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ABSTRACT
Motivation: In cDNA microarray experiments all samples
are labelled with either Cy3 dye or Cy5 dye. Certain genes
exhibit dye bias—a tendency to bind more efficiently to
one of the dyes. The common reference design avoids
the problem of dye bias by running all arrays ‘forward’, so
that the samples being compared are always labelled with
the same dye. But comparison of samples labelled with
different dyes is sometimes of interest. In these situations,
it is necessary to run some arrays ‘reverse’—with the dye
labelling reversed—in order to correct for the dye bias.
The design of these experiments will impact one’s ability to
identify genes that are differentially expressed in different
tissues or conditions. We address the design issue of
how many specimens are needed, how many forward and
reverse labelled arrays to perform, and how to optimally
assign Cy3 and Cy5 labels to the specimens.
Results: We consider three types of experiments for which
some reverse labelling is needed: paired samples, sam-
ples from two predefined groups, and reference design
data when comparison with the reference is of interest. We
present simple probability models for the data, derive opti-
mal estimators for relative gene expression, and compare
the efficiency of the estimators for a range of designs. In
each case, we present the optimal design and sample size
formulas. We show that reverse labelling of individual ar-
rays is generally not required.
Contact: dobbinke@mail.nih.gov.
Supplementary information: Supplementary ma-
terial referenced in the text is available at http:
//linus.nci.nih.gov/∼brb/TechReport.htm

INTRODUCTION
A growing number of cDNA microarray experiments
seek to compare samples labelled with red (Cy5) dye
to samples labelled with green (Cy3) dye. For example,
tumor samples may be co-hybridized with paired normal
tissue samples on each array (Boer et al., 2001; Lossos
et al., 2002); or, comparison with the common internal
reference sample may be of interest (Zhou et al., 2002;
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Lin et al., 2002; Chu et al., 1998; Jazaeri et al., 2002); or,
there may be no reference and several varieties (Jin et al.,
2001). Comparisons between differently labelled samples
also typically occur in comparative genomic hybridization
(Forozan et al., 1997). For each gene, such comparisons
use the normalized spot intensity as a proxy for the
amount of cDNA that hybridized to a particular spot. Some
genes have been observed to incorporate one dye more
efficiently than the other (Ideker et al., 2000; Wang et al.,
2001; Tseng et al., 2001; Kerr et al., 2001; Goryachev
et al., 2001), and therefore may generally tend to appear
brighter in one color. As a result, an observed difference
between red and green channel intensities for a particular
gene may be due to differences in expression level
between the samples or differences in dye incorporation
efficiency between the dyes. For example, a low intensity
spot channel reading may indicate there is a low level
of the corresponding cDNA present, or that only a small
proportion of the cDNA present successfully incorporated
the dye and bound to the array. Gene expression may
be confounded with dye incorporation efficiency in these
experiments. Normalization of the data typically corrects
for dye incorporation differences which affect all the genes
similarly, or genes with the same intensity similarly, but
not for individual genes which act differently than the
rest. These gene-specific dye effects have been observed
to exist for some genes (Tseng et al., 2001; Zhou et al.,
2002).

Suppose one wishes to compare two groups of samples
when some are labelled red and others green. One’s ability
to distinguish between genes that are truly expressed dif-
ferently in the groups and genes that incorporate the dyes
differently will depend on the experimental design. For ex-
ample, if one wants to compare normal samples to tumor
samples, labelling all the normal samples green (Cy3) and
all the tumor samples red (Cy5) will result in confounding
between those genes that are expressed differently in can-
cer tissue, and those genes that incorporate the dyes differ-
ently. On the other hand, labelling half the tumor samples
green and the other half red, and similarly with the nor-
mal samples, may allow one to distinguish between these
two classes of genes. The goal of this paper is to exam-
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ine which allocations of samples to the arrays and labels
to the samples will produce the most accurate, unbiased
estimates of the true differences in gene expression be-
tween two groups (varieties) of samples. Much of the pa-
per focuses on this class comparison problem, in which
the classes are defined independently of the gene expres-
sion profiles. Consideration of other goals, such as class
discovery, appears in the discussion section.

