Richard Simon, D.Sc. Chief, Biometric Research Branch National Cancer Institute http://linus.nci.nih.gov/brb

http://linus.nci.nih.gov

- Reprints, Presentations, Technical reports
- BRB-ArrayTools
 - Registration & Download
 - 5000+ registered users in 60 countries
 - Message board
 - Archive of human tumor gene expression data with clinical/pathological accompanying data
- Microarray Myths

Simon R, Korn E, McShane L, Radmacher M, Wright G, Zhao Y. *Design and analysis of DNA microarray investigations*, Springer-Verlag, 2003.

Radmacher MD, McShane LM, Simon R. A paradigm for class prediction using gene expression profiles. Journal of Computational Biology 9:505-511, 2002.

Simon R, Radmacher MD, Dobbin K, McShane LM. Pitfalls in the analysis of DNA microarray data. Journal of the National Cancer Institute 95:14-18, 2003.

Dobbin K, Simon R. Comparison of microarray designs for class comparison and class discovery, Bioinformatics 18:1462-69, 2002; 19:803-810, 2003; 21:2430-37, 2005; 21:2803-4, 2005.

Dobbin K and Simon R. Sample size determination in microarray experiments for class comparison and prognostic classification. Biostatistics 6:27-38, 2005.

Dobbin K, Shih J, Simon R. Questions and answers on design of dual-label microarrays for identifying differentially expressed genes. Journal of the National Cancer Institute 95:1362-69, 2003.

Wright G, Simon R. A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics 19:2448-55, 2003.

Korn EL, Troendle JF, McShane LM, Simon R.Controlling the number of false discoveries. Journal of Statistical Planning and Inference 124:379-08, 2004.

Molinaro A, Simon R, Pfeiffer R. Prediction error estimation: A comparison of resampling methods. Bioinformatics 21:3301-7,2005.

Challenges in Effective Use of DNA Microarray Technology

- Design & Analysis are bigger challenges than data management.
 - Much greater opportunity for misleading yourselves and others than traditional single gene/protein studies
- Limited availability of experienced statistical collaborators
- Predominance of hype, mis-information, and dangerous methods promulgated by biomedical scientists as well as professional statistical/computational scientists
- Predominance of flashy software that encourages misleading analyses

Objectives of BRB-ArrayTools

- Provide biomedical scientists access to statistical expertise for the analysis of expression data
- Provide biomedical scientists and statistical/computational fellows
 - training in analysis of high dimensional data
 - access to critical assessment of methods
 published in a rapidly expanding literature

- Integrated package
- Excel-based user interface
 - Doesn't use Excel analyses
 - state-of-the art analysis methods programmed in R, Java & Fortran
 - Data not stored as worksheets
 - >1000 arrays and 65000 genes per project
- Based on continuing evaluation of validity and usefulness of published methods
 - Methods carefully selected by R Simon
 - Not a repository like Bioconductor
- Publicly available for non-commercial uses from BRB website:

- Not tied to any database
 - Importer for common databases and platforms
 - MadB, GenePix, MAS5/GCOS
 - Imports .cel files
 - Import wizzard for any files output by image analysis program
 - Import (collate)
 - Expression data (eg separate file for each array)
 - Spot (probeset) identifiers
 - Experiment descriptor worksheet
 - Rows correspond to arrays
 - Columns are user defined phenotypes to drive the analyses
 - » Can be updated during analysis
 - Imported data saved as project folder containing project workbook and binary files
 - Project workbook can be re-opened in Excel at any time
 - Output saved in html files in output folder

- Highly computationally efficient
 - Non-intensive analyses in R
 - Intensive analyses in FORTRAN
 - eg BRB-AT version of SAM is 9x + more efficient than Bioconductor or web based versions

- And more accurate

 Extensive gene and pathway annotation features

- Plug-in facility for user written R functions
- Message board and listserve
- Extensive built-in help facilities, tutorials, datasets, usersguide, data import and analysis wizzards, sample statistical analysis sections, ...

BRB-ArrayTools Archive of Human Tumor Expression Data

- <u>http://linus.nci.nih.gov/brb/DataArchive.html</u>
- Archive of BRB-ArrayTools zipped project folders of expression profiles of human tumors and associated clinical/pathological descriptors
 - Published data
- Easy way to archive your data and to analyze someone else's data
 - Download, unzip, open in Excel

- Effective microarray research requires clear objectives, careful planning and appropriate statistical analysis
- Clear objectives, but not gene specific mechanistic hypotheses

Design and Analysis Methods Should Be Tailored to Study Objectives

- Class Comparison
 - Find genes that are differentially expressed among conditions or tissues
- Class Prediction
 - Prediction of response to treatment using gene expression profile
- Class Discovery
 - Discover clusters of specimens or genes whose expression profiles are similar

BRB-ArrayTools Unsupervised Analysis Tools

- Scatterplot
 - One array vs another array
 - Phenotype averages
 - eg arrays for males vs females
- Cluster Analysis
 - Includes Cluster & Treeview internally
 - Native hierarchical cluster analyses
 - Cluster stability and reproducibility for clustering arrays
 - Multicolored dendrograms

