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Powerpoint presentation

— Including slides not presented
Bibliography

Reprints & Technical Reports

— Support for my dogmatic assertions

BRB-ArrayTools software
— Performs all analyses described



 Design and Analysis of DNA Microarray

Investigations

— R Simon, EL Korn, MD Radmacher, L McShane, G
Wright, Y Zhao. Springer (2003)



Microarray Expression Profiling

 \WWould like to know the concentration of
each protein in a cell
— Proteins do the work of cells

— Proteins have many shapes and parallel
assays for all proteins have not been
developed



Microarray Expression Profiling

One gene transcription produces one mRNA
molecule produces one protein molecule

# genes = # mMRNA types

MRNA molecules are similar in structure to DNA
— Proteins are not

MRNA molecule can be reverse trascribed into
DNA and will bind only to the gene from which it
was originally transcribed (to which it is
homologous)



Microarray Expression Profiling

e Estimates abundance of mMRNA molecules
of each type present in cells

— Assay not sensitive enough to analyze single
cells so estimate Is for average of sample of
cells

« Microarray contains a spot of DNA
corresponding to each gene

— Spots are in known fixed positions

— Spots contain fewer nucleotides that the full
gene
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Affymetrix GeneChips

e Contain multiple probes (spots) per gene

* Probes corresponding to the same gene
must be processed to give a probe-set
summary intensity for each gene

e Single label system

— Higher reproducibility makes use of dual-
labels unnecessary



Important Topics | Will Not Discuss

Image Analysis
Background adjustment

Probe-set intensity summaries for
Affymetrix GeneChips
Normalization

— Red vs green bias on dual label arrays
— Across arrays for single channel arrays



Myths & Truths
About Microarray Expression
Profiling
http://linus.nci.nih.gov/brb



Myth

« That microarray investigations should be
unstructured data-mining adventures
without clear objectives



e Good microarray studies have clear

objectives, but not generally gene specific
mechanistic hypotheses

e Design and analysis methods should be
tailored to study objectives



Common Types of Objectives

e Class Comparison

— ldentify genes differentially expressed among
predefined classes such as diagnostic or
prognostic groups.

e Class Prediction

— Develop multi-gene predictor of class for a sample

using its gene expression profile
e Class Discovery

— Discover clusters among specimens or among
genes



Do Expression Profiles Differ for

Two Defined Classes of Arrays?

* Not a clustering problem

— Global similarity measures generally used for
clustering arrays may not distinguish classes

— Supervised methods
* Requires multiple biological samples from
each class

— Contrary to published statistical methods and
widely used software



Levels of Replication

 Technical replicates

— RNA sample divided into multiple aliquots and re-
arrayed

 Biological replicates
— Multiple subjects
— Replication of the tissue culture experiment



* Biological conclusions generally require
Independent biological replicates. The
power of statistical methods for microarray
data depends on the number of biological

replicates.

e Technical replicates are useful insurance

to ensure that at least one good quality
array of each specimen will be obtained.



Allocation of Specimens to
Dual Label Arrays for Simple
Class Comparison Problems

« Common Reference Design
« Balanced Block Design



Common Reference Design

RED | Ay A; B, B,

GREEN R R R R

Array 1 Array 2 Array 3  Array 4

A, = ith specimen from class A

B, = i1th specimen from class B
R = aliquot from reference pool



The reference generally serves to contro
variation in the size of corresponding spots
on different arrays and variation in sample
distribution over the slide.

The reference provides a relative measure of
expression for a given gene in a given
sample that is less variable than an absolute
measure.

The reference Is not the object of
comparison.