Motivation
A majority of cDNA microarray studies use a reference
design, in which one aliquot from a reference sample
appears on each array with a sample of interest. Usually
the samples of interest are all tagged with the same color
dye. This means that if a gene has a tendency to bind better
to one dye than the other, this effect will not confound
comparisons among groups of non-reference samples.

Why design a study in which one will need to adjust
for dye effects? We will discuss three situations in which
such a design may be desirable: (1) when specimens
occur naturally in pairs; (2) when identification of genes
expressed differently in two varieties is the only goal; (3)
when identification of genes expressed differently in the
reference sample and the non-reference samples is desired.
In situations (1) and (2), a design that uses a reference,
and tags all non-reference samples with the same dye, will
be less efficient than a design that avoids the use of a
reference. In situation (3), one is clearly forced to compare
samples tagged with different dyes.

Some examples of paired samples are: (1) a collection
of patients from whom a sample of normal tissue and
a sample of tumor tissue was drawn, with the goal
of identifying genes expressed differently in tumor and
normal tissue (on average, across individuals); (2) a
collection of paired tumor samples, in which one member
of each pair was taken before treatment and the other
was taken after treatment, with the goal of determining
the effect of treatment on gene expression in the tumors;
(3) a collection of RNA samples from two conditions
which have been paired based on covariate or clinical
information. For paired samples, the quantity of interest
is the difference in expression between the two members
in each pair. For a fixed number of arrays, a design which
places each member of a pair on a separate array with a
reference will be less efficient than one which runs the pair
together, forward on one array and reversed on the other
(to guard against potential dye bias). Comparing the two
members of a pair will then require comparing samples
tagged with different dyes.

Another situation arises when the goal of an experiment
with unpaired samples is focused on comparing two
varieties to identify differentially expressed genes. For
instance, one may wish to identify genes differentially
expressed in estrogen receptor positive and estrogen

receptor negative breast tumor specimens. In this case, it
has been shown that one can get equivalent results with
fewer arrays by placing one sample from each variety on
each array than by using a reference design (Dobbin and
Simon, 2002; Kerr et al., 2001; Cochran and Cox, 1992).
Such a design is referred to as a balanced complete block
design, and necessitates comparison of samples across
dyes. (These designs are not optimal in other respects,
only for identifying differentially expressed genes.)

Sometimes researchers desire to compare the non-
reference samples to the reference sample. For example, a
mixture of normal RNA is commonly used as a reference
for tumor tissue. Comparing the normal mixture reference
to the non-reference samples may indicate which genes are
differentially expressed in the tumor tissue, and suggest
potential tumor markers. In such cases, comparison with
the reference may be a primary or secondary goal of the
experiment. In either case, one will clearly be forced to
compare samples tagged with different color dyes.

METHODS AND RESULTS
Our approach to design comparisons utilizes analysis of
variance (ANOVA) models (Kerr et al., 2001; Wolfinger
et al., 2001; Lee et al., 2000). For each gene, a separate
ANOVA model is fit to the arrays; most effects in
the model are not of interest, but are included because
this automatically adjusts the estimates of interest to
take into account these other sources of variability. Our
main yardstick for comparing designs will be efficiency.
Efficiency has a quantitative definition for statistical
models, which intuitively corresponds to the notion of
amount of output for a fixed input. The input will be the
number of arrays used in the experiment. The output will
be the accuracy of the estimated differences in average
gene expression between the classes. If design A is twice
as efficient as design B, then it will require twice as many
arrays under design B to obtain the same accuracy as under
design A.

Our model differs from the model given in Kerr et
al. (2001) in the following respects: (1) they assumed a
common variance for all genes, whereas we allow each
gene to have it’s own variance; (2) they did not incorporate
variation among samples of the same variety, whereas we
include such effects; (3) they did not have gene-specific
dye effects in their model. Some of these differences
may be attributable to the fact that the authors restricted
attention to an experiment with just two arrays.

