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SUMMARY

For medical classification problems, it is often desirable to have a probability associated with each class.
Probabilistic classifiers have received relatively little attention for smalln large p classification problems
despite of their importance in medical decision making. In this paper, we introduce 2 criteria for assess-
ment of probabilistic classifiers: well-calibratedness and refinement and develop corresponding evaluation
measures. We evaluated several published high-dimensional probabilistic classifiers and developed 2 ex-
tensions of the Bayesian compound covariate classifier. Based on simulation studies and analysis of gene
expression microarray data, we found that proper probabilistic classification is more difficult than deter-
ministic classification. It is important to ensure that a probabilistic classifier is well calibrated or at least
not “anticonservative” using the methods developed here. We provide this evaluation for several proba-
bilistic classifiers and also evaluate their refinement as a function of sample size under weak and strong
signal conditions. We also present a cross-validation method for evaluating the calibration and refinement
of any probabilistic classifier on any data set.

Keywords: Gene expression analysis; High-dimensional data; Microarray; Probabilistic classification.

1. INTRODUCTION

Stimulatedby the development of gene expression microarray technology, many types of classifiers of
tumor samples have been developed (Dudoitand others, 2002;Wesselsand others,2005;Lai and others,
2006). Classification rules are typically learned using thousands of variables with at most hundreds of
samples. However, for medical decision making, it is valuable to have a probabilistic classifier and to
know which cases are clearly one class or the other and which are less well determined.

Medical decision making is complex. Misclassification costs are often asymmetric, difficult to quantify,
and vary among physicians and patients. In this context, probabilistic classifiers that provide an estimate
of the probability of membership in each class for new cases are more useful than classification rules
that simply assign cases to a class. Probabilistic classifiers provide tools for a diverse audience of users
who may use the probabilities in conjunction with other information such as treatment options and patient
preferences for making complex integrated clinical decisions.

Probabilistic classifiers have received relatively little attention in the literature of smalln large p
classification problems where the number of candidate variables exceeds the number of cases available for
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2 K. I. K IM AND R. SIMON

modeldevelopment. In this paper, we introduce 2 criteria for assessment of high-dimensional probabilistic
classifiers: well-calibratedness and refinement (DeGroot and Fienberg,1983).

Well-calibratedness is widely used in probabilistic forecasting fields (Dawid, 1986). We say a proba-
bilistic classifier is “well calibrated” if for any predictive probability 0< w < 1, the relative frequency of
the event which the probabilistic classifier predicts with probabilityw is w. That is, ifS(w) = {x: P̂r(C =
1|x) = w}, then Pr(C = 1|x ∈ S(w)) = w. For example, in weather forecasting, predictions of 100w%
chance of rain are well calibrated if they result in rain 100w% of the time.

Second, we introduce a measure based on refinement of probabilistic classifiers. The refinement mea-
sures the extent to which the classifier makes useful forecasts, rather than predictions for which the
probability of being in class 1 is close to 0.5. In general, we define refinement as the expected value
of Pr(C = 1|x ∈ S(w))(1 − Pr(C = 1|x ∈ S(w))) with respect to the predictive probabilityw.

We evaluate several published high-dimensional probabilistic classifiers for their well-calibratedness
and refinement. We consider the following widely used supervised probabilistic classification methods:
prediction analysis of microarrays (PAM,Tibshirani and others,2002), Bayesian compound covariate
(BCC, Wright and others, 2003), 2 modifications of BCC (BCCm and BCCi), and penalized logistic re-
gression withL1 andL2 penalties(PLR L1 and PLR L2,Friedmanand others,2010). For the probabilistic
classifiers which are not well calibrated, we define conservativeness and anticonservativeness. Roughly,
we say a predictor is conservative if it tends to predict with probability nearer to 0.5 than the true value.

In Section2, we introduce the 6 probabilistic classifiers to be evaluated and define evaluation mea-
sures. In Sections3 and4, we evaluate the probabilistic classifiers using simulations. In Section5, we
evaluate the classifiers with 2 real data sets using a leave-one-out-cross-validation (LOOCV) framework,
and last in Section6, we discuss our results.

2. METHOD

2.1 High-dimensionalprobabilistic classifiers

We introduce the 6 high-dimensional probabilistic classifiers, PAM, BCC, BCCm, BCCi, PLR L1, and
PLR L2 for 2-group classification problem.

