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• Powerpoint presentation
– Including slides not presented

• Bibliography
• Reprints & Technical Reports

– Support for my dogmatic assertions
• BRB-ArrayTools software

– Performs all analyses described



• Design and Analysis of DNA Microarray 
Investigations
– R Simon, EL Korn, MD Radmacher, L McShane, G 

Wright, Y Zhao. Springer (2003) 



Microarray Expression Profiling

• Would like to know the concentration of 
each protein in a cell
– Proteins do the work of cells
– Proteins have many shapes and parallel 

assays for all proteins have not been 
developed



Microarray Expression Profiling

• One gene transcription produces one mRNA 
molecule produces one protein molecule

• # genes ≅ # mRNA types
• mRNA molecules are similar in structure to DNA

– Proteins are not
• mRNA molecule can be reverse trascribed into 

DNA and will bind only to the gene from which it 
was originally transcribed (to which it is 
homologous)



Microarray Expression Profiling

• Estimates abundance of mRNA molecules 
of each type present in cells
– Assay not sensitive enough to analyze single 

cells so estimate is for average of sample of 
cells

• Microarray contains a spot of DNA 
corresponding to each gene
– Spots are in known fixed positions
– Spots contain fewer nucleotides that the full 

gene



cDNA Array







[Affymetrix] Hybridization
Oligo Array



Affymetrix GeneChips

• Contain multiple probes (spots) per gene
• Probes corresponding to the same gene 

must be processed to give a probe-set 
summary intensity for each gene

• Single label system
– Higher reproducibility makes use of dual-

labels unnecessary



Important Topics I Will Not Discuss

• Image Analysis
• Background adjustment
• Probe-set intensity summaries for 

Affymetrix GeneChips
• Normalization

– Red vs green bias on dual label arrays
– Across arrays for single channel arrays



Myths & Truths
About Microarray Expression 

Profiling
http://linus.nci.nih.gov/brb



Myth

• That microarray investigations should be 
unstructured data-mining adventures 
without clear objectives



• Good microarray studies have clear 
objectives, but not generally gene specific 
mechanistic hypotheses

• Design and analysis methods should be 
tailored to study objectives



Common Types of Objectives

• Class Comparison
– Identify genes differentially expressed among 

predefined classes such as diagnostic or 
prognostic groups. 

• Class Prediction
– Develop multi-gene predictor of class for a sample 

using its gene expression profile
• Class Discovery

– Discover clusters among specimens or among 
genes



Do Expression Profiles Differ for 
Two Defined Classes of Arrays?
• Not a clustering problem

– Global similarity measures generally used for 
clustering arrays may not distinguish classes

– Supervised methods
• Requires multiple biological samples from 

each class
– Contrary to published statistical methods and 

widely used software



Levels of Replication

• Technical replicates
– RNA sample divided into multiple aliquots and re-

arrayed
• Biological replicates

– Multiple subjects 
– Replication of the tissue culture experiment



• Biological conclusions generally require 
independent biological replicates. The 
power of statistical methods for microarray 
data depends on the number of biological 
replicates.

• Technical replicates are useful insurance 
to ensure that at least one good quality 
array of each specimen will be obtained.



Allocation of Specimens to
Dual Label Arrays for Simple 
Class Comparison Problems 

• Common Reference Design
• Balanced Block Design 



Common Reference Design
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Ai = ith specimen from class A

Bi = ith specimen from class B
R = aliquot from reference pool



• The reference generally serves to control 
variation in the size of corresponding spots 
on different arrays and variation in sample 
distribution over the slide.

• The reference provides a relative measure of 
expression for a given gene in a given 
sample that is less variable than an absolute 
measure. 

• The reference is not the object of 
comparison.

• The relative measure of expression will be 
compared among biologically independent 
samples from different classes.





