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Summary 
 
In this chapter we distinguish the use of predictive biomarkers from surrogate endpoint 

biomarkers. We also distinguish the use of predictive biomarkers for selecting patients 

for pivotal clinical trials of a new drug from the use of predictive biomarkers for 

optimizing the utilization of an existing drug. We summarize the key steps in the 

development of predictive biomarker classifiers for use in new drug development. We 

discuss the design of targeted clinical trials in which a predictive biomarker classifier is 

used to restrict entry and present results comparing the efficiency of targeted trials 

relative to standard randomized pivotal trials. We also discuss alternative designs in 

which the predictive biomarker classifier is not used to restrict entry of patients but is 

used to prospectively define an analysis plan for evaluated the new drug in classifier 

negative and positive patients. The development of predictive biomarker classifiers can 

be subjective, but pivotal trials should test hypotheses about the effectiveness of a new 

drug in subsets defined in a completely pre-specified manner by a predictive classifier 

and should not contain any subjective components. The data used to develop the 

predictive classifier should be distinct from the data used to evaluate a new drug in 

subsets determined by the classifier. The purpose of the pivotal trial is to evaluate the 

new drug in patient groups defined prospectively by the predictive classifier, not to refine 

or re-evaluate the classifier or its components. New drug development should move from 

a correlative science mode to a predictive medicine mode.  

 
 
 
 
 
 



 
1. What is a Predictive Biomarker? 
 
 

A “biomarker” is any measurement made on a biological system. Biomarkers are used for 

very different purposes, and this often leads to confusion in discussions of biomarker 

development, use and validation. In its most common usage a biomarker is a 

measurement that tracks disease pace; increasing as disease progresses, holding constant 

as a disease stabilizes and decreasing as disease regresses. There are many uses for such 

endpoint biomarkers in developmental studies for establishing proof of concept, dose 

selection, and identifying the patients most suitable for inclusion in pivotal trials. In some 

cases there is also interest in using and endpoint biomarker in pivotal trials as a surrogate 

for clinical outcome. The standards for validation of a surrogate endpoint are stringent; 

however.  It is not sufficient to demonstrate that the biomarker value is correlated with 

clinical outcome. It is necessary to show that treatment that impacts the biomarker value 

also impacts clinical outcome. This requires analysis of a series of randomized clinical 

trials, showing that the differences in biomarker change between the randomized 

treatment group is concordant with the differences in clinical outcome 1-3. These 

standards are stringent because of the key role of the pivotal trial endpoint in claims. 

There are well known examples where biomarkers of disease pace were not valid 

surrogate endpoints pf clinical outcome. Because of the stringency of the requirements 

for establishing a biomarker as a valid surrogate endpoint, it is often best to perform 

pivotal totals using standard measures of clinical outcomes as and endpoint.  

 



 Biomarkers can be pre-treatment measurements used to characterize the patient’s disease 

in order to determine whether the patient is a good candidate for a treatment. These are 

called predictive biomarkers. The term predictive denotes predicting outcome to a 

specific treatment. This is in contrast to prognostic biomarkers which are correlated with 

outcome of untreated patients or with the survival of the heterogeneously treated patients. 

Most prognostic factor studies are based on convenience samples of patients for whom 

tissue is available. The studies are often not focused on a particular medical decision 

facing physicians and hence the resulting prognostic actors identified have no therapeutic 

relevance and are not widely used. The greatest advantage of using tissue specimens 

derived from patients in a clinical trial is that it tends to restrict the stuffy to a medical 

context from which therapeutically relevant biomarkers can be developed. The fact that 

patients in clinical trials are uniformly staged and adequately followed is an important 

bonus 

 

2. Development of Predictive Biomarker Classifiers 

 

In this chapter we will focus on the use of predictive biomarker classifiers in the design 

of pivotal clinical trials. The term classifier indicates that the biomarker can be used to 

classify patients. We will generally be interested in classifying patients as either good 

candidates for the new drug or not good candidates, i.e. binary classifiers. If we were 

advising patients about their likelihood of benefit from a treatment, and probability of 

benefit or an index might be more informative than a binary classifier. The development 

of such a predictor would, however, require much more extensive data than generally 



available prior to performing the pivotal trial (s). We shall restrict ourselves here to 

binary classifiers that can be used to select patients for inclusion or exclusion from the 

pivotal trials.  