Let xi denotea p-dimensional feature vector andci a 0-1 valued class variable for thei th case. For
example, in microarray data analysis, one could think thatxi representsthe i th sample of gene expres-
sion data andci representsthe i th cancer type or response to treatment. Given the training data set
{(xi , ci )}i =1,...,n, we are interested in accurately predicting Pr(C = 1|x∗) for a new case with known
feature vectorx∗.

PAM probabilistic classifier. PAM employs a shrinkage technique called nearest shrunken centroids
(Tibshiraniand others,2002). It should not be confused with the unsupervised “partition around medoids”
method. The mean vector of each class is estimated by shrinking it toward the overall mean vector. The
degree of shrinkage is determined by a tuning parameter that is usually optimized to minimize the cross-
validated classification error estimate. In our use of PAM, we optimize the tuning parameter to maximize
the cross-validated predictive likelihood.

Although PAM is usually used as a deterministic classifier,Tibshirani and others(2002) suggest
computing a predicted probability of class 1 for a new casex∗ as

p̂(x∗) =
π1P̂r(x∗|C = 1)

π0P̂r(x∗|C = 0) + π1P̂r(x∗|C = 1)
, (2.1)

whereπ0 andπ1 arethe class prior probabilities, and the conditional probability ofx∗ in each class is
approximated by a multivariate normal density. The shrunken class-specific sample means are used as the
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Probabilistic classifiers with high-dimensional data 3

mean vectors. The intra-class covariance matrix is taken as diagonal with the intra-class variance of the
i th gene is estimated by(si + s0)

2, wheresi is the pooled sample standard deviation of thei th gene and
s0 is a positive constant used for stabilization of variance estimates.

Bayesian composite probabilistic classifiers.The BCC method uses a dimension reduction technique
for high-dimensional gene expression vectors in 2 group classification (Wright and others, 2003). BCC
projects ap-dimensional gene expression vectorx to a one-dimensional compound covariatewx. The
weights are based on thet-statisticst for comparing gene expression between the 2 classes. The weight
equals thet-statistic if the gene is selected in the feature selection step and is zero otherwise. The feature
selection step selects a fixed number of genes witht-statistics largest in absolute value, a number that can
be optimized as a tuning parameter by cross-validation. Let us denote these weights byt̃. Using Bayes
theorem and normal approximation of the compound covariatet̃x∗, the predictive probability of class 1
for a new casex∗ is computed as

p̂(x∗) =
π1φ(t̃x∗|μ̂1, σ̂

2
1 )

π0φ(t̃x∗|μ̂0, σ̂
2
0 ) + π1φ(t̃x∗|μ̂1, σ̂

2
1 )

, (2.2)

whereφ is the normal density function. The mean and variance of the compound covariates in class
k = 0,1 are estimated by

μ̂k =
1

nk

∑

ci =k

t̃xi , σ̂ 2
k =

1

nk − 1

∑

ci =k

(t̃xi − μ̂k)
2, (2.3)

wherenk is the number of samples in the class.
Although this dimension reduction technique of BCC has been effectively applied to the classification

of cancer, we have developed 2 modifications of the BCC. First, the class-specific means and variances
of the compound covariate are biased because the same data are used for selecting the genes used in the
dimension reduction and for estimating the means and variances. This results in predicted probabilities
too close to 0 or 1.Wright and others(2003) noted this problem. They indicated that estimating predic-
tion accuracy requires an independent test set, but provided no proposal for avoiding the overfitting. We
propose replacing thẽtxi values in the summations of (2.3) by t̃(−i )xi values, wherẽt(−i ) is computed af-
ter omitting thei th case. The class-specific means and variances are computed based on projected values
t̃(−i )xi . We use the same formula as (2.2) for computing the predictive probability of class 1 for a new
casex∗, but for the estimates of mean and variance of the compound covariates, we use

μ̂k =
1

nk

∑

ci =k

t̃(−i )xi , σ̂ 2
k =

1

nk − 1

∑

ci =k

(t̃(−i )xi − μ̂k)
2. (2.4)