Non-reference designs for paired samples
Paired samples typically consists of ‘before treatment’
and ‘after treatment’ RNA samples for each individual, or
‘tumor’ and ‘normal’ samples from each individual in a
study. The main interest is in understanding the average
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effect the ‘treatment’ or disease has on gene expression.
This can help identify genes which are affected by the
treatment, while at the same time eliminating person-to-
person population variation in expression levels. Since the
most accurate comparisons between samples in a cDNA
microarray experiment are made between the two channels
on a single slide, it is desirable that cancer and normal
tissue from the same individual always appear together
on a single array. To simplify presentation, throughout
this section the two varieties are represented by ‘normal’
and ‘tumor’, although more general paired samples as
described in the motivation section are also implied.

In order to correct for gene-specific dye bias, we will
need to run some arrays forward and others reverse.
Balancing the dyes and the varieties, so that each variety
is tagged with each dye in half the samples, will minimize
the variance of the variety effect contrasts; so we will
want half the ‘normal’ samples tagged red and the other
half green; and similarly for the ‘tumor’ samples. One
can either run the same individuals both forward and
backward, or one set of individuals forward and a different
set backward, or some compromise between these two. It
will generally be suboptimal to have RNA from the same
individual on more than two arrays (e.g. once forward
and once reverse), because for a fixed number of arrays,
the more samples one has from each individual the fewer
the number of individuals and the larger the variance of
estimated population parameters. The loss in efficiency
from replicating individuals on arrays instead of collecting
new samples will be greatest when the population variance
is large relative to the experimental error. But even in poor
quality microarray experiments in which experimental
variance is much larger than population variance, one
will still lose some efficiency by repeating samples (see
supplementary material, Appendix F).

These considerations lead to a range of design options
represented by Table 1. Throughout the text, k will
represent the number of samples that are run both forward
and backward on different arrays, n − k the number of
samples appearing only once on an array, and m = n + k
the total number of arrays used.

ANOVA Formulation To simplify presentation, we as-
sume that the intensity data have been background ad-
justed and normalized (e.g. the two channels on each array
have been median centered, and all the arrays have been
median centered).

Let rgadvp be a background-adjusted, normalized log-
intensity. In the subscripts, g indexes the genes, a indexes
the array, d indexes the two dyes. The v indicates
the varieties. The p indexes the individual participants
involved in the study. We propose the model

rgadvp = Gg + G Aga + G Dgd + GVgv + G Pgp

+GV Pgvp + εgadvp (1)

For an individual spot on a particular array, this model pos-
tulates that the observed background-adjusted, normalized
log-intensity is a result of additive effects of the amount of
RNA in the sample, the size and quality of the spot, the dye
effects, and random error. Included in the random error are
inhomogeneities in the RNA sample and technical issues
in the measurement, extraction, and reverse-transcription
and labelling reactions.† Differential gene expression is
represented in the GV interaction, which is the term of in-
terest. Further discussion of the model appears in section
1 of the supplementary material.

The analysis of variance table for paired samples is
given in Table A of the supplement. We present three
ANOVA tables because there are often very few or no
degrees of freedom for estimating the sample-specific
effects G P and GV P . Further discussion of when these
effects should be excluded from the model appears in the
supplement. In fact, a single design appears most efficient
for all three cases.

Results for paired samples. Assume the total number
of arrays is fixed at m = n + k. In the supplementary
material we show that in each of the three cases given in
supplement Table A, a design that runs each sample once
on an array, and balances the samples with respect to the
dyes, will be most efficient for paired samples. This design
minimizes the variance of the main estimated contrast of
interest, ĜV g1 − ĜV g0. The sample size formula appears
in the sample size section in what follows.

Non-reference designs for unpaired samples
Sometimes the research question has a focused goal of
comparing two varieties with each other, e.g. to identify
differentially expressed genes, but there is no clear way to
pair the samples. A reference design may be used in this
case, although a non-reference design has been shown to
be more efficient (Dobbin and Simon, 2002; Kerr et al.,
2001). Each array should contain one sample from each
variety.

