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Clinical Trials 2010; 0: 1–9ARTICLE

Clinical trials for predictive medicine: new
challenges and paradigms*

Richard Simon

Background Developments in biotechnology and genomics have increased the
focus of biostatisticians on prediction problems. This has led to many exciting
developments for predictive modeling where the number of variables is larger than
the number of cases. Heterogeneity of human diseases and new technology for
characterizing them presents new opportunities and challenges for the design and
analysis of clinical trials.
Purpose In oncology, treatment of broad populations with regimens that do not
benefit most patients is less economically sustainable with expensive molecularly
targeted therapeutics. The established molecular heterogeneity of human diseases
requires the development of new paradigms for the design and analysis of
randomized clinical trials as a reliable basis for predictive medicine [Simon R. An
agenda for clinical trials: clinical trials in the genomic era. Clin Trials 2004; 1:468–70,
Simon R. New challenges for 21st century clinical trials. Clin Trials 2007; 4: 167–9.].
Results We have reviewed prospective designs for the development of new
therapeutics with candidate predictive biomarkers. We have also outlined a
prediction based approach to the analysis of randomized clinical trials that both
preserves the type I error and provides a reliable internally validated basis for
predicting which patients are most likely or unlikely to benefit from the new regimen.
Conclusions Developing new treatments with predictive biomarkers for identifying
the patients who are most likely or least likely to benefit makes drug development
more complex. But for many new oncology drugs it is the only science based
approach and should increase the chance of success. It may also lead to more
consistency in results among trials and has obvious benefits for reducing the
number of patients who ultimately receive expensive drugs which expose them risks
of adverse events but no benefit. This approach also has great potential value for
controlling societal expenditures on health care. Development of treatments with
predictive biomarkers requires major changes in the standard paradigms for the
design and analysis of clinical trials. Some of the key assumptions upon which
current methods are based are no longer valid. In addition to reviewing a variety of
new clinical trial designs for co-development of treatments and predictive
biomarkers, we have outlined a prediction based approach to the analysis of
randomized clinical trials. This is a very structured approach whose use requires
careful prospective planning. It requires further development but may serve as a
basis for a new generation of predictive clinical trials which provide the kinds of
reliable individualized information which physicians and patients have long sought,
but which have not been available from the past use of post-hoc subset
analysis. Clinical Trials 2010; 0: 1–9. http://ctj.sagepub.com
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Introduction

Today is an exciting time for cancer research.
Developments in biotechnology and genomics
have provided tools for understanding cancer biol-
ogy and identification of important molecular
targets. It has become clear that cancers of the
same primary site and stage are diverse in terms of
their oncogenesis, pathogenesis and responsiveness
to therapy. It is also an exciting time for biostatis-
tics and statistical bioinformatics. Large clinical
trials to identify small average treatment effects in
heterogeneous groups of patients have resulted in
practice standards in which many patients are
treated with toxic drugs to which they do not
benefit. Biostatisticians now have the opportunity
to develop new approaches to clinical trial design
and analysis that enables a new era of predictive
medicine in which appropriate treatments can be
matched to appropriate patients in a reliable
manner.

The challenge of developing new statistical
methods for prediction problems where the
number of candidate variables (p) is much greater
than the number of cases (n) has been much
discussed. Many statistical methods address pro-
blems of inference rather than prediction and even
prediction methods such as regression analysis are
often used for purposes of inference. The objective
of developing a prediction model should be, how-
ever, to predict accurately with independent data,
not to make inferences about which variables are
statistically significant. Statistical significance and
measures of association such as hazard ratios or
odds ratios are not appropriate measures of predic-
tion accuracy [1]. Many important prediction
methods that have been developed are not directly
applicable to p>n problems [2]. It is not just that
technical problems arise, such as that the sample
covariance matrix becomes singular; but there are
also more fundamental problems of how to avoid
over-fitting and how to evaluate model perfor-
mance. Standard approaches to model develop-
ment based on maximal likelihood estimates of
regression coefficients, selecting variables using
stepwise regressions or using the sample correlation
matrix often lead to over-fitting and poor predic-
tion accuracy in p>n problems. For p>n problems
one can no longer use the concept of goodness of
fit to judge model adequacy. For example, in p>n
binary classification problems it is almost always
possible to find a hyper-plane that separates the
classes perfectly in the data used for model devel-
opment. Consequently it becomes essential to
separate the data used for model development
from the data used for evaluating model prediction
accuracy using either simple sample splitting or a

re-sampling method based on cross-validation or
the bootstrap [3].