We refer to this version of BCC as BCCm in the following sections.
Our second modification of BCC corrects for replacing unknown densities in application of Bayes

theorem by densities with plug-in estimators of means and variances. The Bayes theorem–based prob-
ability that a new case is in class 1 should depend on the ratio of density of observing thet̃x∗ value if
the case is class 1 to the density for class 0, that is, the Bayes factor. It is not proper in a Bayesian sense
to just estimate the unknown densities and ignore the uncertainty of the estimates. The proper Bayesian
approach would be to compute the unknown densities as marginal densities with regard to the posterior
distributions of the unknown means and variances. So the predictive posterior probability oft̃x∗ for class
k is computed as

Pr(̃tx∗|Dk) =
∫∫

φ(t̃x∗|μk, σ
2
k , Dk)p(μk, σ

2
k |Dk)dμk dσ2

k , (2.5)

whereDk = {t̃(−i )xi : ci = k} andk = 0,1.
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4 K. I. K IM AND R. SIMON

For small sample sizes, the estimators of class-specific means and variances may be very poorly de-
termined yet are treated as known with certainty in using plug-in estimators to Bayes formula. In our
modification, we have replaced the plug-in estimators by marginal distributions based on using noninfor-
mative priors forμk andσ 2

k . Following the derivation ofGelmanand others(2003, Chapter 3, p. 77), the
right-hand side of (2.5) has at distribution of degree of freedomnk − 1 with location parameter̂μk and
scaleparameter(1 + n−1

k )σ̂ 2
k . So, thet probability density function for each class is used to compute the

predictive probability instead of the normal density function in (2.2). We refer to this version of BCC as
BCCi in the following sections. Note since BCCi usest̃(−i )xi to estimateμ̂k andσ̂ 2

k insteadof t̃xi , this
modification includes the modification of BCCm.

Penalized logistic regression classifiers.Penalized logistic regression models use shrinkage techniques
in estimating the coefficients of high-dimensional covariates. Penalties are imposed in the estimation
step either on the sum of absolute values of coefficients (PLR L1) or on the sum of squared coefficients
(PLR L2). Unlike PAM and BCC type classifiers, penalized logistic regression models predict class prob-
ability for a new casex∗ as

p̂(x∗) =
exp(β̂0 + β̂1x∗)

1 + exp(β̂0 + β̂1x∗)
, (2.6)

whereβ1 = (β11, . . . , β1p). The regression coefficients are determined to maximize a penalized like-
lihood function. Either anL1 or an L2 penaltycan be imposed. For example, with anL1 penalty, the
penalized log-likelihood function is

L(β0, β1) =
n∑

i =1

{ci log p(xi ) + (1 − ci ) log(1 − p(xi ))} − λ

p∑

j =1

|β1 j |. (2.7)

The penalty causes shrinkage of the regression coefficients. The degree of shrinkage can be determined
by cross-validation to maximize the predictive likelihood function.

2.2 Well-calibratedness, refinement, and evaluation measures

We say that a probabilistic classifier is well calibrated if for any 0< w < 1,

Pr(C = 1 | p̂(x) = w) = w. (2.8)

Pr(C = 1 | p̂(x) = w) is an expectation over the set ofx for which predictionsp̂(x) of class 1 arew. We
can interpret (2.8) as the proportion of the cases that the probabilistic classifier predicts with probability
w that are actually class 1. Thus, if we collect cases for which the predicted probability of being class 1
equalsw, then a proportionw of them can be expected to be in class 1. It does not mean that each of those
cases has a true probability ofw of being in class 1. One can easily show that the Bayesian probabilistic
classifier obtained by the direct application of Bayes theorem when the class-specific densities are known
is well calibrated. However, the Bayesian probabilistic classifier cannot be computed for real data where
the class-specific densities are unknown. The probabilistic classifiers that have been introduced for high-
dimensional problems have not been previously evaluated as to whether they are well calibrated.

The calibration curve, a smoothed curve of the predictive probability of class 1 versus its actual fre-
quency is often drawn to see the degree of calibratedness of a probabilistic classifier. The true calibration
curve defined in (2.8) of a well-calibrated classifier is a diagonal straight line by (2.8). When a proba-
bilistic classifier is not well calibrated, it may be “conservative” or “anticonservative”. When a class is
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Probabilistic classifiers with high-dimensional data 5

predicted with a probability greater than 0.5 (w > 0.5) and Pr(C = 1 | p̂(x) = w) > w, we say that
the prediction is conservative in the sense that the predicted events (or class labels) happened more than
predicted. When the frequency is smaller than the predicted probability, we say that the prediction is
anticonservative.

