether
he prediction accuracy in the test set fulfills this criterion.
owever, the prevalence of the classes needs to be taken into

ccount. For example, if 20% of cases are responders, then
ne can be correct 80% of the time by always predicting
on-response. If cross-validation is used, the statistical sig-
ificance of the cross-validated estimate of prediction error
an be determined by repeating the cross-validation for per-
uted data as described by Radmacher et al33; this approach

s preferable to the approach proposed by Michiels et al.31

ow can you determine whether a
redictive classifier adds predictive value to
tandard prognostic factors?
tatistical significance of a predictive classifier should not be
valuated by using cross-validated class predictions in a mul-
ivariate regression model. Many studies utilize this approach
o establish that the genomic prediction model provides “in-
ependent prediction value” over established covariates. The
pproach is not valid, because the cross-validated predictions
re not independent35 and because it mistakes statistical sig-
ificance of association measures with predictive value.36 It is
uch more meaningful to evaluate the cross-validated pre-
ictions of a genomic classifier within the levels of an estab-

ished staging system.

an predictive classifiers
e used with survival data?
uch classifiers are best developed without attempting to
onvert survivals to binary categories. Several methods have
een developed for categorizing patients into risk groups
ased on gene expression data.37,38 BRB-ArrayTools5 builds a
ox proportional hazards model within each cross-validated

raining set using the top principal components of the genes
hat are most correlated with survival in that training set. This
odel is used to classify the test-set cases as high or low risk.
fter the cross-validation loops are complete, Kaplan-Meier
urves are constructed of the survivals of the cases classified
s high risk versus those classified as low risk. The statistical

ignificance of the difference between the cross-validated t
aplan-Meier curves is determined by repeating the entire
rocedure many times with the gene expression profiles per-
uted. Permutation is necessary because the standard log-

ank test is invalid for cross-validated Kaplan-Meier curves,
s the data sets are not independent. This approach is also
sed to determine whether gene expression classifiers predict
urvival risk better than do standard covariates, as well as to
uild models using genes whose expression adds to those of
he covariates.

hat is the difference between a
evelopmental study and a validation study?
redictive classifiers are constructed in developmental stud-

es; validation studies test pre-specified classifiers. Develop-
ental studies should provide some internal estimate of pre-
ictive accuracy for the classifier developed, usually based on
plitting the data into a training set and a test set or using
ross-validation. They are, however, both types of internal
alidation. Taking one set of data collected and assayed un-
er carefully controlled research conditions and splitting it

nto a training and testing set is not equivalent to evaluating
he predictive accuracy of a classifier on a new set of patients
rom different centers with tissue collection and assay perfor-
ance more representative of “real world” conditions.36

Developmental studies are often too limited in size, struc-
ure, and the nature of the cases to establish the medical
tility of a predictive classifier. Even in the pre-genomic era,
rognostic factor studies were often conducted using a con-
enience sample of available specimens from a heteroge-
eous group of patients who had received a variety of treat-
ents. Classifiers that are prognostic for such a mixed group

ften have uncertain therapeutic relevance.39 The Oncotype
X classifier is one example of a prognostic classifier that
oes have therapeutic value40,41 because it was developed and
alidated using cases appropriate for a therapeutic decision
ontext. Predictive classifiers that identify which patients re-
pond to specific treatments are also often more valuable than
he more commonly reported prognostic studies of heteroge-
eous patients. Currently there is considerable interest in
sing predictive classifiers to increase the efficiency and in-
ormativeness of new drug development.42-45

In planning a study to develop a predictive classifier, con-
iderable care should be given to selecting cases so that the
esult has potential therapeutic relevance. Very often this
bjective can be enhanced by selecting cases who partici-
ated in an appropriate clinical trial. Whereas developmental
tudies often provide some measure of predictive accuracy
or the classifiers, such estimates may not establish real med-
cal utility.4 Medical utility often requires establishing that
he predictive classifier is more effective than are standard
ractice guidelines for enabling treatment selection that re-
ults in better patient outcome (or a similar outcome with less
dverse events). Establishing medical utility depends on
vailable treatment options and current standards of care. A
ey step in developing a useful predictive classifier is identi-
cation of a key therapeutic decision setting that can poten-

ially be improved based on genomic data.
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202 R. Simon
ow can medical utility
f a genomic test relative to
tandard practice guidelines be evaluated?
he gold standard evidence might be a controllzed clinical

rial in which patients are randomized to two groups. In one
roup, treatment is determined using the genomic classifier;
n the other, treatment is determined by standard practice
uidelines. This type of clinical trial is generally very ineffi-
ient and requires so many patients as to be impractical.
nefficiency is the result of many if not most patients receiv-
ng the same treatment regardless of randomizatiuon assign-

ent; consequently, a huge sample size is needed to detect
he small difference in overall outcome resulting from a dif-
erence for the patients whose treatment assignment actually
iffers between the two groups. A more efficient design in-
olves measuring the genomic test in all patients before ran-
omization, and then only randomizing those whose treat-
ent as based on the genomic test is different from that based

n practice guidelines. This design is being currently used in
he MINDACT trial to test the medical utility of the 70-gene
ignature developed by van’t Veer et al.46,47 Medical utility
an be evaluated separately for subgroups defined by the
ays practice guidelines differ from genomic classifier rec-
mmendation. For example the TAILORx trial evaluates
hether practice guideline-based chemotherapy can be with-
eld from patients with node-negative, Her2/neu-negative,
strogen receptor-positive breast cancer with Oncotype DX
ecurrence score � 11.