 

Predictive binary classifiers can be of many types. The simplest might reflect, for 

example, presence or absence of a point mutation in the EGFR gene, or amplification of 

the HER2 gene. At the other extreme, the binary classifier may be based on the 

expression levels of a large number of genes. In such cases the component genes are 

generally selected for their correlation with response or patient outcome. The component 

genes do not themselves constitute the classifier. The individual gene expression levels 

must be combined in some mathematically determined manner.  

 

There are two kinds of gene expression based classifiers that are frequently used. The 

first is based on a weighted average of expression with tumor response or patient 

outcome. A training set of data is used consisting of pre-treatment expression levels for 

patients treated with the drug. The signature genes that are differentially expressed 

between the responders and non-responders are identified. A weighted average of the 

expression levels for the signature genes is adopted as a predictive index. Many of the 

commonly used classifier types are based on such weighted averages. These include 

Golub’s weighted voting classifier 4, the combined covariate predictor 5, Fishers linear 

discrimant and diagonal linear discrimant analysis 6, support vector markers with inner 

product kernel 7, naive Bayes classifier 8, and perceptrons 9. The methods differ in how 

they define the weights. Using the training date to define the eights and threshold results 



in a completely specified binary classifier. The predictive accuracy of the binary 

classifier must be evaluated on a separate set of data.  Using the same data to develop a 

classifier and evaluate its accuracy results in very misleading results unless special 

methods of complete cross-validation methods are used 10. Unfortunately, cross 

validation methods are used improperly in many cases 11.  

 

The second kind of binary classifier widely used for gene expression data are the non-

parametric distance based methods including nearest neighbor, k-nearest neighbor, 

nearest centroid and shrunken centroid classifiers 6, 12.  These methods also use signature 

genes selected based on the correlation of their expression levels with response or 

outcome. A distance metric is adopted for measuring the similarity or dissimilarity 

between expression profiles with regard to the signature genes. Usually Euclidean 

distance or correlation distance is used. If a new patient is to be classified based on a 

training set of expression profiles of patients who were previously treated, one finds the 

training sample to which that the new patient profile is most similar (smallest distance). 

That training sample is called the “nearest neighbor” of the profile of the new patient. If 

that nearest neighbor was a responder, then the new patient is predicted to be a responder; 

if the nearest neighbor was a non-responder, then the new patient is predicted to be a non-

responder. The k-nearest neighbor algorithm is similar to except a majority vote of the 

classes of the k closest profiles to that of a new patient are used for prediction. Nearest 

centroid and shrunken centroid methods are similar. The comments made in the previous 

paragraph about use of independent data to evaluate prediction accuracy apply equally to 

these non-parametric distance based classifiers.  



 

Although many other types of binary classifiers have been developed and strong claims 

for them are often made by their developers, independent evaluation have generally 

concluded that other more complex methods rarely outperform weighted average based 

methods or non-parametric distance based methods.  For any training set of data it is 

recommended here to develop weighted average based classifiers and use either complete 

cross-validation or a separate test set of data to evaluate prediction accuracy of these 

methods and select one for use n pivoted trials. The BRB-Array Tools Software 13 

provides a convenient integrated environment for identifying signature genes, developing 

weighted average and non-parametric distance based classifiers, and validly evaluating 

prediction accuracy. The software is available at http://linus.nci.nih./gov/brb. Additional 

details about the development of predictive biomarker classifiers based on gene 

expression data are available from 14-16.  

 

 

3. Use of Predictive Biomarkers in the Design of Pivotal Trials 

 

The objective of a pivotal clinical trial is to evaluate a new drug, given in a defined 

manner, has a medical utility for a defined hypothesis about treatment effectiveness in 

specified patient population groups, they are not exploratory laboratories. The role of a 

predictive biomarker classifier is to specify the population of patients. The process of 

biomarker classifier development may be exploratory and subjective, but the use of the 

classifier in the pivotal trial must not be. If the data from a pivotal trial is to be used to 

http://linus.nci.nih./gov/brb


develop or refine a biomarker classifier, then treatment hypotheses involving that 

classifier should be tested in a separate pivotal trial. One exception is the adaptive trial o 

the Friedlin and Simon 17 where some data from a pivotal trial is used to develop a 

classifier and that data is excluded from the data for that same pivotal trial that is used to 

test a treatment hypothesis in the subset of  patients defined as positive by that classifier.  