The relative measure of expression will be
compared among biologically independent
samples from different classes.
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Balanced Block Design

RED | A, B, A, B,

GREEN | B, A, B, A,

Array 1 Array 2 Array 3  Array 4

A, = ith specimen from class A
B, = ith specimen from class B



 Detailed comparisons of the effectiveness of
designs:
— Dobbin K, Simon R. Comparison of microarray

designs for class comparison and class discovery.
Bioinformatics 18:1462-9, 2002

— Dobbin K, Shih J, Simon R. Statistical design of
reverse dye microarrays. Bioinformatics 19:803-10,
2003

— Dobbin K, Simon R. Questions and answers on the
design of dual-label microarrays for identifying

differentially expressed genes, JNCI 95:1362-1369,
2003



« Common reference designs are very effective for many
microarray studies. They are robust, permit comparisons
among separate experiments, and permit many types of
comparisons and analyses to be performed.

e For simple two class comparison problems, balanced
block designs require many fewer arrays than common
reference designs.

— Efficiency decreases for more than two classes

— Are more difficult to apply to more complicated class comparison
problems.

— They are not appropriate for class discovery or class prediction.

* Loop designs are less robust, and dominated by either
common reference designs or balanced block designs,
and are not suitable for class prediction or class
discovery.



Myth

e For two color microarrays, each sample of
Interest should be labeled once with Cy3
and once with Cy5 In dye-swap pairs of
arrays.



Dye Bias

* Average differences among dyes in label
concentration, labeling efficiency, photon
emission efficiency and photon detection
are corrected by normalization procedures

» Gene specific dye bias may not be
corrected by normalization



 Dye swap technical replicates of the same two
rna samples are rarely necessary.

e Using a common reference design, dye swap
arrays are not necessary for valid comparisons
of classes since specimens labeled with different
dyes are never compared.

 For two-label

direct comparison designs for

comparing two classes, it is more efficient to

balance the ¢
Independent

ye-class assignments for
niological specimens than to do

dye swap tec

nnical replicates



Can | reduce the number of
arrays by pooling specimens?

* Pooling all specimens is inadvisable because
conclusions are limited to the specific RNA pool,
not to the populations since there is no estimate
of variation among pools

« With multiple biologically independent pools,
some reduction in number of arrays may be
possible but the reduction is generally modest
and may be accompanied with a large increase
In the number of iIndependent biological
specimens needed

— Dobbin & Simon, Biostatistics (In Press).




Number of samples

Number of arrays

Number of samples

pooled per array required required
1 25 25
2 17 34
3 14 42
4 13 52

a=0.001, 3=0.05, 6=1, 12+25%=0.25, 1?/c°=4




Sample Size Planning

GOAL: Identify genes differentially expressed in a comparison of two
pre-defined classes of specimens on dual-label arrays using
reference design or single label arrays

Compare classes separately by gene with adjustment for multiple
comparisons

Approximate expression levels (log ratio or log signal) as normally
distributed

Determine number of samples n/2 per class to give power 1-f3 for
detecting mean difference ¢ at level o



Comparing 2 equal size classes

N = 46%(Z,, + Z5)4/6°

where o = mean log-ratio difference between
classes

c = standard deviation
Z,12» Zy = standard normal percentiles
e Choose o small, e.g. a =.001

e Use percentiles of t distribution for improved
accuracy



Total Number of Samples for
Two Class Comparison

o B o c Samples
Per Class
0.001 0.05 1 0.5 13
(2-fold) human tissue
0.25 6
transgenic (t approximation)

mice




Sample Size Methods Also
Developed for

« Balanced Block Designs

* For finding genes significantly associated
with a survival outcome



Class Comparison Paradigm

 Evaluate extent to which each gene Is
differentially expressed among classes

— Univariate F-statistics, regularized F-statistics

» Select the most differentially expressed
genes in a manner that limits the false
discovery number or false discovery rate
to a specified level



t-test Comparisons of Gene
Expression

* X~N(y;, , 5°) forclass 1
* Xi~N(u;, , ;%) for class 2

* Hyt i = Wy



Estimation of Within-Class
Variance

« Estimate separately for each gene
— Limited degrees of freedom

— Gene list dominated by genes with small fold changes and
small variances

 Assume all genes have same variance
— Poor assumption

 Random (hierarchical) variance model

— Wright G.W. and Simon R. Bioinformatics19:2448-2455,2003
— Inverse gamma distribution of residual variances

— Results in exact F (or t) distribution of test statistics with increased
degrees of freedom for error variance

— For any normal linear model



Simple Procedures for Controlling

Multiple Comparisons

« Bonferroni method for controlling FEW
— Probability of any false discoveries <0.05
 If each gene is tested for significance at level a

and there are G genes, then the expected
number of false discoveries is Ga .