The new challenges with regard to clinical trial
design have received less attention. The standard
paradigm for the design of phase III oncology
clinical trials prescribes use of broad eligibility
criteria and basing conclusions on the test of the
overall null hypothesis that the average treatment
effect is zero. The emphasis on broad eligibility
criteria has been based on concern that drugs found
effective in clinical trials might subsequently be
used in broader patient populations [4,5]. Some
clinical trials even abandoned formal eligibility
criteria in favor of the ‘uncertainty principle’ which
stated that if the individual physician was uncer-
tain about which treatment might be better for a
patient, then that patient was eligible [6]. The focus
on the overall null hypothesis was based on con-
cern about the multiple testing involved in the
commonly practiced exploratory post-hoc subset
analysis and the assumption that qualitative inter-
actions are unlikely [6,7]. The advice was to
perform subset analyses, but do not believe them
and the famous subset analysis of the ISIS-2 trial
based on patient astrological sign is still prominent
in the minds of many statisticians [8].

Developments in cancer biology have raised
important questions about some aspects of the
traditional approach to conducting clinical trials in
oncology. Tumors of the same stage and primary
site often differ in key ways and so emphasis on
representativeness and assumptions that qualita-
tive interactions are unlikely become less compel-
ling. Today we are challenged to develop a
paradigm of clinical trial design and analysis that
enables development of a predictive medicine that
is science based and reliable. Most of the oncology
drugs being developed have intended molecular
targets and the traditional diagnostic classification
schemes include patients whose tumors are and are
not driven by deregulation of those targets. For
some drugs, the targets are well understood and
there is a compelling biological basis for focusing
development on a restricted subset of patients
whose tumors are characterized by deregulation of
the drug target. For other drugs there is more
uncertainty about the target, and how to measure
whether the target is driving tumor invasion/pro-
gression in an individual patient [9]. It is clear that
the primary analysis of the new generation of
oncology clinical trials must in many cases consist
of more than just testing the null hypothesis of no
average effect. But it is also clear that the tradition
of post-hoc data dredging subset analysis is not an
adequate basis for predictive oncology. We need
prospective analysis plans that provide for both
preservation of the type I experiment-wise error
rate and for focused predictive analyses that can be
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used to reliably select patients in clinical practice
for use of the new regimen. These two objectives
are not inconsistent, and clinical trials should be
sized for both purposes.

The following sections summarize some of the
designs my colleagues and I have been developing
for the new generation of cancer clinical trials.
Developing new treatments with companion diag-
nostics or predictive biomarkers for identifying the
patients who benefit does not make drug develop-
ment simpler, quicker or cheaper as is sometimes
claimed. Actually it makes drug development more
complex and probably more expensive. But for
many new oncology drugs it is the only science
based approach and should increase the chance of
success. It may also lead to more consistency in
results among trials and has obvious benefits for
reducing the number of patients who ultimately
receive expensive drugs which expose them risks of
adverse events but no benefit. This approach also
has great potential value for controlling societal
expenditures on health care.