The arrays should be balanced with respect to the dyes,
so that half the arrays are run forward and half reverse,
because this will produce minimum variance estimates
of the variety contrast. In general, we want to minimize
the number of times the same sample occurs on an array
because this results in loss of replicates at the population
level and loss of efficiency in comparing varieties; on the
other hand, repeating samples on multiple arrays may give
more accurate estimates of gene-specific dye bias than
avoiding such replication altogether. These considerations
give rise to a collection of designs given by Table 2a.

† Our model assumes a single RNA extraction for each sample.
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Table 1. Paired Samples Design.

Array 1 Array 2 . . . Array k Array k + 1 . . . Array n
Green Normal 1 Normal 2 . . . Normal k Normal k + 1 . . . Cancer n
Red Cancer 1 Cancer 2 . . . Cancer k Cancer k + 1 . . . Normal n

Array n + 1 Array n + 2 . . . Array n + k
Green Cancer 1 Cancer 2 . . . Cancer k
Red Normal 1 Normal 2 . . . Normal k

↑ ↑ ↑ ↑ ↑
Individual 1 Individual 2 . . . Individual k Individual k + 1 . . . Individual n

‘Normal 1’ indicates a sample of normal tissue from individual 1, and ‘Cancer 1’ a sample of tumor tissue from individual 1. Array 1 represents a forward
experiment for participant 1, and Array n + 1 a backward experiment for the same individual. k represents the number of samples that are run both forward
and reverse. n − k represents the number of samples that are run only once; these are assumed to be balanced, so that n−k

2 are run forward, and n−k
2 are run

backward (n − k is assumed even).

Table 2. Other designs.

Design for comparing two unpaired varietiesa

Array 1 . . . Array k Array k + 1 . . . Array n
Green Cancer 1 . . . Cancer k Cancer k + 1 . . . Normal 2n
Red Normal n + 1 . . . Normal n + k Normal n + k + 1 . . . Cancer n

Array n + 1 . . . Array n + k
Green Normal n + 1 . . . Normal n + k
Red Cancer 1 . . . Cancer k

Reference design when comparison of the non-reference samples among themselves is the main goalb

Array 1 Array 2 . . . Array k Array k + 1 . . . Array n
Green Reference Reference . . . Reference Reference . . . Reference

Red Sample 1 Sample 2 . . . Sample k Sample k + 1 . . . Sample n

Array n + 1 Array n + 2 . . . Array n + k
Green Sample 1 Sample 2 . . . Sample k
Red Reference Reference . . . Reference

Reference design when comparison with the reference is the main objectivec

Array 1 Array 2 . . . Array k Array k + 1 . . . Array n
Green Reference Reference . . . Reference Reference . . . Sample n
Red Sample 1 Sample 2 . . . Sample k Sample k + 1 . . . Reference

Array n + 1 Array n + 2 . . . Array n + k
Green Sample 1 Sample 2 . . . Sample k
Red Reference Reference . . . Reference

aTumor tissue samples from n individuals and normal tissue samples from n different individuals. k sample pairs are run both forward and reverse. The n − k
samples which are run only once are balanced with respect to the dyes, so that half are run forward and half reverse.
bUnreplicated samples are all run forward to optimize class discovery and robustness of comparisons among the non-reference samples (Dobbin and Simon,
2002).
cUnreplicated samples are run half forward and half reverse to preserve balance and produce the most efficient comparisons between the reference sample
and non-reference variety.

ANOVA formulation. Our ANOVA model is as follows:

rgadv f = Gg + G Aga + G Dgd + GVgv + G Fg f + εgadv f .