We say that a probabilistic classifier is refined if the predictive probabilities tend to be close to 0 or 1
so that the variance of the frequency of the class labels is small. It is easily shown from the definition of
the refinement in Section1.

To assess the calibration and refinement quantitatively, we use the decomposition of average squared
error between the class labels and predictive probabilities of class 1 (DeGroot and Fienberg,1983).

For a given data set,(xi , ci ) for i = 1, . . . , n, the average squared error for a probabilistic classifier
p̂ is defined asn−1∑n

i =1(ci − p̂(xi ))
2, wherexi is the i th feature vector andci is the corresponding

binary class label and̂p(xi ) is the predictive probability of class 1 forxi . Even for the true Bayesian
probabilistic classifier, the average squared error is not zero unless the class-specific densities are widely
separated.

Since for any finite set of predictions, there may be only a single prediction for anyw value, in order
to evaluate whether a classifier is well calibrated some binning or smoothing of predictions is necessary.
Suppose we partition the unit interval intom equal subintervals or binsBk = ((k − 1)/m, k/m] for
k = 1, . . . ,m. For each binBk, we computeqk, the proportion of predictions that fall intoBk, rk the
relative frequency of predictions inBk for class 1, anduk thecenter point ofBk. Then the average squared
error is decomposed as sum of calibration score (CS) and refinement score (RS):

CS=
m∑

k=1

(rk − uk)
2qk, RS=

m∑

k=1

rk(1 − rk)qk. (2.9)

The decomposition is similar to the bias–variance decomposition of the mean squared error.
The CS represents an average squared discrepancy between predictions and corresponding relative fre-

quencies. The CS of a well-calibrated classifier is zero by definition. The Bayesian probabilistic classifier
is also well calibrated. The RS represents the conditional variance of relative frequencies averaged over
prediction bins. The well-calibrated classifiers do not necessarily have the smallest RS, but the Bayesian
probabilistic classifier has the minimum RS among all classifiers (see a proof in the supplementary mate-
rials available atBiostatisticsonline).

Although both well-calibratedness and refinement are useful criteria in evaluating probabilistic clas-
sifiers, well-calibratedness is more important because it indicates that the predictions have aggregate va-
lidity. Hence, when selecting good probabilistic classifier, we would recommend using the most refined
among well-calibrated classifiers.

3. EVALUATION USING MULTIVARIATE NORMAL MODELS WITH SINGLE CORRELATIONS

We evaluated the calibration and refinement of the high-dimensional classifiers described in the previous
section and explored the factors that affect these measures using simulation.

We generated our training and test data sets using multivariate normal gene expression with class-
specific mean vectors and common covariance matrices. Letx denote ap-dimensional gene expression
vector andc a 0-1 valued class variable. For thei th case,ci is generated from the Bernoulli distribution
with probability 0.5 and vectorxi in classk is generated from multivariate normal distribution with mean
μk for k = 0,1 and common correlation matrix6. The simulations were performed withp = 1000
genes, the firstp1 = 50 of which were differentially expressed between classes with mean difference 1.
The remaining 950 genes had the same mean for each class.
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6 K. I. K IM AND R. SIMON

For the common correlation matrix6, we used the following 3 structures:

Structure.1 :

[
611 0

0′ I p−p1

]

, Structure.2:

[
611 0

0′ 622

]

, Structure.3:

[
611 612

6′
12 622,

]

where611 and622 arep1× p1 and(p− p1)×(p− p1) intra-classcorrelation matrices forp1 informative
genes and forp − p1 noninformative genes, respectively.612 is the p1 × (p − p1) correlationmatrix be-
tween informative and noninformative genes andI p−p1 is the(p− p1)×(p− p1) identitymatrix. For each
structure, we compared the classifiers by imposing common pairwise correlations of either 0.25, 0.50, or
0.75. The case of full independence was also studied. The number of training samples was either 30, 60,
or 120. We generated 1000 simulated training samples for each combination of conditions.