— To control E(FD) <u
— Conduct each of G tests at level a = u/G

 Benjamini and Hochberg Method of Controlling
the Expected False Discovery Rate



Problems With Simple Procedures

Bonferroni control of FWE Is very conservative

p values based on normal theory are not
accurate at extremes quantiles

Difficult to achieve extreme quantiles for
permutation p values of individual genes

Controlling expected number or proportion of
false discoveries may not provide adequate
control because distributions of FD and FDP
may have large variances

Methods do not take advantage of correlation
among genes



Multivariate Permutation Procedures
(Simon et al. 2003, Korn et al. 2004)

Allows statements like:

FD Procedure: We are 90% confident that the
(actual) number of false discoveries is no
greater than 5.

FDP Procedure: We are 90% confident that
the (actual) proportion of false discoveries
does not exceed .10.



Control
Pr{Number of FD > k} < o

 Determine y = a quantile of the
distribution of the (k+1) st smallest p value
under the multivariate permutation
distribution.

 Include the genes corresponding to the k
smallest p values in the gene list

* Include gene corresponding to p, If py <y



Multivariate Permutation Procedures

 Permutation-based
— Independent of distribution
—even Iif they use t statistics

* Preserve/exploit correlation among tests
by permuting each profile as a unit



Multivariate Permutation
Procedures

 More effective than univariate permutation tests
especially with limited number of samples

— Based on the o percentile of the distribution of the
(k+1)st smallest p value under multivariate
permutation distribution; not on the o/G percentile of
the distribution of the univariate p value for a specific

gene
e Stronger control than simple methods which
control only expected number and proportion of
false discoveries



Control
Pr{FDP > v} <«

 |f you reject the null hypotheses for genes
corresponding to py, -.., P then the probability
that the FDR Is greater than y equals the
probability that there are more than Lyilfalse

discoveries in the list.

* This probability is <o If you require p < y(Lyil)
where

* y(u) = o quantile of the distribution of the (u+1)st

smallest p value under the multivariate
permutation distribution.



Control
Pr{FDP > v} <«

 Determine y(u) = o quantile of the distribution of
the (u+1)st smallest p value under the
multivariate permutation distribution.

—Foru=1273, ...

* Include In the list of differentially expressed
genes the gene corresponding to the I'th
smallest p value as long as p;, < y(Lyil)

— Sequentially fori1=1,2, ...
— Lyil = largest integer less than or equal to yi



Class Prediction

Most statistical methods were developed for inference,
not prediction.

Most statistical methods for were not developed for p>>n
settings



Components of Class Prediction

* Feature (gene) selection
— Which genes will be included in the model

e Select model type
— E.g. DLDA, Nearest-Neighbor, ...

e Fitting parameters (regression coefficients)
for model



Feature Selection

e Genes that are univariately differentially
expressed among the classes at a significance
level a (e.g. 0.01)

— The o level is selected to control the number of genes

In the model, not to control the false discovery rate
» Methods for class prediction are different than those for class
comparison

— The accuracy of the significance test used for feature
selection is not of major importance as identifying
differentially expressed genes is not the ultimate
objective



Feature Selection

« Small subset of genes which together give
most accurate predictions
— Combinatorial optimization algorithms
« Genetic algorithms

o Little evidence that complex feature
selection Is useful in microarray problems
— Failure to compare to simpler methods

— Some published complex methods for
selecting combinations of features do not
appear to have been properly evaluated