This is the same as the model of the last section except that
we have replaced the G P gene by participant interaction
with a G F gene by sample interaction. Note that there
is a conceptual shift here, because instead of having two
varieties for each individual (cancer and normal), now
each individual is associated with just one variety, and

sample effects G F are nested in variety effects GV . This
implies that it makes no sense to have an interaction
(GV F) between sample and variety. For simplicity, we
assume we have just two varieties, GVg1 and GVg2.
There seems to be no a priori reason to think the inter-
sample variability will be equal in the two varieties, so we
will allow each population to have its own inter-sample
variation, and we will denote these parameters τ 2

g1 and τ 2
g2

respectively.
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Results for unpaired samples In Appendix C of the sup-
plement, the minimum variance linear unbiased estimator
is derived, and it is shown that the variance of the esti-
mator is minimized when k = 0. For a fixed number of
arrays, the most efficient design will have a different pair
of samples on each array, and the dyes and varieties will be
balanced—so that each variety has half the samples tagged
red and the other half green. The sample size formula cor-
responding to the most efficient design is given in the sam-
ple size section below.

Reference designs for comparing a common
reference to non-reference samples
We now turn to the situation in which a reference design
is to be used, and one desires to compare the common
reference to the non-reference samples. For example, the
reference sample may be a mixture of normal tissue and
the non-reference samples RNA extracted from different
tumors, so that the comparison would give some indication
of genes expressed differently in the tumors. In this type
of experiment, we are really interested in testing the null
hypothesis H0 : µg = νg versus H1 : µg �= νg where
µg is the population mean for tumor samples and νg is
the population mean for normal samples. But we cannot
test this hypothesis because we only have a single sample
from the normal tissue (even if it is a mixture), so we have
no way to estimate the variation in the normal tissue; we
need such an estimate to test the hypothesis. Since we are
not able to test the hypothesis of interest, we instead test a
similar hypothesis. We test the hypothesis H0 : µg = ȳg
versus H1 : µg �= ȳg where ȳg represents the average
expression level for this gene in the reference mixture.
The results of this hypothesis test may be of biological
interest, but may also be problematic. For instance, unless
the reference pool is a homogeneous mixture from a large
number of RNA samples, the ȳg may not be close to the
population parameter νg , and the hypothesis test not a
good approximation to the one in which we are really
interested. Throughout this section, we assume that the
reference RNA is homogeneous, so that variation among
the measurements on the reference RNA sample is small
compared to variation among the non-reference sample
measurements.

ANOVA formulation. Let rgadv f represent background-
adjusted, normalized log intensity as before. We propose
the model

rgadv f = Gg + G Aga + G Dgd + GVgv + G Fg f + εgadv f .

(2)
One ‘variety’ here consists of the non-reference samples,
and the other ‘variety’ of the reference sample. The error
term ε is assumed normally distributed with mean zero
and variance σ 2

g . The ANOVA table for these data is given
in Table B of the supplementary material. The rightmost

column represents the degrees of freedom when no sample
pairs are repeated on the arrays.

The data are examined by fitting the model of Equation
2 for each gene. The G D interaction term is the potential
source of bias. The GV term is the effect of interest. Vari-
ation among the G F effects for the non-reference samples
represents biological variation among samples of the same
variety in the population from which the non-reference
RNA was drawn, and variation in the RNA extraction and
reverse transcription process. The variance of the variety
contrast estimate will depend on the variation among the
G F terms, so to compare estimates some assumption
about this variation must be made. We will assume that for
a given gene, the G F terms are independent and normally
distributed with mean 0 and variance τ 2

g .

Results when comparison with reference is a secondary
goal. Often, the main objective of a microarray experi-
ment is comparison of the non-reference samples, either
supervised analysis to compare different types of tumors
or unsupervised analysis to identify new taxonomies for
the tumors. When this is the case, the most efficient design
will be different than when comparison with the reference
is the primary goal; in particular, it will generally be sub-
optimal to balance the varieties and the dyes. Reference
designs in which most or all of the samples are tagged with
the same dye have many advantages in these situations,
they tend to be robust, relatively simple to analyze, and
produce better cluster analysis results than other designs
(Dobbin and Simon, 2002). For these reasons, when com-
parison of non-reference varieties is the main objective of
the experiment, one may wish to restrict attention to refer-
ence design experiments with chiefly forward arrays, but
appended by enough reverse arrays to allow good compar-
ison of the reference to the non-reference. An example of
this design is given in Table 2b.