PAM and the penalized logistic regression methods incorporate a tuning parameter that determines
the amount of shrinkage. For the former, the class means of each variable are shrunken; for the latter,
the regression coefficients are shrunken. For the BCC methods, the tuning parameter is the number of
variables selected for inclusion in the linear projection. In classification problems, such tuning parameters
are usually optimized to minimize a cross-validated estimate of prediction error. Since we are interested
in probabilistic prediction, we maximized the cross-validated predictive likelihood. That is, the cross-
validated predictive likelihood is computed for each of a grid of values of the tuning parameter and the
value with the largest cross-validated predictive likelihood is selected. We used LOOCV (Molinaro and
others, 2005). The predictive likelihood of the training data can be written as

L(λ) =
n∏

i =1

p̂(−i ),λ(xi )
ci (1 − p̂(−i ),λ(xi ))

1−ci , (3.1)

wherep̂(−i ),λ(x) is computed in a training set omitting thei th case and using tuning parameterλ.
Before we summarize our results for the 1000 simulations for each condition, we first examine some

results of a single simulation. Figure1 shows results for a single test set with training sets of size
n = 30,60, and 120 when correlations among informative genes are 0.25 (“Structure.1”). A probabilistic
classifier of each type has been developed for each of the 3 training sets. A single true model was used to
generate these 3 training sets, and we sampled 5000 test sample points(xi , ci ) for this model. For each
test samplexi vector, we compute the true probability that a sample with thatxi vector is from class 1 by
employing Bayes theorem using the true class-specific densities used to generate the data. This true model
is the Bayesian probabilistic classifier and these true posterior probability values are used for the vertical
axes in Figure1. For each test samplexi , we also compute the predicted probability of the case being
from class 1 for each of the 6 predictive classifiers developed in the training set. These values are used for
the horizontal axes.

Figure1 shows that evaluating probabilistic classification is more complex than for deterministic clas-
sification. For example, 2 classifiers having similar misclassification error rate can produce completely
different graphical display. In the figure, the misclassification rates of BCC whenn = 30 and PLR L2
whenn = 60 are both close to 0.19 but the corresponding scatter plots are quite different.

Figure1 also shows that the rate of convergence to the true Bayesian classifier varies dramatically
among classification methods. It is desirable that as the sample size increases, the predictions of a classifier
converge to the predictions of the true Bayesian probabilistic classifier and thus lie along the 45-degree
line. PAM and BCC type classifiers show clear convergence, while PLR L1 appears to converge slowly
and PLR L2 does not converge to the Bayesian probabilistic classifier. The dependency condition for
Figure1 is “Structure.1” with common correlation 0.25 among informative genes. The penalized logistic
models do not perform well in this rather weak dependency condition.

The calibration curves in (2.8) corresponding to Figure1 are shown in Figure2. The calibration
curves are smoothed with local regression with degree 1 and span 0.75 using R software loess package
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Probabilistic classifiers with high-dimensional data 7

Fig. 1. A scatter plot for “Structure.1” condition. Rows represent 3 different training sample size (n = 30,60,120) and
columns represent 6 probabilistic classifiers used to compute predictive probabilities. In each plot,x-axis represents
predictive probability of class 1 andy-axis represents true probability of class 1. Each scatter consists of 5000 dots,
where red ones are of class 1 and blue ones are of class 0. Equal prior class probability was assumed. Expression
vectors are 1000-dimensional and normally distributed. Nonzero common pairwise correlation 0.25 was given only
to informative 50 genes.

as inVenables and Ripley(2002) (Chapter 12, p. 350). CS and RS are based equal-sized bins of the unit
interval as indicated in Section2.2. At the right bottom of each figure, CS, RS and misclassification rates
are reported.

In Figure2, we see that evaluating probabilistic classifiers based only on misclassification rate can be
misleading. Whenn = 120, PLR L2 has better misclassification rate 0.17 than the 0.20 for PLR L1. How-
ever, the probabilistic predictions of PLR L2 are hardly informative because most of them are centered
around 0.5 regardless of true probabilities; PLR L2 is poorly calibrated and too conservative. In this case,
PLR L1 is preferred.

Although the smoothed versions of many calibration curves in Figure2 lie close to the diagonal line
of the Bayesian probabilistic classifier, Figure1 shows that their predictions are not necessarily in agree-
ment with the true Bayesian probabilistic classifier in this high-dimensional setting. Approximation to the
Bayesian probabilistic classifier is a more stringent requirement than well-calibratedness or refinement.

Figure2 also shows conservativeness and anticonservativeness of probabilistic classifiers. The PLR
L2 is conservative as mentioned above. On the other hand, BCC forn = 30 shows anticonservativeness.
Its predictions tend to be closer to either 0 or 1 than the true class probabilities. This anticonservativeness
is somewhat reduced in BCCi.