Linear Classifiers for Two
Classes

()= wx

X = vector of log ratios or log signals
F = features (genes) included in model
w. = weight for i'th feature

decision boundary I(x) > or <d



L inear Classifiers for Two Classes

* Fisher linear discriminant analysis
W _ g I S—l

e Diagonal linear discriminant analysis (DLDA)
assumes features are uncorrelated
— Naive Bayes classifier

« Compound covariate predictor (Radmacher) and
Golub’s method are similar to DLDA in that they can
be viewed as weighted voting of univariate classifiers



L inear Classifiers for Two Classes

« Compound covariate predictor

Yi(l) I Yi(z)

W, oC —~
(oF

Instead of for DLDA

Yi(l) N Yi(z)

W oC ~
O



L inear Classifiers for Two Classes

e Support vector machines with inner
product kernel are linear classifiers with
weights determined to minimize errors

— Can be written as finding hyperplane with
separates the classes with a specified margin
and minimizes length of weight vector

* Perceptrons are linear classifiers



Support Vector Machine

minimize » w;
i

subject toy. (v_v'g”) + b) >1

where y; =+1 for class 1 or 2.



When p>>n

* For the linear model, an infinite number of
weight vectors w can always be found that
give zero classification errors for the
training data.

— p>>n problems are almost always linearly
separable

* \Why consider more complex models?
— Fisher LDA Is too complex



Myth

 That complex classification algorithms
such as neural networks perform better
than simpler methods for class prediction.



« Artificial intelligence sells to journal
reviewers and peers who cannot
distinguish hype from substance when it
comes to microarray data analysis.

* Most comparative studies indicate that
simpler methods work as well or better for
microarray problems



Other Simple Methods

* Nearest neighbor classification
e Nearest centroid classification
e Shrunken centroid classification



 Fitting complex functions to training data
results in unstable classifiers unless there
IS a huge training dataset

e Lack of stability is synonomous with over-
fitting
* For unstable classifiers, the test sample

error rate I1s generally much less than the
generalization error rate



Model Stability Can Be Improved
By

Restriction to models with fewer parameters

— Complexity depends on number of parameters per candidate
feature, not per selected feature

Reducing number of candidate features
— Principal components of features
— Centroids or pc’s of clusters of features
Not minimizing training error
— Regularization; including penalty for complexity
Aggregating models
— Bagging
USC? fitting criterion incorporating robustness to changes
IN data



Evaluating a Classifier

Fit of a model to the same data used to develop it is no
evidence of prediction accuracy for independent data.

Demonstrating statistical significance of prognostic
factors is not the same as demonstrating predictive
accuracy.

Demonstrating goodness of fit of a model to the data
used to develop it is not a demonstration of predictive

accuracy.

Demonstrating stability of identification of gene
predictors is not necessary for demonstrating
oredictive accuracy.




Split-Sample Evaluation

* Training-set
— Used to select features, select model type, determine
parameters and cut-off thresholds
e Test-set

— Withheld until a single model is fully specified using
the training-set.

— Fully specified model is applied to the expression
profiles in the test-set to predict class labels.

— Number of errors Is counted

— ldeally test set data is from different centers than the
training data and assayed at a different time



Leave-one-out Cross Validation

e Omit sample 1

— Develop multivariate classifier from scratch on
training set with sample 1 omitted

— Predict class for sample 1 and record whether
prediction Is correct



Leave-one-out Cross Validation

* Repeat analysis for training sets with each
single sample omitted one at a time

e = number of misclassifications
determined by cross-validation

o Subdivide e for estimation of sensitivity
and specificity



Myth

 Cross-validation of a model can occur
after selecting the genes to be used in the
model



Cross validation is only valid if the test set is not used In
any way in the development of the model. Using the
complete set of samples to select genes violates this
assumption and invalidates cross-validation.

With proper cross-validation, the model must be
developed from scratch for each leave-one-out training
set. This means that feature selection must be repeated
for each leave-one-out training set.

