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Abstract 

 

Determining sample sizes for microarray experiments is important but 

the complexity of these experiments, and the large amounts of data they 

produce, can make the sample size issue seem daunting, and tempt 

researchers to use rules of thumb in place of formal calculations based 

on the goals of the experiment.  Here we present formulas for 

determining sample sizes to achieve a variety of experimental goals, 

including class comparison and the development of prognostic markers.  

Results are derived which describe the impact of pooling, technical 

replicates and dye-swap arrays on sample size requirements.  These 

results are shown to depend on the relative sizes of different sources 

of variability.  A variety of common types of experimental situations 

and designs used with single-label and dual-label microarrays are 

considered.  We discuss procedures for controlling the false discovery 

rate.  Our calculations are based on relatively simple yet realistic 

statistical models for the data, and provide straightforward sample 

size calculation formulas.  

 

 

1. Introduction and Background 

Microarray experiments are often complex, generate large amounts of 

data, and warrant careful planning.  Here we present formulas for 

determining sample sizes to achieve a variety of experimental goals, 

including class comparison and the identification of gene expression 

based prognostic markers.  In the microarray literature, class 

comparisons refer to experiments in which the goal is to compare two 

different classes of specimens (e.g., cancer tissue to normal tissue 
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from the same organ, or histologically different types of cancer 

specimens), usually to identify genes expressed differently in the two 

types.  We derive results describing the impact of pooling, technical 

replicates and dye-swap arrays on sample size requirements, and show 

how these calculations depend on the relative sizes of different 

sources of variability.  We consider a variety of common types of 

experimental situations and designs that are used in dual-label 

microarray experiments, as well as the single-label case, and include 

discussion of procedures for controlling the false discovery rate and 

adjustments for small sample situations.  These calculations are based 

on relatively simple yet realistic statistical models for the data, and 

provide straightforward sample size calculation formulas.  

 

There has been relatively little work published in the microarray 

literature on determining the number of samples required for class 

comparison problems, or for the development of prognostic markers.  For 

interested readers, this work is reviewed in the Section 8 of the 

supplemental material.   

 

We focus here on two statistical goals: 1) class comparison; and 2) 

prognostic marker development, where the goal is to construct a multi-

gene predictor of prognosis.  These are common goals of microarray 

experiments in cancer research.   We present equations for the sample 

size formulas because these give insight into the impact that variance 

parameters and experimental design have on sample size requirements 

that computational “black box” algorithms or simulations sometimes do 

not.  Oftentimes in practice, particularly in small sample situations, 

statistical software for determining sample size will be preferable to 

these approximate formulas because the software packages typically use 
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computational algorithms to achieve better approximations to the true 

power and level, and hence better sample size estimates.   

 

In class comparison, one is interested in identifying which genes are 

differentially expressed, and so powering the study in a way that 

focuses on inference for individual genes seems appropriate.  When 

constructing a prognostic marker, even if the ultimate goal is to build 

a multivariate marker, a first step is typically to identify individual 

genes associated with disease outcome, so that again the study should 

be powered based on inference for individual genes.  Multivariate 

approaches to sample size do not appear appropriate for these goals.   

 

All sample size formulas presented here are based on an assumption of a 

normal linear model for each gene.  We think this assumption is 

reasonably close to the truth for log-intensity data because many 

microarray experiments using this approach have identified biologically 

meaningful differential expression independently verified by other 

technologies.  The power calculations based on a normal linear model 

assumption is further tested empirically in Section 9 of this paper and 

appear to be adequate.   

 

2. Definitions and notation 

We assume that all data have been background-corrected and normalized.  

In the case of Affymetrix data, we model the summary measure for a gene 

and not the individual PM and MM scores.  We use a common notation for 

both single-label and dual-label microarray experiments.  gadvfsY  

represents a fluorescent intensity; the subscript Gg ,...,2,1=  indexes 

the genes; the subscript na ,...,1=  indexes the arrays or glass slides; 
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the subscript d  indexes the dye or dyes used, 1=d  for single-label 

microarrays and 2,1=d  for dual-label microarrays; the subscript 2,1=v  

indexes the different phenotypes or varieties present, and for 

simplicity we will generally assume there are two; Ff ,...,1=  indexes 

the biologically distinct samples (e.g., the different people in a 

human tumor experiment, or mice in a mouse model experiment) within 

each phenotype; we assume each phenotype is represented by an equal 

number of individuals; finally, ms ,...,1=  indexes the subsamples taken 

from the same biological source (e.g., a tissue sample from an 

individual may be cut into several specimens, and separate microarrays 

run on each specimen).   