BRB-ArrayTools Unsupervised Analysis Tools

- Rotating 3-D principal component plots
 - Controls for direction of spin
 - Brushing of points for identification
 - Color coding of points
 - Saves plot as Powerpoint presentation with active controls

- 10,000 non-differentially expressed genes x 5% false positivity rate equals 500 false positives
- 10,000 x 0.1% = 10 false positives

BRB-ArrayTools Class Comparison

- Distinguish biological from technical variability
- Univariate significance (p<0.001)
 - Based on normality
 - Hierarchical (random) variance model
 - Based on permutation
- Multivariate permutation test controlling false discovery rate with specified confidence
- Multivariate permutation test controlling number of false discoveries with specified confidence
- SAM

BRB-ArrayTools Class Comparison

- Easy to adjust for pairing or blocking variable
 - eg genes whose expression is related to patient outcome after adjustment for tumor grade
- Identifies GO categories with exceptional number of genes in resulting gene list
- Provides chromosome analysis of resulting gene list
- Provides hyperlinks to multiple genomic databases for resulting gene list
- Gene list saved for subsequent analysis and annotation

Gene Set Class Comparison

- Uses built in pre-defined gene sets
 - Gene Ontology sets
 - Biocarta pathways
 - Kegg Pathways
 - BROAD/Whitehead Signatures
 - Adding TF target gene sets
 - User defined gene sets
- Computes summary of differential expression for each gene set
- Evaluates statistical significance of summary
 - Permutation analysis
 - Resampling random gene sets of same number of genes

Gene Set Class Comparison

- More powerful than post-hoc annotation
- Valid measures of statistical significance
 available

BRB-ArrayTools Analysis of Variance Tools

- Fixed effects ANOVA to find genes associated with quantitative variable
- Mixed model for repeated measures on the same experimental subjects
- Model for analysis of single channel intensities in dual label arrays to analyze non-reference designs
- Regression model for time-series analysis of laboratory data

Class Prediction Examples

- Predict from expression profiles which patients are likely to experience severe toxicity from a new drug versus who will tolerate it well
- Predict which breast cancer patients will relapse within two years of diagnosis versus who will remain disease free

Class Prediction

 Cluster analysis is frequently used in publications for class prediction in a misleading way

Fallacy of Clustering Classes Based on Selected Genes

- Even for arrays randomly distributed between classes, genes will be found that are "significantly" differentially expressed
- With 10,000 genes measured, about 500 false positives will be differentially expressed with p < 0.05
- Arrays in the two classes will necessarily cluster separately when using a distance measure based on genes selected to distinguish the classes

Class Prediction Paradigm

- Select genes (G) to be included in predictive model using training data in which class membership of the samples is known
- Fit predictive model containing features (G) using training data
 - e.g. linear discriminant analysis
- Evaluate predictive accuracy of model on completely independent data not used in any way for development of the model

Leave-One-Out Cross-validation Paradigm for Evaluating Classification Error Rate

• Leave-out one specimen

- Perform gene selection and model fitting on the training set consisting of the remaining specimens
- Evaluate whether the model predicts correctly for the left-out specimen
- Repeat the above procedure leaving-out all specimens, one at a time, re-doing feature selection and model fitting for each training set separately
- Total the number of classification errors

Misconceptions About Cross Validation

- Too numerous to mention here
- Often used improperly in biomedical and bioinformatic literature

- Classifiers
 - Compound covariate predictor
 - Diagonal LDA
 - K-Nearest Neighbor Classification
 - Nearest Centroid
 - Support Vector Machines
 - Random Forest Classifier
 - Shrunken Centroids (PAM)
 - Top Scoring Pairs
 - Binary Tree Classifier

- Validation
 - Split Sample
 - Leave one out cross validation
 - K-fold cross validation
 - Repeated K-fold cross validation
 - -.632+ Bootstrap resampling

- Gene Selection
 - Re-done for each re-sampled training set
 - Univariate significance level less than specified threshold
 - Option for threshold for gene selection optimized by inner loop of cross-validation
 - Pairs of genes that work well together
 - Shrunken centroids

- Permutation test of significance of crossvalidated misclassification rate
- Predictions for new patients

BRB-ArrayTools Survival Risk Group Prediction

- No need to transform data to good vs bad outcome. Censored survival is directly analyzed
- Gene selection based on significance in univariate Cox Proportional Hazards regression
- Uses k principal components of selected genes
- Gene selection re-done for each resampled training set
- Develop k-variable Cox PH model for each leave-one-out training set

BRB-ArrayTools Survival Risk Group Prediction

- Classify left out sample as above or below median risk based on model not involving that sample
- Repeat, leaving out 1 sample at a time to obtain cross-validated risk group predictions for all cases
- Compute Kaplan-Meier survival curves of the two predicted risk groups
- Permutation analysis to evaluate statistical significance of separation of K-M curves

BRB-ArrayTools Survival Risk Group Prediction

- Compare Kaplan-Meier curves for gene expression based classifier to that for standard clinical classifier
- Develop classifier using standard clinical staging plus genes that add to standard staging

Acknowledgements

- Amy Lam and the BRB-ArrayTools Development Team
- Dr. Yingdong Zhao