The cross-validated estimate of misclassification error is
an estimate of the prediction error for model fit using
specified algorithm to full dataset

If you use cross-validation estimates of prediction error
for a set of algorithms indexed by a tuning parameter
and select the algorithm with the smallest cv error
estimate, you do not have a valid estimate of the
prediction error for the selected model



Prediction on Simulated Null Data

Generation of Gene Expression Profiles

* 14 specimens (P; is the expression profile for specimen i)
* Log-ratio measurements on 6000 genes

* P; ~ MVN(O, lggg0)

» Can we distinguish between the first 7 specimens (Class 1) and the last 7
(Class 2)?

Prediction Method
« Compound covariate prediction (discussed later)

« Compound covariate built from the log-ratios of the 10 most differentially
expressed genes.
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Permutation Distribution of Cross-
validated Misclassification Rate of a
Multivariate Classifier

 Randomly permute class labels and repeat the
entire cross-validation

 Re-do for all (or 1000) random permutations of
class labels

 Permutation p value is fraction of random
permutations that gave as few misclassifications
as e In the real data



Invalid Criticisms of Cross-
Validation

* “You can always find a set of features that
will provide perfect prediction for the
training and test sets.”

— For complex models, there may be many sets
of features that provide zero training errors.

— A modeling strategy that either selects among
those sets or aggregates among those
models, will have a generalization error which
will be validly estimated by cross-validation.



Sources of Bias In Estimation of
Error Rates

« Confounding by sample handling or assay
effects

— Cases collected and assayed at different times than
controls

 Failure to incorporate important sources of
future variability

— Assay drift

« Change In distribution of unmodeled variables
— In split sample validation, split samples by institution



Gene-Expression Profiles In
Hereditary Breast Cancer

cDNA Microarrays _
* Breast tumors studied:

7 BRCAL1+ tumors
8 BRCA2+ tumors
7 sporadic tumors

9
€8

L .
@ PREGwRN
¢ 8w L]

 Log-ratios measurements of
3226 genes for each tumor
after initial data filtering

RESEARCH QUESTION
Can we distinguish BRCA1+ from BRCA1- cancers and BRCA2+ from
BRCAZ2- cancers based solely on their gene expression profiles?




BRCA1

% of random

o # of # of misclassified | permutations with
significant,  samples (m) m or fewer
genes misclassifications
10° | 182 3 0.4
10° | 53 2 1.0
107 9 1 0.2




BRCAZ2

# of significant

m = # of misclassified elements

% of random
permutations with m

“ genes (misclassified samples) or fewer
misclassifications

10 212 4 (s11900, s14486, s14572, s14324) 0.8

10 49 3 (511900, 514486, s14324) 2.2

10™ 11 4 (511900, 514486, 514616, 514324) 6.6




Classification of BRCAZ2 Germline

Mutations
Classification Method LOOCYV Prediction
Error
Compound Covariate Predictor 14%
Fisher LDA 36%
Diagonal LDA 14%
1-Nearest Neighbor 9%
3-Nearest Neighbor 23%
Support Vector Machine 18%
(linear kernel)

Classification Tree 45%




Selected Features of BRB-ArrayTools

« Multivariate permutation tests for class comparison to control false
discovery proportion with any specified confidence level

 Find Gene Ontology groups and signaling pathways that are
differentially expressed

o Survival analysis
* Analysis of variance

» Class prediction models (6) with prediction error estimated by LOOCV,
k-fold CV or .632 bootstrap, and permutation analysis of cross-
validated error rate

— DLDA, SVM, CCP, Nearest Neighbor, Nearest Centroid, Shrunken
Centroids, Random Forests

» Clustering tools for class discovery with reproducibility statistics on
clusters

 Visualization tools including rotating 3D principal components plot
exportable to Powerpoint with rotation controls

 Extensible via R plug-in feature
* Links genes to annotations in genomic databases
e Tutorials and datasets
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