 

With each gene g  will be associated two different levels of variation: 

1) biological variation due to heterogeneity from individual to 

individual of gene expression within the phenotype will be denoted 2
gτ ; 

and 2) experimental error variation due to technical inaccuracies in 

the microarray measurement will be denoted by 2
gσ .   

 

In the sample size formulas, m  will refer to the number of different 

subsamples measured from each sample (i.e., number of technical 

replicates run on each sample) and n  will refer to the total number of 

microarrays used in the experiment.  Also, 2/αz  and βz  are the 

2/100 α• th and β•100 th percentiles of the normal distribution, 

respectively.  Finally δ  is the distance between the class means which 

the study is being powered to detect. 
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A reference design dual-label experiment is a microarray experiment in 

which an aliquot from a single reference sample is applied to one 

channel on each microarray.   A balanced block dual design dual-label 

experiment is a microarray experiment in which a single aliquot from 

each RNA sample is used, and samples from the different varieties are 

arranged in balanced block (Cochran and Cox, 1992, p. 376) layout with 

the individual microarrays serving as the blocks.  A balanced block 

layout pairs a sample from each variety with a sample from every other 

variety together the same number of times over the microarrays. 

 

 

2. Single-label microarrays 

 

Some microarray systems, such as Affymetrix arrays, use a single label.  

Much work has been done on finding an adequate gene expression measure 

for these types of arrays (Li and Wong, 2001a; Irizarry et al., 2003), 

and on developing methods for normalizing a set of microarrays to one 

another (Li and Wong, 2001b; Bolstad et al., 2003; Chu et al., 2002).  

We will not address these issues here.  Instead, we will assume that a 

background-adjusted, normalized gene expression measurement gadvfsY  is 

available for the genes on the arrays, which is described by the model 

 

   gadvfsvgfgvggadvfs GFGVGY ε+++= )()()log(                             (2.1) 

 

where gG  is the average expression level of gene g  in the overall 

population, gvGV  is the effect of the class or type, and gfGF  is the 

individual sample effect (from a particular biological individual), 
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which is a random effect with variance 2
gτ  nested in the class effect, 

and gadvfsε  represents independent, normally distributed error with gene-

specific variance 2
gσ .    

 

In the supplemental material (section 1), we derive the formula for the 

number of single-label microarrays required when the variances are 

known, which is: 
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where m  is the number of technical replicates per sample, and n  is the 

total number of microarrays required.  The total number of biologically 

distinct samples required is  
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An estimate of the quantity 
m

g
g

2
2 σ

τ +  is needed.  If no technical 

replicates are planned, so that 1=m , then the quantity 22
gg στ +  which 

must be estimated is simply the variance of the log-intensities for 

this gene across samples of the same class.  If some technical 

replicates are planned for each sample, so that 1>m , then the quantity 

m
g

g

2
2 σ

τ +  is the variance of the average of m  log-intensity measurements 

for this gene across samples of the same class;  that is, if, for each 

individual, the gene expression is estimated by the average of m  log-

intensity measurements on arrays corresponding to that individual, then 
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the variance of these estimates is the quantity of interest.  If a lab 

routinely runs multiple technical replicates per sample, such an 

estimate may be available. 

 

Data from a previous experiment will provide several thousand estimates 

of the quantity 
m

g
g

2
2 σ

τ + , one for each gene on the array.  In Section 7 

below we discuss several ways to construct a single estimate to be used 

for sample size planning. 

 

 

3. Dual-label microarrays 

 

We assume that the normalized, background corrected intensity 

measurements from a cDNA microarray experiment are described by the 

model 

 

   gadvfsvgfgvgdgaggadvfs GFGVGDGAGY ε+++++= )()()log( ,                (3.1) 

 

(one spot per gene per array assumed, so that gaGA  specifies an unique 

spot on a single array).  The parentheses around the GF term indicate 

that it is considered a random sample effect, nested in the class 

effect, with a distribution that is normal with zero mean and variance 

2
gτ .  We assume the measurement error may be gene-specific, so that 

gadvfsε  are independent normal random variables with variance 2
gσ .  The 

gdGD  dye-effect term is typically only included when it is estimable; 
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for instance, in simple reference designs, it is absorbed into the gG  

gene main effect. 