Based on the 1000 replications, we plotted average CS, RS and misclassification rates in Figure3.
For each of three structures and four correlations 0.0, 0.25,0.5,0.75 for each structure, we compared the
six classifiers for training sample sizen = 30. The table corresponding to Figure3 is included in the
Supplementary Materials.
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8 K. I. K IM AND R. SIMON

Fig. 2. A calibration curve plot for “Structure.1” condition. Rows represent 3 different training sample size (n =
30,60,120) and columns represent 6 probabilistic classifiers used to compute predictive probabilities.x-axis repre-
sents predictive probability of class 1 andy-axis represents the corresponding calibration curve, a smoothed version
of actual relative frequency of class 1 for the 5000 testing samples of Figure1. In each plot, the calibration curve is
drawn by linear local regression using R loess package. Estimated CS, RS, misclassification rates (MR), and rug plot
for prediction frequencies are added at the bottom of each plot.

Overall, PLR L2 appears poorly calibrated, whereas PAM, BCCm, and BCCi appear the best calibrated
among the probabilistic classifiers evaluated. PAM appears most refined. PLR L1 and PLR L2 appear less
refined than the others except on “Structure.3” with strong correlations where their RS are substantially
better than the others. With regard to misclassification rates, BCC type classifiers and PAM are similar.
The superiority of PLR L1 on “Structure.3” with strong correlation 0.75 condition is considerable.

Misclassification rates of PLR L1 are considerably lower than the other classifiers on “Structure.3”.
It seems that the stage-wise variable selection process (Efron and others,2004) of PLR L1 enables the
method to more efficiently exclude noise variables strongly correlated with informative genes than the
other classifiers. However, it does not perform as well under other conditions with no correlations between
informative and noninformative genes.

The original BCC generally has poorer CS and RS than BCCm and BCCi. PAM seems well calibrated
and refined in most common correlation structures. However, the misclassification rate of PAM appears
large forn = 30 when there are strong correlations among genes. The poor performance of PAM with
strong correlations is not surprising because PAM assumes diagonal covariance structure. This misclas-
sification rate decreases as the training sample size increases. Tables and Figures forn = 60,120 are
included in the supplementary material available atBiostatisticsonline.

4. EVALUATION USING FITTED MULTIVARIATE NORMAL MODELS FROM REAL DATA

We also evaluated the probabilistic classifiers in a simulation study based on the colon cancer data set
of Dettling (2004). The simulated data were based on a multivariate normal model with class-specific
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Probabilistic classifiers with high-dimensional data 9

Fig. 3. Average CS, top row, RS, middle row, and MR, bottom row, over 1000 simulation replications for the 6
classifiers, PAM (×), PLR L1 (3), PLR L2 (5), BCC (©), BCCm (+), and BCCi (4) with training sample size
n = 30. Columns represent the 3 correlation structures: nonzero common pairwise correlation in thex-axis was
applied only to informative genes (“Structure.1”), informative genes and noninformative genes (“Structure.2”), and
all genes (“Structure.3”) for each simulation.

mean vectors and common intra-class covariance matrix6. For the class-specific mean vectors, we first
computed the sample mean vector for each class and shrunk the mean vectors by multiplying a shrinkage
factor. A shrinkage factor of 1 means no shrinkage. For the common covariance matrix, we used robust
estimations of6 as described byScḧafer and Strimmer(2005) in which6̂ is a convex combination of
(1 − λ) times a diagonal matrix andλ times the sample covariance matrix.λ = 0 indicates independence
among genes. The colon cancer data set consist of 2000 genes and 62 samples. For the simulation, we
generated 1000 replications using the fitted multivariate normal model with training sample size 100 and
equal class prevalence.

Figure4 shows results for a range of shrinkage factors andλ values. A small shrinkage factor yields
small inter-class differences in gene expression. A largeλ maximizes inter-gene correlations. The CS of
PLR L2 in Figure4 are much worse than with other classifiers except in the nearly null setting with a
shrinkage factor of 1/4.