In Appendix D of the supplement, we derive the
minimum variance linear unbiased estimator of the variety
contrast between the reference variety and the non-
reference variety. Hence, we are here considering how to
optimize the experiment with respect to the secondary goal
of efficient comparison with the reference. The variance of
this contrast estimate for k > 0 is

var
(
ĜV g1 − ĜV g0

) = n + 3k

(n + k)2
τ 2

g + n2 + 3k2

k(n + k)2
σ 2

g ,

where variety subscript ‘0’ indicates the reference variety,
and ‘1’ the non-reference variety. For fixed m = n +
k, the k which will minimize the variance is k =
max

(
1,

mσg√
2τ 2

g +4σ 2
g

)
. (We require k > 0 in this case

because if k = 0, then we cannot correct the dye
bias.) If the biological variation is small compared to the
experimental error ( τ

σ
near 0), then all the samples should
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be run both forward and backwards (that is, k = m
2 ) so

that one gets the most accurate dye bias correction. On
the other hand, if biological variation is large compared to
experimental error ( τ

σ
large), then a single sample should

be run both forward and reverse (that is, k → 1) so
that one maximizes the replication at the population levels
to offset the large biological variation. In one dataset on
human cell lines we examined (unpublished) the ratio
from a high-quality experiment had median 2.7. Plugging
this into the equation indicates that the most efficient
design has approximately one-fourth of the arrays reversed
and three-fourths forward.

Of course, optimizing with respect to the secondary
goal of comparison with the reference may not make
much sense if too great a cost to the primary goal is
involved. And there is an inverse relation between number
of reverse arrays and effective sample size for the primary
goal. A more practical guideline is to run some minimal
number of reverse experiments that will provide enough
degrees of freedom for error to permit good inference
for comparisons between the reference and non-reference
varieties (error degrees of freedom appear on Table B of
the supplement).

Sample size calculations should be based on the primary
goal, i.e. comparisons of the non-reference samples.
If avoiding false-positives and false-negatives in the
comparison between the reference and non-reference is
important, then one should run enough reverse to provide
reliable F-tests. If these are of lesser importance, then one
may run fewer reverse dye experiments, which will allow
for better inference among the non-reference samples (for
a fixed number of arrays).

Results when comparison with reference is primary goal.
Comparison with the reference may also be the primary
goal of the experiment. In this case, the varieties should
be balanced with respect to the dyes, so that each variety
appears tagged with each dye in half the samples, because
this will minimize the contrast variance. An example of the
design is given in Table 2c. Here, n − k is assumed even,
and half the arrays from k + 1 to n are run forward and
the other half reverse. In Appendix E of the supplement,
we show that for this type of design, the variance of the
estimated contrast between the reference sample and non-
reference variety is minimized for a fixed number of arrays
m = n + k when k = 0, i.e. when each non-reference
sample appears on exactly one array, and the varieties are
balanced with respect to the dyes. The sample size formula
for the most efficient design appears in the sample size
section in what follows

Sample sizes for most efficient designs
In the previous sections, we have found the most efficient
non-reference designs for paired and unpaired samples,

and the most efficient reference design when comparison
with the reference is the goal. Here we present sample size
formulas for each of these most efficient designs.

For conciseness, a single formula will be presented
which can be used to determine the sample size for any
of the designs. In each case, an estimate of the variance
of the log-ratios under that particular design is needed
to determine the sample size required. Importantly, we
do not need separate estimates of the individual variance
parameters τ 2

g and σ 2
g to determine the sample size.

Suppose we wish to test for differentially expressed genes
at the α significance level, and have a sample size large
enough to detect a difference of δ in the log-intensities
with power 1 − β. Let Vg be the variance of the log-
ratios under the design to be used. Note that Vg is a
general notation for the variance of the log-ratios, but
that this variance will be different for different designs.
For example, the variance may be smaller with paired
samples than with unpaired samples. Let m be the number
of arrays. The sample size formula for all three cases can
then be written in the compact form

m = Vg

[
zα/2 + zβ

δ

]2

.