 

Figure 1 depicts the process of developing a predictive biomarker classifier and using it 

to restrict eligibility to a pivotal trail. The purpose of the trial is to evaluate the new 

treatment regiment in the patients defined as classifier positive by the classifier. The 

purpose is not to re-evaluate, redevelop or refine the classifier. The purpose of the study 

is to evaluate the new treatment regimen in classifier positive patients, not to validate the 

predictiveness of the classifier. If the treatment is shown to be effective there is a 

reproducible assay for classifier positively, then there is a medical utility for approval of 

the treatment in classifier positive patients even if the treatment hasn’t been tested in 

classifier negative patients. In cases where the classifier is biologically based on the 

target of the drug, it may not be ethically appropriate to treat classifier negative patients. 

Even where the classifier is empirically based it is questionable whether registration of a 

treatment for a set of patients in whom medical utility has been established should be 

contingent on evaluation on evaluation of the treatment in a different set of patients. 

Whether the trial design shown in Figure 1 is sufficient for licensing the classifier itself is 

somewhat more complex and depends on the regulatory agency, specific regulatory 

language and agency interpretations.  A classifier for which a reproducible assay exists 

itself would seem to have medical utility if it identifies a set of patients.  



 

4. Efficiency of Targeted Designs 

 

Simon and Maitournam 18-20 evaluated the efficiency of the targeted design shown in 

Figure 1 relative to the conventional broad randomization design in which the classifier is 

not used to restrict entry. One measure of relative efficiency is the number of randomized 

patients required for the targeted design relative to the conventional design. A second 

measure of efficiency is the number of patients required for screening in the targeted 

design relative to the number required to randomize for the standard design. If  

randomized patients are required for the targeted design and 

Tn

γ +  is the fraction of 

patients who are classifier positive, then approximately /Tn γ +  patients are required to be 

screened for the targeted design. For example, suppose half as many patients are required 

for randomization with the targeted design and compared to the standard design but only 

25% of the patients are classifier positive. The twice as many patients will be required for 

screening for the targeted design that for randomization with the standard design.  

 

Relative efficiency of the targeted and standard designs depends on the specificity of 

benefit of the new treatment for classifier positive patients and the prevalence of the 

classifier positivity. The specificity of the treatment benefit can itself be decomposed into 

specificity of treatment benefit for the biological state measured by the assay and 

measurement accuracy of the assay. For example, the biological state may be an 

amplification of a gene and it is possible that treatment benefit for classifier negative 

patient results both from some treatment benefit in patients without the amplification and 



from the false negative assays for gene amplification.  Usually there will not be separate 

estimates for these components of treatment specificity and hence no real value for 

considering them separately in planning a pivotal trial. Here, we will use the composite 

effect.  

 

Simon and Maitournam 18, 21 showed that for binary endpoint trials that the ratio of 

number of patients required for the randomization in the standardized trial compared to 

the targeted trial is approximately  
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where γ +  denotes the proportion classifier positive and /δ δ− +  is the ratio of the 

treatment effect for classifier negative patients to the treatment effect for classifier 

positive patients.  The parameter f is generally close to 1 unless the control response ratio 

is very low. In cases where benefit of the new treatment is limited to classifier positive 

patients, 0δ− =  and the formula simplifies to 2/f γ + .  If the treatment is half as effective 

in classifier negative patients as classifier positive patients then the formula simplifies to 

( )24 / 1f γ + +  . Table 1 shows the ratio of the number of randomized patients using the 

formula with f=1.   