The RS and misclassification rates of PLR L1 are smaller than those of other classifiers for strong
dependency conditions (λ >0.5). For weak dependency conditions (λ < 0.5), however, PLR L1 has
larger scores than the other classifiers. As was seen for the simulation in Section3, PLR L1 appears well
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10 K. I. K IM AND R. SIMON

Fig. 4. Average CS, top row, RS, middle row, and MR, bottom row, with 1000 simulation replications for the 6 clas-
sifiers, PAM (×), PLR L1 (3), PLR L2 (5), BCC (©), BCCm (+), and BCCi (4). The colon cancer data set in
Dettling (2004) was used to fit class-specific sample mean vectors and intra-class sample covariance matrix of multi-
variate normal models. Columns represent the parameters for shrinking mean vectors: “shrink.factor=1” indicates no
shrinkage and “shrink.factor=1/4” indicates shrinking the class-specific sample mean vectors by multiplying 1/4. λ
values ofx-axis represent the degree of shrinkage of sample covariance matrix.λ = 0 indicates the diagonal matrix
andλ = 1 indicates sample covariance matrix.

adapted to strongly correlated conditions utilizing the stage-wise variable selection regression approach.
However, it seems over-fit for independent or weakly correlated data.

PAM and the BCC type classifiers show similar CS, RS, and misclassification rates in most conditions.
Their scores generally increase asλ increases. For the small effect size conditions, however, the original
BCC appears to have larger scores than PAM and the 2 modifications of BCC. For more details, see Tables
in the supplementary material available atBiostatisticsonline.

5. EVALUATION USING REAL DATA

We evaluated the probabilistic classifiers using 2 real data sets, the prostate cancer data set and colon
cancer data set preprocessed inDettling (2004). The prostate cancer data consists of 6033 genes and 102
samples (50 normal and 52 tumor samples) and the colon cancer data consists of 2000 genes and 62
samples (22 normal and 40 tumor samples). We did not make any model assumptions for the 2 data sets
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Fig. 5. Calibration curves and rugs of predictive probabilities for the colon and prostate cancer data byDettling(2004).
The colon cancer data set consists of 2000 genes with 62 (22 normal and 40 tumor) samples and the prostate cancer
data set consist of 6033 genes with 102 (50 normal and 52 tumor) samples. Predictive probability of each sample was
computed based on the rest samples as the training set for learning classifiers.

but used complete LOOCV to estimate CS and RS. For each sample left out, the training set consisted
of the remaining specimens. For example, in the case of the prostate cancer data, we performed model
development 102 times to compute all class membership probabilities for the cases. Within each leave-
one-out training set, we optimized the tuning parameter using an inner loop of LOOCV to compute the
predictive likelihood for a grid of tuning parameters.

Figure5 shows the resulting cross-validated calibration curves and scatter plots of predictive proba-
bilities (rugs). For the prostate cancer data, PLR L2 is poorly calibrated, consistent with the previously
described simulations. BCC and BCCm are best calibrated and, with PAM, have the smallest misclassi-
fication rates. For the colon cancer data, BCCi and BCCm are best calibrated. PAM is reasonably well
calibrated and has small RS and misclassification rate. Although PLR L1 has the smallest RS, it is poorly
calibrated. Since the scatter of predictive probabilities are sparse in the unit interval, we used a small
number of bins (the number of samples divided by 10) to compute CS and RS.

6. DISCUSSION

Probabilistic classification is important for medical decision making. We introduced 2 evaluation measures
for probabilistic classifiers, calibration and refinement. Like the well-known bias–variance decomposition
of mean squared error, CS and RS indicate average accuracy and precision for probabilistic classifiers.
Based on these 2 criteria, we evaluated several probabilistic classifiers in the high-dimensional setting and
compared them with their misclassification rates.

Our simulation studies indicated that some published probabilistic classifiers may be very poorly cali-
brated under some conditions. They also showed that the degree of refinement and the rate of convergence
to the true Bayesian classifier can vary substantially among classifiers. Our simulations based on defined
covariance structures and based on real data were consistent and indicated that the PAM probabilistic clas-
sifier and the modified BCC probabilistic classifiers performed well under a wide range of conditions. The
L1 penalized logistic regression was superior when correlations among genes, including between noise
and informative genes, were strong but performed more poorly under other conditions. The L2 penalized
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logistic regression performed very poorly in some conditions and cannot be recommended. The original
BCC was poorly calibrated for small samples and the modified versions should be used instead.