The notation zα/2 represents the 100(1−α/2)th percentile
of the normal distribution. (For small sample sizes, the t-
distribution adjustment may be used.) Derivation of the
sample size formulas appear in the supplement.

The formula can be applied to determine the sample size
for the most efficient design in each situation we have dis-
cussed with one exception. For a reference design in which
comparison of the non-reference samples among them-
selves is the primary goal, and comparison of the non-
reference samples to the reference is the secondary goal,
sample size should be determined by the primary goal.

DISCUSSION
Dye bias may be an issue when samples tagged with
different dyes are to be compared. We have argued that
in these situations, it is not necessary to run every sample
pair twice so as to eliminate the dye bias. In fact, we have
shown that it is often most efficient to avoid repeating
sample pairs altogether, and instead balance the varieties
being compared with respect to the dyes, so that each
variety is tagged with each dye in half the samples.
We have seen that this is true with paired samples,
with unpaired samples comparing two varieties, and with
reference design data (when comparison with reference
is the primary goal). Figure 1 summarizes these results.
It is important to note that even if dye bias exists, it is
generally wasteful to run the same samples both forward
and backward on separate arrays. We have also given
sample size formulas based on simple statistical models.
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Fig. 1. Balanced designs comparison: relative efficiencies versus
the proportion of arrays with reverse samples, i.e. proportion of
arrays with the same RNA samples as forward arrays but with

the direction reversed. Relative Efficiency = Efficiency(k/m)
Efficiency(0)

where

Efficiency(k/m) is the efficiency of the contrast estimate ĜV g1 −
ĜV g0 when k/m is the proportion of arrays with reverse samples.

Parameter settings are τ2
g = 2σ 2

g for the paired and reference

designs, and τ2
g1 = τ2

g2 = 2σ 2
g for the unpaired design. In all three

cases, 0 reverse arrays maximizes the efficiency.

When comparison of the non-reference samples among
themselves is the primary goal (e.g. by cluster analysis),
and comparison with the reference a secondary goal, we
have presented a formula and some practical guidelines
for selecting the number of reverse arrays.

Since our model characterizes dye bias and experimen-
tal variation as gene-specific, one can analyze the data
gene by gene. Some have assumed a common variance
for all genes (Kerr et al., 2001), or particular variance–
covariance structure across genes (Rocke and Durbin,
2001; Tusher et al., 2001; Ideker et al., 2000). In general,
comparing designs for complex variance-covariance
structures may be problematic because the form of the
contrast estimate for a particular gene may be complex
and not known at the design phase. But if we assume a
common variance across genes in our model, this will not
affect the form of our variety contrast estimates or the
variance calculation for these estimates (it would only
affect the way in which the variances themselves were
estimated). Hence our results will remain unchanged
under a multivariate model with equal error variance.

Further discussion of the recommended designs and the
ANOVA model assumptions appear in the supplement.

We would recommend using the balanced designs we
have described even if one believes no gene-specific dye
bias will be present. Many studies have performed reverse
arrays to guard against dye bias (Bayani et al., 2002;
Zhou et al., 2002; Klebes et al., 2002; Aharoni et al.,
2000; Barrans et al., 2002; Desai et al., 2002), and there
is abundant literature discussing dye bias adjustments
(Tseng et al., 2001; Yu et al., 2002; Yang et al., 2001;
Kerr et al., 2001; Wolfinger et al., 2001). There is ongoing
work in dye labelling technology to try to reduce or
eliminate these dye effects (Wilson et al., 2002; Stears
et al., 2000; Manduchi et al., 2002; Yu et al., 2002).
While some of this work is promising, there is not a
consensus that the problem has been ‘solved’ by these
technologies. Besides, even in the absence of gene-specific
dye effects, only in one of the four cases we described
would one lose efficiency by designing the experiment as
we have suggested (namely, in reference designs when
comparisons with the reference is a secondary concern,
in which case no arrays should be run reverse). In all
other cases, one loses nothing in efficiency by following
our designs, and in fact one gains the ability to detect
and correct for gene-specific dye biases if any exists. One
essentially gains in robustness with no loss in efficiency.
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