 



Since the number of patients required to screen for the targeted trial is /Tn γ + , the 

screened ratio of efficiency is  
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If 0δ− =  this equals /f γ + . If the treatment is half as effective for classifier negative 

patients as for classifier positive patients then (2) equals ( )24 / 1fγ γ+ + + .  The screened 

ratio approximate efficiency for these two cases is also illustrated in Table 1.  

 

When the proportion of classifier positive patients is less than one half, the number of 

patients required for randomization in the targeted design is much smaller than for the 

standard design, at least by a factor of two, regardless of whether the treatment effect is 

completely specific for classifier positive patients or whether the classification negative 

patients benefit half as much as the positive patients. In the former case, however, the 

targeted design also requires many fewer patients to screen than required for 

randomization with the standard design. If, however, the treatment effect for classifier 

negative patients is half that for the classifier positive patients, then the targeted design 

may require more patients to screen that are required for randomization with the standard 

design. Hence, this targeted design is most appropriate when the treatment benefit is 

expected to be quite specific for classifier positive patients. When the proportion of 

patients who are classifier positive exceeds 50%, the efficiency advantages of the 

targeted trial are reduced.  



 

A web based interactive program for planning targeted clinical trials is available at 

http://linus.nci.nih.gov/brb  It provides a comparison of the targeted design to standard 

design with regard to number of randomized and screened patients. It uses more accurate 

formulas than the approximations utilized above and also provides the comparison for 

studies in which there is a time-to-event endpoint such as survival or progression-free 

survival. Figure 2 shows a screen shot of the web page of input dialog for the time-to-

event calculation. For the example shown, the median survival for the control group is 1 

year and 25% of the patients are classifier positive. For power calculations it is postulated 

that the new treatment reduces the hazard of death by 50% for the classifier positive 

patients and is ineffective for the classifier negative patients. A screen shot of the output 

of the program is shown in Figure 3. With accrual of 100 patients per year and a follow-

up period of two years after end of accrual, a targeted trial of 4.27 years would randomize 

107 target positive patients and achieve power 0.90. In contrast, an untargeted trial of 

4.27 years of accrual would randomize 427 patients but have statistical power only 0.45 

because the overall treatment effect is so diluted by the lack of treatment effect in the 

75% of patients who are classifier negative. In this setting the targeted trial is very 

advantageous. If however, the treatment reduced the hazard of death by 20% for classifier 

negative patients, then the statistical power of the untargeted design after 4.27 years of 

accrual is 0.925, very similar to that of the targeted design (results not shown). In that 

circumstance, the targeted design is not advantageous. The targeted design is most 

valuable when treatment benefit is limited to target positive patients and the assay for 

measuring the classifier is quite accurate.  

http://linus.nci.nih.gov/brb


 

5. Stratified designs 

 

Simon and Wang 22have described clinical trial designs in which both classifier negative 

and classifier positive patients are randomized and the classifier is measured. In this case, 

it is important to have a pre-defined analysis plan for using the classifier information. It is 

not sufficient to merely “stratify” the randomization process by the classifier. Simon and 

Wang propose dividing the usual 5% type I error into a portion overallα  for comparing the 

treatment groups overall for all randomized patients and a portion .05 overallα−  for 

comparing the treatment groups in the pre-defined subset of patients who are classifier 

positive. The subset test would only be performed if the overall test is not significant at 

the reduced threshold overallα .  A web based interactive program for planning stratified 

clinical trials of this type is also available at http://linus.nci.nih.gov/brb .  
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Figure 1 
 
 

 
 
 



 
 

Figure 2 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 3 

 
 
 
 

 
 

 
 



 
 
 
 

Table 1 
 
 
 
 
 

Proportion 
Classifier Positive 

 

/ 0δ δ− + =  / .5δ δ− + =  

 Randomized for 
Standard Design / 
Randomized for 
Targeted Design 

Randomized for 
Standard Design / 

Screened for 
Targeted Design 

Randomized for 
Standard Design / 
Randomized for 
Targeted Design 

Randomized for 
Standard Design / 

Screened for Targeted 
Design 

.5 4 2 1.8 0.89 

.4 6.25 2.5 2.0 0.82 

.3 11.1 3 2.4 0.71 

.2 25 5 2.8 0.56 

.1 100 10 3.3 0.33 
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