Prognostic and predictive biomarkers

Because of the complexity of cancer biology and
because of the gap between where basic research
leaves off and clinical development starts, develop-
ment of a new drug with predictive biomarkers for
identifying the patients most or least likely to
benefit from the drug is often complex. A recent
example of both the developmental complexity
and the economic impact of predictive biomarkers
was the recent finding that the anti-EGFR anti-
bodies that were approved for the treatment of
advanced colorectal cancer are not effective for
patients with K-ras mutations [10]. Although the
result was biologically compelling, the hypothesis
was not developed until the phase III trials of the
antibodies were either underway or completed and
this complicated their assessment. Nevertheless,
the results based on re-analysis of multiple pre-
viously conducted randomized clinical trials were
compelling and a press release from the American
Society of Clinical Oncology (ASCO) indicated that
using K-ras mutation testing to inform the use of
one of the anti-EGFR antibody, cetuximab, was
expected to save over 600 million dollars per year in
the US alone.

Both predictive biomarkers and prognostic bio-
markers can be useful for informing treatment
decisions. A ‘prognostic biomarker,’ is a biological
measurement made before treatment to indicate
long-term outcome for patients either untreated or
receiving standard treatment. Prognostic biomar-
kers can be useful for identifying patients who have

a good enough prognosis with standard therapy
(e.g., surgery) that they don’t require cytotoxic
chemotherapy. For example, the Oncotype DX and
MammaPrint gene expression signatures are used to
identify patients with stage I, estrogen receptor
positive breast cancer who have a very low recur-
rence risk without chemotherapy [11,12]. A ‘pre-
dictive biomarker,’ is a biological measurement
made before treatment to identify which patient is
likely or unlikely to benefit from a particular
treatment. Prognostic or predictive classifiers can
be based on a single gene or protein measurements,
such as HER-2 amplification or K-ras mutation, or
based on a score that summarizes the expression
level of multiple genes. In the following sections we
will discuss some of the issues in designing thera-
peutic clinical trials with candidate predictive
biomarker classifiers.

Design issues

The standard clinical trial approaches are based on
the assumption that qualitative treatment by subset
interaction is unlikely. This means that if the new
treatment is better than control for one type of
eligible patient, then the new treatment will be
better than control for the other subsets of eligible
patients although the degree of improvement in
outcome may differ. Most cancer drugs being
developed today are targeted at the protein pro-
ducts of specific deregulated genes. Although the
biology of drug disease interactions is often incom-
pletely understood, the heterogeneity of cancers of
the same primary site results in qualitative treat-
ment by subset interactions being likely.
Consequently, the basic underpinning of doing
broad-based clinical trials and then doing post-hoc
subset analyses, but not believing them, no longer
really is what we should be doing. How then can we
develop new drugs in a manner more consistent
with modern tumor biology and obtain reliable
information about what regimens work for what
kind of tumors and have a greater chance of success
of showing that the drugs really do work for the
right patient?

The ideal approach is prospective drug develop-
ment with a companion diagnostic [13]. This
approach, which is being used extensively today
in oncology involves: (i) Development of a prom-
ising completely specified genomic classifier using
pre-clinical and early phase clinical studies. The
classifier may be based on mutation or amplifica-
tion of a single gene, over-expression of a single
protein, or a composite index incorporating the
levels of expression of multiple RNA transcripts.
(ii) Development of an analytically validated test
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for measurement of that classifier. Analytically
validated means that the test accurately measures
what it is supposed to measure, or if there is no
gold-standard measurement, that the test is repro-
ducible and robust. (iii) Use of that completely
specified classifier and analytically validated test to
design and analyze a new clinical trial to evaluate
the effectiveness of that drug and how the effec-
tiveness relates to the classifier. The guiding prin-
ciple is that the data used to develop the classifier
should be distinct from the phase III data used to
test hypotheses about treatment effects and subsets
determined by the classifier. This is in contrast to
doing a trial with everything measured and then
analyzing it to death and deriving conclusions that
are not credible to the investigators of the scientific
community.