 

This model for the dual-label microarray is equivalent to the model 

presented for the single-label microarray, as is shown in the 

supplementary material (section 6), where a function mapping the 

equivalent terms in the two models is presented.  Our general notation 

throughout is to use 2
gτ  for the biological variation and 2

gσ  for the 

technical error variation of the log-intensities; however, the 

interpretation of these population parameters will change with the 

context, e.g. one will not expect the same technical error variation 

for oligonucleotide data as for cDNA data.  Similarly, different 

experimental designs will affect the variances (Dobbin et al., 2003).  

Hence the context (single-label system, dual-label system, reference 

design, block design, paired samples design) must be kept in mind.  Our 

goal here is not to discuss design selection issues.  The reader is 

referred to Dobbin and Simon (2002), Dobbin et al. (2003), and 

Kendziorski et al. (2003) for discussion of design selection. 

 

 

Simple reference design 

 

An approximate formula for the number of microarrays required when 

comparing two classes in a reference design with no technical 

replicates is  

  ( )22

2
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for the total number of microarrays, with half the arrays assigned to 

each group.  Here 22 2 gg στ +  is the variance of the log-ratios for gene g  

within one of the types or classes of RNA samples, and will need to be 

estimated from previous data.  See page 11 of the supplement for a 

bijective function relating the dual-label to the single-label model of 

the previous section. 

 

If more than two classes are to be compared, then multiple comparison 

issues arise, and sample size determinations will depend on what type 

of error rates one wishes to control.   

 

 

Technical replicates and dye swaps in reference designs 

 

 

The formula for the number of samples required is derived in the 

supplement and is  
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The total number of biologically distinct samples required is mn / .   

 

Unlike the sample size formula when no technical replicates are to be 

used, an estimate of the log-ratio variance will not be sufficient for 

the calculation, but separate estimates of both the biological 

variation and the experimental error variation will be needed.  This is 

because the relative sizes of the different sources of variation will 

determine the correlation between repeated measures on the same sample.  

Table 1 shows the impact of technical replicates both on the number of 
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arrays required and on the number of samples required for some typical 

microarray design situations.  The variance ratio is the ratio of 

biological variation to experimental error variation 2

2

g

g

σ
τ

, and typical 

estimates centering in the range of 3 to 10 have been given (Dobbin and 

Simon, 2002; Kendziorski et al., 2003).   

[Table 1 about here] 
 
Similar calculations should be applicable or nearly applicable for dye-

swap arrays, although some have suggested that dye swapping may improve 

the estimates by somewhat more than simple technical replication 

without dye swapping (Liang et al., 2003).  As can be seen from the 

table, there is some reduction in the number of samples required when 

each sample is assayed more than once, but this advantage generally 

comes at some cost in terms of significantly larger numbers of arrays 

that need to be run. 

 

If mn  is the number of arrays required when m  technical replicates of 

each sample are to be performed, then the relation between the required 

number of arrays to achieve equivalent power with 1 technical replicate 

versus m  technical replicates per sample is: 
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(For derivation, see section 3 of supplement.)  For instance, if 

22

2

=
g

g

σ
τ

, then 12 5.1 nn ⋅= , and 13 2nn = .   

 

Balanced block design 
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Selecting a balanced block design may reduce the number of arrays 

required to achieve a desired power.  The number of arrays required for 

a balanced block design is  

  ( )22
2,

2
1,2

2
2/ 2
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ggg

zz
n σττ

δ
βα ++

+
=                                    (3.5) 

where 2
1,gτ  and 2

2,gτ  are the variance in the log-intensities attributable 

to biological variation in gene expression in each population 

respectively.  (By definition, the balanced block design does not use 

any technical replicates, so there is no m  parameter in this 

equation.) 

 

The variance of the log-ratios in a balanced block design will 

generally be larger than for a reference design, because the log-ratios 

manifest additional biological variation since no reference is repeated 

over the arrays.  We have presented a conversion formula and examples 

for estimating the sample size required for a balanced block design 

from previous data from a reference design experiment (Dobbin et al., 

2003b). 