Balanced Block Design

A1

A2

B2 A3

B3

B4

A4

RED

B1GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B



• Detailed comparisons of the effectiveness of 
designs: 
– Dobbin K, Simon R. Comparison of microarray 

designs for class comparison and class discovery. 
Bioinformatics 18:1462-9, 2002

– Dobbin K, Shih J, Simon R. Statistical design of 
reverse dye microarrays. Bioinformatics 19:803-10, 
2003

– Dobbin K, Simon R. Questions and answers on the 
design of dual-label microarrays for identifying 
differentially expressed genes, JNCI 95:1362-1369, 
2003



• Common reference designs are very effective for many 
microarray studies. They are robust, permit comparisons 
among separate experiments, and permit many types of 
comparisons and analyses to be performed.

• For simple two class comparison problems, balanced 
block designs require many fewer arrays than common 
reference designs.
– Efficiency decreases for more than two classes
– Are more difficult to apply to more complicated class comparison

problems. 
– They are not appropriate for class discovery or class prediction.

• Loop designs are less robust, and dominated by either 
common reference designs or balanced block designs, 
and are not suitable for class prediction or class 
discovery.



Myth

• For two color microarrays, each sample of 
interest should be labeled once with Cy3 
and once with Cy5 in dye-swap pairs of 
arrays.  



Dye Bias

• Average differences among dyes in label 
concentration, labeling efficiency, photon 
emission efficiency and photon detection 
are corrected by normalization procedures

• Gene specific dye bias may not be 
corrected by normalization 



• Dye swap technical replicates of the same two 
rna samples are rarely necessary. 

• Using a common reference design, dye swap 
arrays are not necessary for valid comparisons 
of classes since specimens labeled with different 
dyes are never compared.

• For two-label direct comparison designs for 
comparing two classes, it is more efficient to 
balance the dye-class assignments for 
independent biological specimens than to do 
dye swap technical replicates 



Can I reduce the number of 
arrays by pooling specimens?

• Pooling all specimens is inadvisable because 
conclusions are limited to the specific RNA pool, 
not to the populations since there is no estimate 
of variation among pools

• With multiple biologically independent pools, 
some reduction in number of arrays may be 
possible but the reduction is generally modest 
and may be accompanied with a large increase 
in the number of independent biological 
specimens needed
– Dobbin & Simon, Biostatistics (In Press).



Number of samples 
pooled per array

Number of arrays 
required

Number of samples 
required

1 25 25

2 17 34

3 14 42

4 13 52

α=0.001, β=0.05, δ=1, τ2+2σ2=0.25, τ2/σ2=4



Sample Size Planning
• GOAL: Identify genes differentially expressed in a comparison of two 

pre-defined classes of specimens on dual-label arrays using 
reference design or single label arrays

• Compare classes separately by gene with adjustment for multiple 
comparisons

• Approximate expression levels (log ratio or log signal) as normally 
distributed

• Determine number of samples n/2 per class to give power 1-β for 
detecting mean difference δ at level α



Comparing 2 equal size classes

n = 4σ2(zα/2 + zβ)2/δ2

where δ = mean log-ratio difference between      
classes

σ = standard deviation
zα/2, zβ = standard normal percentiles

• Choose  α small, e.g.  α = .001
• Use percentiles of t distribution for improved 

accuracy



Total Number of Samples for 
Two Class Comparison

α β δ σ Samples
Per Class

0.001 0.05 1
(2-fold)

0.5 
human tissue

13

0.25
transgenic

mice

6
(t approximation)



Sample Size Methods Also 
Developed for 

• Balanced Block Designs
• For finding genes significantly associated 

with a survival outcome



Class Comparison Paradigm

• Evaluate extent to which each gene is 
differentially expressed among classes
– Univariate F-statistics, regularized F-statistics

• Select the most differentially expressed 
genes in a manner that limits the false 
discovery number or false discovery rate 
to a specified level



t-test Comparisons of Gene 
Expression

• xj~N(µj1 , σj
2)  for class 1

• xj~N(µj2 , σj
2)  for class 2

• H0j: µj1 = µj2



Estimation of Within-Class 
Variance

• Estimate separately for each gene
– Limited degrees of freedom
– Gene list dominated by genes with small fold changes and 

small variances

• Assume all genes have same variance
– Poor assumption

• Random (hierarchical) variance model

– Wright G.W. and Simon R. Bioinformatics19:2448-2455,2003

– Inverse gamma distribution of residual variances
– Results in exact F (or t) distribution of test statistics with increased 

degrees of freedom for error variance
– For any normal linear model

2
jσ



Simple Procedures for Controlling 
Multiple Comparisons

• Bonferroni method for controlling FEW
– Probability of any false discoveries ≤0.05