In cases where there is compelling biological or
phase II data that the biomarker identifies patients
who are very unlikely to benefit from the new
treatment, the phase III randomized clinical trial
may exclude such patients (Figure 1). Maitournam
and Simon [14–16] have shown that this approach
can dramatically reduce the number of randomized
patients needed compared to the traditional
approach with broad eligibility and focus on the
overall test of average treatment effect for all
randomized patients even when the test is quite
imperfect. This was the approach successfully used
for the development of Herceptin for breast cancer
where it reduced the required sample size by an
order of magnitude. With a strong biological basis
for the biomarker, it may be unacceptable to expose
test-negative patients to the new drug. With this

‘targeted’ or ‘enrichment’ design, analytical valida-
tion of test accuracy or reproducibility, biological
rationale, and perhaps phase II data provide the
basis for regulatory approval of the test if that is
required. We have developed web-based sample size
planning tools, that enable users to evaluate the
number of patients needed to randomize and to
screen in using the targeted enrichment design
compared to the traditional unselected design as
a function of the performance of the test and
the selectivity of the treatment (http://
brb.nci.nih.gov).

For settings where there is a candidate biomarker
but not sufficient basis for using it to restrict
eligibility, the biomarker stratified design is more
appropriate. This is shown in Figure 2. In this case
the RCT comparing the new treatment to control
includes both test-positive and test-negative
patients, but a prospective primary analysis plan
stipulating how the test will be used in the analysis
of treatment effect is defined in the protocol. It is
not just a matter of using stratification to balance
the randomization. Stratifying the randomization
is useful primarily because it ensures that you
actually have the test done on all the patients in
order for them to get into the trial. What really is
crucial, however, is having a prospective analysis
plan that defines how the test result will be used in
the primary analysis, how the experiment-wise type I
error will be controlled, and how the trial will be
sized for these primary objectives. The purpose of
the trial is to have the biomarker used as part of the
primary analysis, not relegated to exploratory
hypothesis generation. The purpose of the trial is

Develop predictor of response to new drug

Patient predicted responsive

New drug Control

Patient predicted nonresponsive

Off study

Figure 1 Targeted Design
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also not to modify, optimize or re-develop the
classifier if it is based on a gene expression
signature.

These stratified designs can have several kinds of
analysis plans. These have been discussed in more
detail elsewhere [17,18]. These plans can be inves-
tigated for specific clinical trials using the
web-based software on our website described
above. One of the analysis plans is a ‘fall-back’
analysis for situations where one does not have
strong confidence in the biomarker. This analysis
plan involves a two-step analysis. The first step is an
overall test of average treatment effect for all
randomized patients, but the threshold of signifi-
cance used a1 is less than the traditional 0.05 two
sided level; for example, 0.03. If the overall test is
not significant at that reduced level (a1), then one
pre-defined subset analysis in the biomarker-
positive patients at the reduced significance level
0.05 – a1 (e.g., 0.02) is permitted so that the overall
type 1 error is preserved, at the 0.05 level. Wang
et al. [19] have pointed out that this proposal is
conservative and the levels used can be sharpened
by taking into consideration the correlation
between the two tests. In taking the correlation
into account, however, one should pay attention to
the structure of the testing procedure. The subset
test is done only when the overall test is not
significant. Doing the subset test should not be
predicated on having the overall test significant at a
pre-specified level as that would not be appropriate
for the context in which lack of benefit of the new
treatment for test-negative patients should have no
bearing on the potential for substantial benefit for a
minority of test-positive patients.

The web-based programs provide sample size
planning for the various analysis plans provided.
For example, suppose that the trial is planned for

having 90% power for detecting a uniform 33%
reduction in overall hazard using a two-sided
significance level of 0.03. Then 297 events are
required instead of the 256 events needed for a
similar trial based on a two-sided significance
threshold of 0.05. If, however, the overall test of
treatment effect is not significant at the 0.03 level,
the test-positive subset will include approximately
75 events if only 25% of the patients are
test-positive and the event rates in the two strata
are equal. In that case, the test of treatment effect
performed at the two-sided .02 level for the
test-positive patients has power .75 for detecting a
50% reduction in hazard. By delaying the treatment
evaluation in the test-positive patients, 80% power
can be achieved when there are 84 events and 90%
power when there are 109 events in the
test-positive subset.