When the common correlation matrix consists of a single correlation, the variance stabilizing constant
s0 seemsto make PAM converge rapidly to the Bayesian probabilistic classifier in our simulations. How-
ever, with independent genes, the constants0 tendsto make PAM overshrunken. In a small simulation, we
modified PAM so that thes0 value was selected by optimizing the predictive likelihood. We found that
in the independent or weak correlation condition,s0 tendedto be smaller and the modified probabilistic
classifier was better calibrated than PAM (see the supplementary material available atBiostatisticsonline).

While penalized logistic models performed very well when there were strong correlations, they did
not do in other conditions. Since the penalized logistic models utilize correlations among covariates in
model development, they appeared to overfit data sets in which the sample correlations were spurious
(Troendleand others, 2004). The effect of correlations in developing the penalized logistic models needs
further investigation.

The modifications we introduced improved the original BCC described byWright and others(2003)
especially when the effect size between 2 classes is small. The benefit of applying the explicit cross-
validation methodology to avoid possible biases due to dependency between selection procedures and
estimating steps is substantial. Both of these generalizations of the BCC can potentially be used in other
settings. As previously noted, the assumption of normal class-specific densities of the projectionst̃(−i )xi

couldbe generalized. Our method of incorporating uncertainty in the class-specific densities when using
Bayes’ theorem is also more broadly applicable to probabilistic classification.

Well-calibratedness and refinement are useful criteria for evaluation of probabilistic classifiers in prac-
tice, and we have described a cross-validation–based method for estimating the calibration and refinement
curves for a probabilistic classifier on a specific data set. It is impossible to compute the true Bayesian
classifier without knowing the true model, and hence it is not possible to compare a probabilistic classifier
to the true Bayesian classifier as in Figure1 for a real data set. Although the Bayesian classifier has a CS
of zero, probabilistic classifiers with small calibration and RS do not necessarily well approximate the
true Bayesian classifier.

The probabilistic classifiers evaluated here can be easily extended to handle more than 2 classes. PAM
and the penalized logistic models were originally developed to be able to deal with more than 2 classes.
The predictive probabilities of BCC type classifiers are of the form of the Bayes formula in (2.2) so
the polychotomous extension of BCC type classifiers is rather direct. The RS could be generalized for
polychotomous classifiers by using entropy instead variance. Generalization of the CS is however more
difficult because it is class-specific. A CS for each class can be computed from (2.9) using the probabilistic
predictions for that class of the polychotomous classifier.

Our simulation studies assumed multivariate normality of gene expression data with a common co-
variance matrix. Since PAM and the BCC type classifiers are based on a normal class-specific densities,
their performance may be affected by nonnormality. Although nonnormality–based simulation methods
have been developed (e.g.Parrishand others, 2009), we found such methods to be too slow for our
simulations with high-dimensional data and a 1000 replications. One could extend BCCm and BCCi to
incorporate nonnormality by substituting heavy-tailed densities for the normal densities in (2.2) and (2.5),
respectively. Simulated results based on common covariance structure could be also extended for class-
specific covariance structure in future. The method based on the cross-validated scores in Section5 can
be used to evaluate classifiers without any model assumptions and should be applied to evaluate candidate
probabilistic classifiers on the data sets of specific interest for use.

When the sample size is small, the average squared error (CS + RS) can also be a useful measure for
selecting among candidate classifiers. CS and RS depend on the binning method, and when the sample
size is small, computation of the scores can be unstable because of sampling variability and the small
number of bins. Alternatively, one could use kernel density estimation instead of using bins for estimating
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distribution of predictive probabilities. We included tables for the sum of CS and RS of the simulation
studies in the supplementary material available atBiostatisticsonline.

When selecting good probabilistic classifier with moderate to large samples, well-calibratedness is
the most important criteria because it measures the validity of the probabilistic forecast. Thus, in the
application to real data, we recommend; first, compute CS and RS based on the cross-validated predic-
tive probabilities as in Section5. These estimates are free of any model assumptions. By comparing
the scores and plots as in Figure4, one may select the most refined among well-calibrated probabilistic
classifiers.

7. SOFTWARE

We used R packages pamr (Hastieand others, 2009) for PAM, glmnet (Friedmanand others, 2010) for
the penalized logistic models. R codes for BCC, BCCm, and BCCi are available upon request.

SUPPLEMENTARY MATERIAL

Supplementarymaterial is available at http://biostatistics.oxfordjournals.org.
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