 

Simple paired design and dye-swap paired design 

 

By a paired design, we mean a design in which there is a natural 

pairing to the samples, such as samples from the same individual before 

and after some treatment, or samples from tumor and coexisting 

histologically normal tissue from the same organ.  We do not mean the 

physical pairing of the cDNA samples on the same array, which is common 

to all dual-label microarray experiments.  We discuss two paired 

designs: 1) by a balanced paired design we mean a design in which each 
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sample pair is run together once on an array, and the arrays are 

balanced so that tumor is tagged with red dye on half the arrays and 

green on the other half; 2) by a dye swap paired design we mean a 

design in which each sample pair is run on two different arrays, and 

the labeling on the second array is reversed. 

 

The number of arrays required for a balanced paired design with no dye-

swap arrays is  

   ( )22
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2
2/ 2
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=                                     (3.6) 

where 222 gg ησ + is the variance of the log-ratios for the paired samples.  

We have switched notation from our earlier  2
gτ  to 2

gη  for the biological 

component of the variance because biological variation is conceptually 

much different with paired data;  2
gη  represents variation not in the 

expression level of the gene in the population, but in the effect the 

cancer has on the gene’s expression level in the population.  For 

instance, gene g  may be up-regulated in tumor tissue compared to normal 

tissue, but the amount of up-regulation may vary from one individual to 

another; this variation is represented by 2
gη .  If each sample is run 

twice, once with each dye labeling (often called a complete dye-swap), 

then the number of arrays required for this dye swap paired design is  
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Note that, 21 ≤≤
balanced

dyeswap

n
n

 where dyeswapn  is the number of arrays required 

to achieve a specified power and efficiency under a dye swap design, 

and balancedn is the number of samples required to achieve the same power 
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and efficiency using a balanced design with no dye swaps.  It makes 

intuitive sense that this ratio would be at most 2 because a balanced 

paired design requires exactly the same number of biologically distinct 

samples as a dye swap paired design with twice as many arrays, and one 

cannot lose information by measuring the same samples a second time.   

 

 

4. Sample size for developing prognostic markers 

So far we have focused on sample size for the goal of class comparison, 

where one typically wants to identify genes expressed differentially in 

the classes.  Another common goal in microarray studies is to develop 

predictors of patient prognosis from the expression of a key gene or 

collection of genes.  In this case one does not have classes for the 

patients that have been predetermined, but one does typically have some 

continuous, right-censored clinical endpoint that has been recorded, 

such as time to disease recurrence or time to death.  We develop 

formulas for predictive and prognostic markers, but not surrogate 

markers, which present different issues. 

 

The number of samples required in this case (Simon et al., 2002) is  

  2

2
2/

])ln[(
)(

h
zz

D
gγ

βα +
=   

where gγ  denotes the standard deviation of the log ratio for dual-label 

arrays, or log-intensity for single-label arrays, of the gene over the 

entire set of samples, h  denotes the hazard ratio associated with a 

one-unit change in the log-ratio (or log-intensity), and ln  denotes the 

natural logarithm.  For instance, if gene expression is measured in 

base 2 logs, then h  is the change in hazard ratio associated with a 
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two-fold change in gene expression.  If we have 5.0=gγ , as may be 

realistic for human data, and 05.,001. == βα , then the sample size 

required to detect a change in hazard ratio of 2, 3 and 4, is 203, 81 

and 51, respectively.  

 

 

5. Effect of pooling on sample size requirements 

 

Under assumptions similar to those in Kendziorski et al. (2003), if k  

independent biological samples are pooled together and applied to the 

arrays, then in the supplementary material we show that the sample size 

formula for a reference design is 
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In order to use this formula, one needs estimates of the size of the 

different sources of variability. 

[Table 2 about here.] 

As can be seen from Table 2, pooling can result in a smaller number of 

arrays required, but this comes at the cost of requiring a potentially 

much larger number of samples.  Since it is very common in cancer 

research that obtaining new samples – either by completely re-running 

an experiment or obtaining new biological specimens (depending on the 

context) – is fairly expensive in terms of time and effort and cost, 

this table indicates that pooling will usually not result in a good 

tradeoff between reduced arrays and increased time and expense related 

to sample acquisition.  Further discussion of pooling issues appears in 

Section 9 of the supplemental material. 
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6. Selection of the significance level and power 

 