Adaptive designs

The prospective drug and companion diagnostic
test approach is being used today in the develop-
ment of many new cancer drugs where the biology
of the drug target is well understood. Because of the
complexity of cancer biology, however, there are
many cases in which the biology of the target is not
well understood at the time that the phase III trials
are initiated. We have been developing adaptive
designs for these settings. The designs are adaptive,
not with regard to sample size or randomization
ratio, but rather with regard to the subset in which
the new treatment is evaluated relative to the
control.

For example, with the adaptive threshold design
we assumed that a predictive biomarker score was
prospectively defined in a randomized clinical trial

Develop predictor of
response to new Rx  

Predicted
responsive
to new Rx 

Predicted
nonresponsive

to new Rx 

Control New Rx ControlNew Rx

Figure 2 Biomarker stratified design

Clinical trials for predictive medicine 5

http://ctj.sagepub.com Clinical Trials 2010; 0: 1–9

 at National Institutes of Health Library on September 15, 2010ctj.sagepub.comDownloaded from 

http://ctj.sagepub.com/


comparing a new treatment T to a control C. The
score is not used for restricting eligibility and no
cut-point for the score is prospectively indicated. A
fallback analysis begins as described above by
comparing T to C for all randomized patients
using a significance threshold a1, say 0.03, less
than the traditional 0.05. If the treatment effect is
not significant at that level, then one finds the
cut-point s* for the biomarker score which leads to
the largest treatment effect in comparing T to C
restricted to patients with score greater than s*.
Jiang et al. [20] employed a log-likelihood measure
of treatment effect and let L* denote the
log-likelihood of treatment effect when restricted
to patients with biomarker level above s*. The null
distribution of L* was determined by repeating the
complete analysis after permuting the treatment
and control labels a thousand or more times. If the
permutation statistical significance of L* is less than
0.05 – a1 (e.g., 0.02), then treatment T is considered
superior to C for the subset of the patients with
biomarker level above s*. Jiang et al. provided
bootstrap confidence intervals for s*. They provided
an approach to sample size planning for a trial
based on this fallback strategy and also upon a
more powerful strategy that does not utilize a
portion of the total type I error for a test of the
overall null hypothesis of average treatment effect.

The analysis plan used in the adaptive threshold
design uses a global test based on a maximum test
statistic. For the adaptive threshold design, the
maximum is taken over the set of cut-points of a
biomarker score. However, the idea of using a
global maximum test statistic is much more
broadly applicable. For example, suppose multiple
candidate binary tests, B1, . . . , BK are available at the
start of the trial. These tests may or may not be
correlated with each other. Let Lk denote the
log-likelihood of treatment effect for comparing T
to C when restricted to patients positive for
biomarker k. Let L* denote the largest of these
values and let k* denote the test for which the
maximum is achieved. As for the adaptive thresh-
old design, the null distribution of L* can be
determined by repeating the complete analysis
after permuting the treatment and control labels a
thousand or more times. If the permutation statis-
tical significance of L* is less than .05 – a1 (e.g.,
0.02), then treatment T is considered superior to C
for the subset of the patients positive for biomarker
test k*. The stability of the indicated set of patients
who benefit from T (i.e., k*) can be evaluated by
repeating the computation of k* for bootstrap
samples of patients.

Freidlin and Simon [21] also published an
adaptive signature design based on the fallback
design. If the overall treatment effect is not signif-
icant at a reduced level a1, the patients in the