• If each gene is tested for significance at level α
and there are G genes, then the expected 
number of false discoveries is Gα .
– To control E(FD) ≤ u
– Conduct each of G tests at level α = u/G

• Benjamini and Hochberg Method of Controlling 
the Expected False Discovery Rate



Problems With Simple Procedures

• Bonferroni control of FWE is very conservative
• p values based on normal theory are not 

accurate at extremes quantiles
• Difficult to achieve extreme quantiles for 

permutation p values of individual genes
• Controlling expected number or proportion of 

false discoveries may not provide adequate 
control because distributions of FD and FDP 
may have large variances

• Methods do not take advantage of correlation 
among genes 



Multivariate Permutation Procedures
(Simon et al. 2003, Korn et al. 2004)

Allows statements like:
FD Procedure: We are 90% confident that the 

(actual) number of false discoveries is no 
greater than 5.

FDP Procedure:  We are 90% confident that 
the (actual) proportion of false discoveries 
does not exceed .10.



Control 
Pr{Number of FD > k} £ a

• Determine y  = a quantile of the 
distribution of the (k+1) st smallest p value 
under the multivariate permutation 
distribution.

• Include the genes corresponding to the k 
smallest p values in the gene list

• Include gene corresponding to p(i) if p(i) < y



Multivariate Permutation Procedures

• Permutation-based
– Independent of distribution
– even if they use t statistics

• Preserve/exploit correlation among tests 
by permuting each profile as a unit



Multivariate Permutation 
Procedures

• More effective than univariate permutation tests 
especially with limited number of samples
– Based on the α percentile of the distribution of the 

(k+1)st smallest p value under multivariate 
permutation distribution; not on the α/G percentile of 
the distribution of the univariate p value for a specific 
gene 

• Stronger control than simple methods which 
control only expected number and proportion of 
false discoveries



Control 
Pr{FDP > g} £ a

• If you reject the null hypotheses for genes 
corresponding to p(1), …, p(i) then the probability 
that the FDR is greater than γ equals the 
probability that there are more than    Îg i˚ false 
discoveries in the list.

• This probability is ≤α if you require p(i) < y(Îg i˚) 
where

• y(u) = a quantile of the distribution of the (u+1)st 
smallest p value under the multivariate 
permutation distribution.



Control 
Pr{FDP > g} £ a

• Determine y(u) = a quantile of the distribution of 
the (u+1)st smallest p value under the 
multivariate permutation distribution.
– For u = 1,2,3, …

• Include in the list of differentially expressed 
genes the gene corresponding to the i’th
smallest p value as long as p(i) < y(Îg i˚)
– Sequentially for i = 1,2, …
– Îg i˚ = largest integer less than or equal to g i



Class Prediction

• Most statistical methods were developed for inference, 
not prediction.

• Most statistical methods for were not developed for p>>n 
settings



Components of Class Prediction

• Feature (gene) selection
– Which genes will be included in the model

• Select model type 
– E.g. DLDA, Nearest-Neighbor, …

• Fitting parameters (regression coefficients) 
for model 



Feature Selection

• Genes that are univariately differentially 
expressed among the classes at a significance 
level α (e.g. 0.01) 
– The α level is selected to control the number of genes 

in the model, not to control the false discovery rate
• Methods for class prediction are different than those for class 

comparison
– The accuracy of the significance test used for feature 

selection is not of major importance as identifying 
differentially expressed genes is not the ultimate 
objective



Feature Selection

• Small subset of genes which together give 
most accurate predictions 
– Combinatorial optimization algorithms

• Genetic algorithms

• Little evidence that complex feature 
selection is useful in microarray problems
– Failure to compare to simpler methods
– Some published complex methods for 

selecting combinations of features do not 
appear to have been properly evaluated