In the sample size formulas we have presented, the user must provide 

the two parameters α  and β−1 .  α  is the probability of finding a 

gene is differentially expressed when, in fact, it is not.  For 

instance, if genes are independent and there are 10 000 genes, none of 

which are truly differentially expressed, then setting 001.=α  means 

that on average there will be 10 false positives, i.e., 10 genes will 

be found to be differentially expressed.  If genes are not truly 

independent, then the expected number of false positives will still be 

10, as we show in the supplemental material (section 2), but the 

distribution of the number of false positives may be different than 

under the independence assumption.  Setting 95.1 =− β  means that on 

average for a gene with differential expression δ , one will have 95% 

probability of a true discovery, i.e., 95% of the time the gene will be 

found differentially expressed.  For instance, in a reference design 

cDNA experiment, a 1=δ  on the log base 2 scale would correspond to a 

two-fold change in gene expression between the classes; if there are 20 

genes with two-fold differential expression (and we assume genes are 

independent), then the probability of identifying all 20 will be 

approximately 36%, and the probability of identifying 18 or more will 

be approximately 92%.   

 

Setting α  very small controls the expected number of false-positive 

genes.  This type of control could be seen as inadequate for at least 

two reasons: 
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1. The resulting procedure may be so strict that in practice it will 

require a very large number of arrays; one may prefer to sift 

through a certain proportion of false-positive genes rather than 

take on the expense and time required in running arrays; 

2. It may not be adequate to control the “expected” number of false-

positives, since this does not eliminate the possibility that one 

may greatly exceed this number, depending on the variation in the 

false-positive rate.   

To address issue 1, often procedures for controlling the false 

discovery rate, rather than the false positive rate, are adopted.  When 

some discoveries are made, the false discovery rate is defined as the 

proportion of discoveries, in this context genes identified as 

differentially expressed, which are, in fact, not differentially 

expressed.  This is the proportion of mistakes in the gene list.   

 

A false discovery is a gene that is determined (by hypothesis test) to 

be differentially expressed when, in fact, it is not; a true discovery 

is a gene that is determined to be differentially expressed when, in 

fact, it is.  The false discovery rate can be written 

⎥⎦
⎤

⎢⎣
⎡

+
=

TDFD
FDEFDR

##
#

 (Benjamini and Hochberg1, 1995) where FD#  is the 

number of false discoveries and TD#  is the number of true discoveries 

(and the FDR is defined to be zero when 0## =+ TDFD ). Suppose that π  

is the proportion of genes that are differentially expressed.  To 

                            
1 Benjamini and Hochberg prefer the alternate definition 

⎥⎦
⎤

⎢⎣
⎡ >+

+
>+ 0#|#

##
#)0#(# TDFD

TDFD
FDETDFDP .  However, since microarray 

experiments typically involve tens of thousands of genes measured 
simultaneously in different conditions, it seems reasonable to assume 
that 0)0#(# ==+ TDFDP , in which case the two FDR definitions are 
equivalent.     
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simplify the calculation and keep the argument intuitive, we assume 

that each gene falls into one of two categories: 1) either it is not 

differentially expressed; or 2) it is differentially expressed by some 

fixed amount δ .  Then the expected number of false discoveries is 

GFDE )1(][# πα −=  where G  is the number of genes.  The expected number 

of true discoveries is GTDE πβ )1(][# −= .  This suggests an 

approximation based on a first-order Taylor series expansion:  
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πβπα
παFDRE .  The estimate will have 

some small bias because the function is convex (Billingsley, 1995, p. 

80). However, we used Monte Carlo to test the approximation (see 

supplementary material, section 7), and the approximation is very good 

over the range of values that are likely to be used for the parameters. 

[Table 3 about here.]  

Table 3 shows the approximate expected false discovery rate for a 

variety of values of π , α  and β .  As can be seen from the table, the 

expected FDR is most sensitive to the proportion of genes that are 

truly differentially expressed, π , and the significance level α ; 

variation in the selection of the statistical power β−1  is less 

critical.   

 

Using 001.=α  is one simple method for controlling the expected number 

of false discoveries.  Other methods for controlling the false 

discovery rate have also been proposed for microarray data (Efron et 

al., 2001; Reiner et al., 2003).  A step-down procedure for controlling 

the actual number or proportion of false discoveries has also been 

proposed (Korn et al., 2003). 
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7. Selection of the variance estimate for the sample size calculation 

 

In all of the sample size formulas presented here, some estimate of 

variation is required for the calculation.  What is usually required is 

an estimate of the variance of the log-ratios for a dual label 

experiment, or of the log-intensities for a single label experiment. 