clinical trial are partitioned into a training set and a
validation set. A classifier is developed in the
training set. The classifier identifies the patients
who appear to benefit from the new treatment T
compared to the control C. Freidlin and Simon
provided methods for developing this classifier
based on whole genome transcript expression
data, but the analysis approach can be used much
more broadly. For example, the training set can be
used just to select among a set of candidate single
gene/protein classifiers or to optimize a pre-defined
classifier with regard to a new platform for mea-
surement. In any case, the classifier defined on the
training set is used to classify the patients in the
validation set as either sensitive, that is, predicted
likely to benefit from the new treatment T relative
to C or not sensitive. One then compares outcomes
for the sensitive patients in the validation set who
received T versus the sensitive patients in the
validation set who received C. Let L denote the
log-rank statistic (if outcomes are time-to-event) for
this comparison of T versus C of sensitive patients
in the validation set. If the statistical significance of
L is less than 0.05 – a1 (e.g., 0.02), then treatment T
is considered superior to C for the subset of the
patients predicted to be sensitive using the classifier
developed in the training set. Freidlin et al. [22]
recently demonstrated that the power of this
approach can be substantially increased by embed-
ding the classifier development and validation
process in a K-fold cross-validation.

Predictive analysis of clinical trials

The idea of embedding the classifier development
and validation in a K-fold cross-validation is very
powerful and much more broadly applicable than
in the context described by Freidlin et al. [22] The
concept is to prospectively define an algorithm for
classifying patients as likely or not likely to have
better outcome on the new treatment T compared
to the control C. The algorithm A is applied to a set
of data D¼ {(y,z,x)} consisting of an outcome y, a
treatment indicator z, and a covariate vector x for a
training set of cases. With survival data, the
outcome y would be a pair, survival time and
censoring indicator for the case. The algorithm can
be based on whatever baseline variables are of
interest and can be of any type, for example,
Bayesian [23] or frequentist, linear model or deci-
sion tree based, etc. When the algorithm is applied
to a set of data it must completely define a binary
classifier C(x|A,D) which takes value 1 if a patient
with covariate vector x is predicted to have better
outcome on T than on C and takes value 0
otherwise. In the notation C(x|A,D) the A denotes
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the algorithm and the D denotes the dataset used to
train the algorithm A to produce the classifier C.

Let P denote the set of patients in the clinical
trial. Let P be partitioned into K disjoint subsets
P1, . . . , PK. Let the i-th training set consist of the full
set of patients except for the i-th subset; that is, the
complement of Pi in P, Di¼P�Pi. Let C(x|A,Di)
denote the binary classifier developed by applying
the algorithm A to training set Di. Use this classifier
to classify the patients in Pi as either sensitive to T or
insensitive to T. Let vj¼C(xj|A,Di) denote the
predictive classification for patients j in Pi. vj¼1 if
the patient is predicted to be sensitive to the new
treatment T relative to control C, and zero other-
wise. Since the patients in Pi were not included in the
training set Di used to train C(x|A,Di), this classification
is of a predictive type, not just evaluating goodness
of fit to the same data used to develop the classifier.
Since each patient appears in exactly one Pi, each
patient is classified exactly once and that classifica-
tion is done with a classifier developed using a
training set not containing that patient.

Let Scv denote the set of patients j for whom
vj¼1, that is, who are predicted to be sensitive to
the new treatment. We can evaluate the predictive
value of our algorithm by comparing outcomes of
the patients in Scv who received treatment T to the
outcomes for the patients in Scv who received the
control C. Let L(Scv) denote a measure of difference
in outcomes for that comparison; for example, a
log-rank statistic if outcomes are time-to-event. We
can generate the null distribution of L by repeating
the entire analysis for thousands of random
permutations of the treatment labels. This test can
be used as the primary significance test of the
clinical trial to test the strong null hypothesis that
the new treatment and control are equivalent for all
patients on the primary endpoint of the trial.
Alternatively, it can be used as a fall-back test as
described in the previous sections.