Linear Classifiers for Two 
Classes
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Linear Classifiers for Two Classes

• Fisher linear discriminant analysis 

• Diagonal linear discriminant analysis (DLDA) 
assumes features are uncorrelated
– Naïve Bayes classifier

• Compound covariate predictor (Radmacher) and  
Golub’s method are similar to DLDA in that they can 
be viewed as weighted voting of univariate classifiers 

1'w d S −=



Linear Classifiers for Two Classes

• Compound covariate predictor

Instead of for DLDA

(1) (2)

ˆ
i i

i
i

x xw
σ
−

∝

(1) (2)

2ˆ
i i

i
i

x xw
σ
−

∝



Linear Classifiers for Two Classes

• Support vector machines with inner 
product kernel are linear classifiers with 
weights determined to minimize errors
– Can be written as finding hyperplane with 

separates the classes with a specified margin 
and minimizes length of weight vector

• Perceptrons are linear classifiers



Support Vector Machine
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When p>>n

• For the linear model, an infinite number of 
weight vectors w can always be found that 
give zero classification errors for the 
training data.
– p>>n problems are almost always linearly 

separable
• Why consider more complex models?

– Fisher LDA is too complex



Myth

• That complex classification algorithms 
such as neural networks perform better 
than simpler methods for class prediction.



• Artificial intelligence sells to journal 
reviewers and peers who cannot 
distinguish hype from substance when it 
comes to microarray data analysis. 

• Most comparative studies indicate that 
simpler methods work as well or better for 
microarray problems 



Other Simple Methods

• Nearest neighbor classification
• Nearest centroid classification
• Shrunken centroid classification



• Fitting complex functions to training data 
results in unstable classifiers unless there 
is a huge training dataset

• Lack of stability is synonomous with over-
fitting

• For unstable classifiers, the test sample 
error rate is generally much less than the 
generalization error rate 



Model Stability Can Be Improved 
By

• Restriction to models with fewer parameters
– Complexity depends on number of parameters per candidate

feature, not per selected feature
• Reducing number of candidate features

– Principal components of features
– Centroids or pc’s of clusters of features

• Not minimizing training error
– Regularization; including penalty for complexity

• Aggregating models
– Bagging

• Use fitting criterion incorporating robustness to changes 
in data



Evaluating a Classifier
• Fit of a model to the same data used to develop it is no 

evidence of prediction accuracy for independent data.
• Demonstrating statistical significance of prognostic 

factors is not the same as demonstrating predictive 
accuracy.

• Demonstrating goodness of fit of a model to the data 
used to develop it is not a  demonstration of predictive 
accuracy.

• Demonstrating stability of identification of gene 
predictors is not necessary for demonstrating 
predictive accuracy.



Split-Sample Evaluation

• Training-set
– Used to select features, select model type, determine 

parameters and cut-off thresholds
• Test-set

– Withheld until a single model is fully specified using 
the training-set.

– Fully specified model is applied to the expression 
profiles in the test-set to predict class labels. 

– Number of errors is counted
– Ideally test set data is from different centers than the 

training data and assayed at a different time



Leave-one-out Cross Validation

• Omit sample 1
– Develop multivariate classifier from scratch on 

training set with sample 1 omitted
– Predict class for sample 1 and record whether 

prediction is correct



Leave-one-out Cross Validation

• Repeat analysis for training sets with each 
single sample omitted one at a time

• e = number of misclassifications 
determined by cross-validation

• Subdivide e for estimation of sensitivity 
and specificity



Myth

• Cross-validation of a model can occur 
after selecting the genes to be used in the 
model



• Cross validation is only valid if the test set is not used in 
any way in the development of the model. Using the 
complete set of samples to select genes violates this 
assumption and invalidates cross-validation.

• With proper cross-validation, the model must be 
developed from scratch for each leave-one-out training 
set. This means that feature selection must be repeated 
for each leave-one-out training set. 