The best way to determine these variance estimates is by looking at 

data from previous experiments that were similar to the one that is 

being planned.  This may necessitate some thoughtful consideration of 

how the two experiments are the same and how they differ.  Since the 

larger the variance, the larger the sample size requirement, the most 

conservative sample sizes will be those calculated from variance 

estimates from genes displaying the greatest variation.  Typical rules 

of thumb would be to use the median, upper quartile or 90th percentile 

(Yang and Speed, 2002) of the variances from a previous similar 

experiment in the sample size calculations. In our experience with 

reference designs and cDNA arrays, we find that a median base 2 log-

ratio standard-deviation of 0.5 is fairly typical for human reference 

design data, and of 0.25 is fairly typical for inbred mice strains.   

  

 

 

8. Small n cases 

 

[Table 4 about here.] 
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As shown in Table 4, the sample size formulas we have presented are not 

appropriate for small sample sizes.  This is an important point in 

applications because many microarray studies are limited to small 

sample sizes due to expense, time or logistics.  The problems with the 

sample sizes formulas for small numbers of samples are that: 1) the 

formulas assume that the variance is known, but with small sample sizes 

even the estimated variance may be unreliable; 2) the distribution 

under an alternative hypothesis is non-central t, and may differ 

significantly from the usual normal approximation used in the explicit 

formulas.  If the sample is large (for instance more than 30 arrays), 

then the sample variance will be a good estimate of the population 

variance and the sample size formulas may be adequate.  But if the 

sample is small, the sample size will be inadequate to achieve the 

power desired.  Statisticians have long recognized this problem and 

developed iterative procedures for obtaining adequate sample size in 

small sample situations.  There are numerous software packages 

available for this purpose that can be used to correct this problem. 

 

There are other ways to try to address the problem of poor estimation 

of variances when the sample size is small.  In microarray studies, 

since many genes are being measured in parallel, trying to borrow 

information about variances across genes can potentially improve the 

estimate of the variance.  Some have modeled the variation across the 

different genes parametrically in such a way that one can borrow 

information about the variance for a particular gene from other genes 

(Baldi and Long, 2001; Wright and Simon, 2003).  The 2003 paper 

provides corrected degrees of freedom and sum of squares formulas that 

can be used to adjust the calculation of the number of arrays required.   
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9. Impact of normality assumption 

 

The sample size calculations presented here are based on assumptions of 

the normal linear model such as the one given in Equation 2.1.  We 

tested the validity of the sample size calculations based on this model 

using the dataset Rosenwald et al. (2002).  For each of the 7,399 

genes, we used Equation 3.2, with the small sample adjustment discussed 

in Section 8, to calculate sample size requirements for various power 

and significance level combinations.  Then we formed samples of this 

size 1,000 times by sampling with replacement from the cases with no 

missing data for that gene.  Each sample was divided in half to form 

two groups, and to each observation in one group was added a constant 

δ .  Then the pooled variance t-test was performed on the groups, and 

the power estimated from these.  Computations were carried out in R and 

C++.  Results are shown in Table 5.  In general, both the observed 

power and the observed type I error rate tend to be somewhat higher 

than the nominal, and decrease towards the nominal as the sample size 

increases.  This indicates that the sample size formulas presented in 

this paper should be adequate for microarray data such as this. 
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10. Conclusion 

 

We have presented sample size formulas for class comparison problems 

for a variety of microarray platforms and experimental designs.  We 

have also presented a sample size formula for prognostic studies.  In 

general, determination of the number of microarrays required for an 

experiment does not necessitate “reinventing the wheel” in the sense 

that much of the classical statistical sample size reasoning can be 

applied in this new context; on the other hand, the context of 

microarray experiments is novel enough that it raises interesting 

questions such as how the relative sources of variation will be 

expected to impact sample size requirements, and how design decisions 

such as pooling, technical replicates, and dye-swaps will impact costs 

associated with the arrays.  We have addressed these issues in an 

intuitive way which we hope will be of assistance in guiding 

researchers in future study design.   
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Tables 

 
Table 1: Effect of technical replicates on the 
number of arrays and samples required.  Variance 

ratio is 22 / gg στ .  The mean and median of the 

variance ratios from a large human cancer data set 
with replicates were approximately 4 and 2 
respectively (unpublished data).  Settings were 

001.=α , 05.=β , 1=δ , and 5.2 22 =+ gg στ .  (In 

practice, the odd numbers would usually be rounded 
up so an equal number from each group taken.) 
Variance 
ratio 

Number of 
technical 
replicates 
for each 
sample 

Number of 
arrays 
required 

Number of 
samples 
required 

 
1 49 49 
2 74 37 
3 99 33 

2.0 

4 124 31 
 

1 49 49 
2 82 41 
3 114 38 

4.0 

4 148 37 
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Table 2: Number of arrays and samples required for various 
pooling levels.  An independent pool is constructed for 
each array, so that no sample is represented on more than 
one array.  Settings were same as Table 1: 001.=α , 

05.=β , 1=δ , and 5.2 22 =+ gg στ .  Variance ratio is 22 / gg στ . 