Having rejected the strong null hypothesis
described above, the application of the algorithm
A to the full dataset P provides a decision tool
C(x|A,P) that can be used by physicians in
deciding which of their patients should receive
the new regimen T. If this classifier is used for
patients whose distribution of covariate vectors
is the same as the patients P in the clinical
trial, then the expected t year survival can be
estimated as

Pr½S>tjP, A� ¼ fnsensKMðt, Scv \ T Þ

þ ðn� nsensÞKMðt, �Scv \ CÞg=n, ð1Þ

where n denotes the total number of patients in the
trial, nsens denotes the number of patients in Scv,

KMðt, Scv \ TÞ is the Kaplan Meier estimate of sur-
vival beyond time t for patients in Scv who received

treatment T, and KMðt, �Scv \ CÞ denotes the Kaplan
Meier estimate of survival beyond time t for
patients in the complement of Scv in P, that is, the
patients predicted to be nonsensitive based on the
cross-validation, who received treatment C.

The predicted outcome (1) using the algorithm
can be compared to the expected outcome based on
the standard analysis which indicates that all
patients should receive the new treatment T if the
average treatment effect is significantly better
compared to the control C, and if not, then no
patients should receive T. If the usual overall
log-rank test is significant at the 0.05 level, then
the expected outcome for this standard analysis
would be KMðt, P \ TÞ. Otherwise, the expected
outcome would be KMðt, P \ CÞ. Depending on the
outcome of the clinical trial, the expected outcome
can be compared to that given by (1) for evaluating
whether the algorithm provides improved utility as
a decision tool for applying the results of the trial to
individual patients. Improved utility may result
from identifying a subset of patients who benefit
from the new treatment in cases where the average
treatment effect is not significant or from identify-
ing a subset of patients who do not benefit from the
new treatment in cases where the average treat-
ment effect is significant.

Confidence intervals for the performance of
classifier based treatment assignment (1) can be
obtained by repeating the analysis with bootstrap
samples of the patients P. For a given nonpara-
metric bootstrap sample, the entire analysis is
repeated. The algorithm A is the same, but the
resulting classifier and the sensitive Scv subset
subset changes. For each bootstrap sample, expres-
sion (1) is re-computed and the empirical distribu-
tion of the values of (1) provide a bootstrap
confidence interval. Confidence intervals for the
performance of the standard analysis method, that
is, either KMðt, P \ TÞ or KMðt, P \ CÞ can be
computed by standard frequentist methods.

Applying algorithm A to bootstrap samples of
the patients P in the trial also provides information
about the stability of the subset who benefit from
the new treatment T. Although the precision of the
identification of this sensitive subset will be limited
by the size of the clinical trial, information about
specificity of treatment benefit may be substan-
tially greater than with standard methods in which
all future patients are presumed to benefit or not
benefit from one treatment or the other. The
effectiveness of the decision tool based on
C(x|A,P) will, however, depend on the algorithm
A. Algorithms that over-fit the data will provide
classifiers that make poor predictions and the
expected outcomes may be substantially worse
than using the traditional approach. Algorithms
based on Bayesian models with many parameters
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and noninformative priors may be as prone to
over-fitting as frequentist models with many para-
meters. The effectiveness of an algorithm will also
depend on the dataset, that is, the unknown truth
about how treatment effect varies among patient
subsets. A strong advantage of the proposed
approach, however, is that an almost unbiased
estimate of the performance of a defined algo-
rithm can be obtained from the dataset of a clinical
trial. This is clearly preferable to performing explor-
atory analysis on the full dataset without
any cross-validation, reporting the very misleading
goodness of fit of the model to the same data
used to develop the model, and cautioning that
the results need testing in future clinical trials.
Clearly, many aspects of the prediction paradigm
introduced here for the design and analysis of
clinical trials warrant and require further
development.

Conclusion

Developments in biotechnology and genomics
have increased the focus of biostatisticians on
prediction problems. This has led to many exciting
methodologic developments for predictive model-
ing where the number of variables is larger than the
number of cases. Heterogeneity of human diseases
and new technology for characterizing them pre-
sents new opportunities and challenges for the
design and analysis of clinical trials. In oncology,
treatment of broad populations with regimens that
do not benefit most patients is less economically
sustainable with expensive molecularly targeted
therapeutics. The established molecular heteroge-
neity of human diseases requires the development
of new paradigms for the use of randomized clinical
trials as a reliable basis predictive medicine [4,5].
We have presented here prospective designs for
the development of new therapeutics with candi-
date predictive biomarkers. We have also outlined
a prediction based approach to the design and
analysis of randomized clinical trials which appears
greatly superior to post-hoc subset analysis and
may serve as a starting point for further research.
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Appendix: Questions from the audience