• The cross-validated estimate of misclassification error is 
an estimate of the prediction error for model fit using 
specified algorithm to full dataset

• If you use cross-validation estimates of prediction error 
for a set of algorithms indexed by a tuning parameter 
and select the algorithm with the smallest cv error 
estimate, you do not have a valid estimate of the 
prediction error for the selected model



Prediction on Simulated Null Data

Generation of Gene Expression Profiles
• 14 specimens (Pi is the expression profile for specimen i)
• Log-ratio measurements on 6000 genes
• Pi ~ MVN(0, I6000)
• Can we distinguish between the first 7 specimens (Class 1) and the last 7 

(Class 2)?

Prediction Method
• Compound covariate prediction (discussed later)
• Compound covariate built from the log-ratios of the 10 most differentially 

expressed genes.



Number of misclassifications

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
roportion of sim

ulated data sets

0.00

0.05

0.10
0.90

0.95

1.00

Cross-validation: none (resubstitution method)
Cross-validation: after gene selection
Cross-validation: prior to gene selection



Permutation Distribution of Cross-
validated Misclassification Rate of a 

Multivariate Classifier
• Randomly permute class labels and repeat the 

entire cross-validation
• Re-do for all (or 1000) random permutations of 

class labels
• Permutation p value is fraction of random 

permutations that gave as few misclassifications 
as e in the real data



Invalid Criticisms of Cross-
Validation

• “You can always find a set of features that 
will provide perfect prediction for the 
training and test sets.”
– For complex models, there may be many sets 

of features that provide zero training errors. 
– A modeling strategy that either selects among 

those sets or aggregates among those 
models, will have a generalization error which 
will be validly estimated by cross-validation.



Sources of Bias in Estimation of 
Error Rates

• Confounding by sample handling or assay 
effects
– Cases collected and assayed at different times than 

controls
• Failure to incorporate important sources of 

future variability
– Assay drift

• Change in distribution of unmodeled variables
– In split sample validation, split samples by institution



Gene-Expression Profiles in 
Hereditary Breast Cancer 

cDNA Microarrays
Parallel Gene Expression Analysis • Breast tumors studied:

7 BRCA1+ tumors
8 BRCA2+ tumors
7 sporadic tumors

• Log-ratios measurements of 
3226 genes for each tumor 
after initial data filtering

RESEARCH QUESTION
Can we distinguish BRCA1+ from BRCA1– cancers and BRCA2+ from 
BRCA2– cancers based solely on their gene expression profiles?



BRCA1

 
αg 

 
# of 

significant 
genes 

 
# of misclassified 

samples (m) 
 

% of random 
permutations with 

m or fewer 
misclassifications 

10-2 182 3  0.4 
10-3 53 2  1.0 
10-4 9 1  0.2 

 



BRCA2

αg # of significant
genes

m = # of misclassified elements
(misclassified samples)

% of random
permutations with m

or fewer
misclassifications

10-2 212 4 (s11900, s14486, s14572, s14324) 0.8
10-3 49 3 (s11900, s14486, s14324) 2.2
10-4 11 4 (s11900, s14486, s14616, s14324) 6.6



Classification of BRCA2 Germline
Mutations

Classification Method LOOCV Prediction 
Error 

Compound Covariate Predictor 14%

Fisher LDA 36%

Diagonal LDA 14%

1-Nearest Neighbor 9%

3-Nearest Neighbor 23%

Support Vector Machine
(linear kernel)

18%

Classification Tree 45%



Selected Features of BRB-ArrayTools

• Multivariate permutation tests for class comparison to control false 
discovery proportion with any specified confidence level

• Find Gene Ontology groups and signaling pathways that are 
differentially expressed

• Survival analysis
• Analysis of variance
• Class prediction models (6) with prediction error estimated by LOOCV, 

k-fold CV or .632 bootstrap, and permutation analysis of cross-
validated error rate

– DLDA, SVM, CCP, Nearest Neighbor, Nearest Centroid, Shrunken 
Centroids, Random Forests

• Clustering tools for class discovery with reproducibility statistics on 
clusters

• Visualization tools including rotating 3D principal components plot 
exportable to Powerpoint with rotation controls

• Extensible via R plug-in feature
• Links genes to annotations in genomic databases
• Tutorials and datasets
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