Variance 
ratio 

Number of 
samples 
pooled on 
each array 

Number of 
arrays 
required 

Number of 
samples 
required 

 
1 49 49 
2 37 74 
3 33 99 

2.0 

4 31 124 
 

1 49 49 
2 33 66 
3 28 84 

4.0 

4 25 100 
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Table 3: False discovery rate and expected false-negative rate for 
identifying differentially expressed genes for a number of choices of 
size α and power β−1 , and a variety of proportions π  of truly 
differentially expressed genes.  
π  α  β−1  ][ˆ FDRE  Expected 

number 
of FD in 
10,000 
genes 

Number of 
truly 

differentially 
expressed 
genes 

Expected 
number of 
truly 

differentially 
expressed 

genes missed 
.005 .001 .95 .17 8.5 50 2.5 
.005 .001 .90 .18 9 50 5 
.005 .001 .80 .20 10 50 10 
.05 .001 .95 .02 10 500 25 
.05 .001 .90 .02 10 500 50 
.05 .001 .80 .02 10 500 100 
.20 .001 .95 .004 8 2000 100 
.20 .001 .90 .004 8 2000 200 
.20 .001 .80 .005 10 2000 400 
       

.005 .01 .95 .68 34 50 2.5 

.005 .01 .90 .69 35 50 5 

.005 .01 .80 .71 36 50 10 
.05 .01 .95 .17 85 500 25 
.05 .01 .90 .17 170 500 50 
.05 .01 .80 .19 340 500 100 
.20 .01 .95 .04 20 2000 100 
.20 .01 .90 .04 40 2000 200 
.20 .01 .80 .05 100 2000 400 
       

.005 .005 .95 .51 25.5 50 2.5 

.005 .005 .90 .53 26.5 50 5 

.005 .005 .80 .55 27.5 50 10 
.05 .005 .95 .09 45 500 25 
.05 .005 .90 .10 50 500 50 
.05 .005 .80 .11 55 500 100 
.20 .005 .95 .02 40 2000 100 
.20 .005 .90 .02 40 2000 200 
.20 .005 .80 .02 40 2000 400 
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Table 4: Simple formula Z-based sample 
sizes: normal approximation formula is 
inadequate for small sample sizes, resulting 
in poor power under the Monte Carlo 
simulation.  Total of 100,000 Monte Carlo 
simulations used for each row.  Significance 

level was .001 for all.  2γ  is the within-
group variance, e.g. of the log-ratios in a 
dual-label reference design or log-
intensities in a single-label design.  Monte 
Carlo results are presented as: mean (sd).   

2γ  Nominal 
Power 

N per 
group 

Monte 
Carlo 
Power 

0.25 .90 3 .07 (.002) 
0.25 .95 4 .33 (.002) 
0.50 .90 11 .76 (.002) 
0.50 .95 13 .88 (.002) 
0.75 .99 36 .98 (.002) 
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Table 5: Resampling study of impact of normality assumption or true 
power and size based on data of Rosenwald et al. (2002).  Results using 
the pooled variance two-sample t-test, sample sizes rounded up to even 
number, minimum sample size is 4(2 per group), sample size determined 
by t iterative procedure.  Observed power and level based on 1,000 
resamplings for each of 7,399 genes.  Results presented as Mean(SD). 

Mean 
shift 

Fold 
Change 

Alpha 
=  

level 

Observed 
level 

1–Beta 
= power

Observed 
power 

Mean 
sample 
size 

0.5849625 1.5 .001 .0009(.001) .90 .903 (.043) 133.3 
0.5849625 1.5 .05 .052 (.009) .90 .911 (.021) 68.9 

1 2 .001 .001 (.001) .90 .911 (.027) 50.6 
1 2 .05 .060 (.010) .90 .928 (.022) 25.7 
2 4 .001 .001 (.001) .90 .921 (.033) 16.8 
2 4 .05 .075 (.012) .90 .953 (.026) 8.8 

 

 