[QUESTION]:

Leon Chiu from Bristol-Myers-Squibb. You indi-
cated in your talk the importance of having a
certain level of belief in your classifier in using
optimal designs. That belief would be based
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perhaps on some Phase II or a significant biological
argument. For the K-ras mutation there is a
substantial amount of literature so there is
plenty of evidence, but in new drug development
that may not be the case. How much evidence
is necessary to have a reasonable level of belief
in your classifier?

[ANSWER]:

For oncology I believe that predictive biomarkers
for new drug development will generally not be
black-box classifiers from gene expression profiling,
but will be biologically based on genomic changes
like K-ras mutations. I agree with you though that
the complexity of cancer biology and uncertainty
about drug mechanism often makes it very difficult
to know the correct biomarker with great confi-
dence prior to initiating the phase III trial.
Compelling biological or empirical evidence
would be necessary for using the biomarker to
restrict eligibility, but that level of confidence is
not necessary for most of the other designs I
described. Many of the designs are motivated by
the lack of that level of confidence, utilize a fallback
analysis plan that preserves type I error and
provides the opportunity to benefit from the use
of classifiers for which you have less than complete
confidence. There is a cost in the design of
adequate phase III trials using predictive biomar-
kers, and so some reasonable degree of confidence
should be present for their inclusion in the primary
analysis plan.

[QUESTION]:

Nancy Geller from the National Heart, Lung and
Blood Institute (NHLBI). I’d like to pursue your last
point about embedding subset selections in
cross-validation. Suppose I just do an ordinary
clinical trial, not anything particularly sexy and
I embed subset selection in cross-validation. Are
you now giving me freedom to dredge without
enumerating even what variables I would do the
subset analysis on?

[ANSWER]:

In order to apply the method I’ve proposed, the
‘data dredging’ algorithm must be completely
defined in advance. Otherwise, it cannot be applied

in a K-fold cross-validation manner. The variables
need to be specified in advance and the way those
variables will be combined or modeled for the
subset analysis needs to be specified in advance.
The entire way the subset analysis will be con-
ducted must be extensively defined to result in a
binary classifier, C(x|A,D) using the notation I
presented, which given a covariate vector x pro-
vides an indication of whether the patient is
predicted to benefit from the new treatment T
relative to C or not. The algorithm must be
specified in this way so that it can be applied K
times in a K-fold cross-validation. There has to be a
completely defined algorithm which can be applied
from scratch on each of the K training sets defined
in the cross-validation. The x vector could just
consist of clinical and histopathologic covariates; it
doesn’t have to involve genomics at all.

[QUESTION]:

Roger Day from University of Pittsburgh. In a
way, maybe every drug will end up being an orphan
drug, and the question is, how can you do drug
development when for each drug the potential
patient population becomes much smaller? Is there
now a much bigger role for, for example, nonprofit
foundations or AHRQ treatment evaluations that
take over because the companies really can’t muster
the incentives to do this kind of research, and it
becomes more difficult for them to have profitable
products?

[ANSWER]:

I think it’s too early to tell whether every drug
will be an orphan drug. My own guess is it won’t be
that way. When people talk about personalized
medicine they’re thinking that treatment or pre-
vention decisions should be personalized based on
the individual genome. For therapeutics in oncol-
ogy, I don’t think that’s the way it’s going to work
out. More likely cancers will be classified based on
the oncogenic mutations and de-regulated genetic
pathways that drive their growth and invasion.
Although tumors are quite individualized in terms
of all the mutations they contain, many of these
mutations are late events that reflect genomic
instability and do not have important phenotypes.
For most primary sites, I believe that the number of
relevant categories will be quite limited.
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