If a sufficiently complete and adequately preserved set of
rchived specimens is available from an appropriate clinical
rial, it may be possible to reliably evaluate medical utility by
erforming a prospectively specified analysis using retro-
pective data. Technical validation of the robustness of the
ssay for use with prospectively collected tissues could be
stablished separately. The advantage of such a prospective-
etrospective design is a strong motive for archiving tumor
pecimens in all major randomized clinical trials.

hy do predictive classifiers
eveloped in different studies
or the same types of patients use
ery different sets of genes for prediction?
alidating a predictive classifier means establishing that the
lassifier predicts accurately for independent data—not that
he same genes would be selected in developing a classifier
ith independent data. This point is often misunderstood

nd is a source of inappropriate criticism of expression pro-
ling studies. Expression levels among genes are highly cor-
elated. For regression model building in such settings, there
re many models that predict about equally well, even more
o for genomic studies where the number of candidate vari-
bles is large relative to the number of cases.48 It would take
normous numbers of cases to distinguish the small differ-
nces in predictive accuracy among such models,49 but it is a
ery inappropriate criterion for sample size planning. Dob-

in and Simon have shown that much smaller sample sizes t
re generally adequate to develop predictive classifiers with
ccuracy within 5 to 10 percentage points of the those that
ould be achieved with unlimited cases.50,51 In the Dobbin
nd Simon method, the sample size for a training set is
lanned so as to develop the genomic classifier (the method is
vailable at http://linus.nci.nih.gov/brb/samplesize/). A sub-
tantial number of additional cases will be needed for a test
et that provides precise estimates of sensitivity and specific-
ty, particularly to determine whether the classifier adds suf-
ciently to the predictive accuracy of standard prognostic
actors.

hy are so many molecular
redictors available in the literature
ut so few find a use in clinical practice?
asztai et al identified 939 articles on “prognostic factors” or
prognostic markers” in breast cancer over 20 years, but only
hree were widely used in practice.52 Kyzas et al reviewed 340
rticles on prognostic marker meta-analyses and 1,575 arti-
les on cancer prognostic markers published in 2005: more
han 90% of the articles reported statistically significant find-
ngs53! There are multiple factors that account for the discrep-
ncy between the many positive reports in the literature and
he lack of clinical utility of such markers.

One of the most important reasons for the discrepancy is
hat prognostic factors that do not help in therapeutic deci-
ion making are not generally used. Most of the literature
eports are based on evaluating prognosis using “conve-
ience samples” of specimens from heterogeneous patients
ithout focus on specific therapeutic decisions. Prognostic
arkers have potential value for therapeutic decision-mak-

ng only under very restricted circumstances. If one studies
rognosis for a set of patients who are receiving limited local
reatment only, then the prognostic marker may help identify
atients who do not need systemic therapy. Unless the prog-
ostic study is focused it is unlikely to be therapeutically
elevant.

Studies of predictive markers are likely to be more useful.
predictive marker provides information on the likelihood

f benefit from a specific treatment. To study a predictive
arker using survival or disease-free survival as an end point,
substantial number of specimens from patients in a ran-
omized clinical trial of the treatment of interest versus an
ppropriate control treatment is needed. If objective tumor
esponse is the end point, then a randomized clinical trial is
ot a requirement, but the specimens must be from patients
ho received the treatment in question. Such studies are
uch less common than are unfocused reports of prognostic
arkers in mixed populations.
A second key reason for the discrepancy between the large

umber of reports of prognostic or predictive markers and
ow number used in practice is that for a test to be useful for
herapeutic decision-making, there generally need to be two
easonable treatment options and this is often not the case. If
here is one good treatment and the prognosis for untreated
atients is poor, then few physicians will order a test to de-

ermine who to leave untreated. In the case of Oncotype DX,

http://www.linus.nci.nih.gov/brb/samplesize
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Interpretation of genomic data 203
he prognosis for many node-negative, estrogen receptor–
ositive patients who received tamoxifen alone was good, so
or that population there were two viable treatment options,
amoxifen alone or tamoxifen plus chemotherapy.41 In some
ontexts, there may be two treatment options, but the test
oes not have sufficient positive and negative predictive
alue for clinical utility. Many developmental studies do not
ven recognize the importance of predictive value and over-
mphasize statistical significance.53

Finally, it is very difficult to sufficiently develop a test that
an be reliably used in routine medical practice. A robust
ssay that can be used broadly must be developed and then
echnically validated to show reproducibility and robustness
espite variations in tissue collection and reagents prospec-
ively establishing medical utility.

onclusion
s pointed out by Dupuy and Simon, microarray-based clin-

cal investigations have generated both unrealistic hype and
xcessive skepticism. Genomic technologies are tremen-
ously powerful and will play instrumental roles in elucidat-

ng the mechanisms of oncogenesis and in the coming era of
redictive medicine in which treatments are tailored to indi-
idual tumors. Achieving these goals involves challenges in
ethinking many paradigms for the conduct of basic and
linical cancer research and for the organization of interdis-
iplinary collaboration. Whole-genome technology provides
ower for both discovery and for generating erroneous
laims. We need to provide appropriate training and inter-
isciplinary research settings to enable laboratory and clini-
al scientists to utilize genomic technology effectively in col-
aboration with statistical and computational scientists.
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