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Challenges in Effective Use of DNA 
Microarray Technology

• Design & Analysis are bigger challenges than data 
management. 
– Much greater opportunity for misleading yourselves and 

others than traditional single gene/protein studies 
• Limited availability of experienced statistical 

collaborators
• Predominance of hype, mis-information, and 

dangerous methods promulgated by biomedical 
scientists as well as professional 
statistical/computational scientists 

• Predominance of flashy software that encourages 
misleading analyses 



Objectives of BRB-ArrayTools

• Provide biomedical scientists access to 
statistical expertise for the analysis of 
expression data
– training in analysis of high dimensional data 
– access to critical assessment of methods 

published in a rapidly expanding literature



BRB-ArrayTools
• Integrated package
• Excel-based user interface

– Doesn’t use Excel analyses
– state-of-the art analysis methods programmed in R, Java & Fortran
– Data not stored as worksheets

• >1000 arrays and 65000 genes per project

• Based on continuing evaluation of validity and usefulness of 
published methods
– Methods carefully selected by R Simon
– Not a repository like Bioconductor

• Publicly available for non-commercial uses from BRB 
website:



BRB-ArrayTools
• Not tied to any database

– Importer for common databases and platforms
• MadB, GenePix, Agilent, MAS5/GCOS
• Imports .cel files
• Import wizzard for any files output by image analysis program

– Import (collate)
• Expression data (eg separate file for each array)
• Spot (probeset) identifiers
• Experiment descriptor worksheet

– Rows correspond to arrays
– Columns are user defined phenotypes to drive the analyses

» Can be updated during analysis
– Imported data saved as project folder containing project workbook and 

binary files
• Project workbook can be re-opened in Excel at any time
• Output saved in html files in output folder



BRB-ArrayTools

• Highly computationally efficient
– Non-intensive analyses in R
– Intensive analyses in FORTRAN

• eg BRB-AT version of SAM is 9x + more efficient 
than Bioconductor or web based versions

– And more accurate

• Extensive gene and pathway annotation 
features



BRB-ArrayTools

• Plug-in facility for user written R functions
• Message board and listserve
• Extensive built-in help facilities, tutorials, 

datasets, usersguide, data import and 
analysis wizzards, sample statistical 
analysis sections, …



BRB-ArrayTools Archive of Human 
Tumor Expression Data

• http://linus.nci.nih.gov/brb/DataArchive.html
• Archive of BRB-ArrayTools zipped project 

folders of expression profiles of human tumors 
and associated clinical/pathological descriptors
– Published data

• Easy way to archive your data and to analyze 
someone else’s data
– Download, unzip, open in Excel

http://linus.nci.nih.gov/brb/DataArchive.html


• Design and Analysis of DNA Microarray 
Investigations
– R Simon, EL Korn, MD Radmacher, L McShane, G 

Wright, Y Zhao. Springer (2003) 



Brief Review of Microarray 
Technology



Microarray Expression Profiling

• Would like to know the concentration of 
each protein in a cell
– Proteins do the work of cells
– Proteins have many shapes and parallel assays 

for all proteins have not been developed



Microarray Expression Profiling

• One gene transcription produces one mRNA 
molecule produces one protein molecule

• # genes ≅ # mRNA types
• mRNA molecule can be reverse transcribed into 

DNA and will bind only to the gene from which it 
was originally transcribed (to which it is 
homologous)



Microarray Expression Profiling

• Estimates abundance of mRNA molecules 
of each type present in cells
– Assay not sensitive enough to analyze single 

cells so estimate is for average of sample of 
cells

• Microarray contains a spot of DNA 
corresponding to each gene
– Spots are in known fixed positions
– Spots contain fewer nucleotides that the full 

gene





Gene Expression Microarrays

• Permit simultaneous evaluation of expression 
levels of thousands of genes

• Main platforms
– cDNA printed on glass slides
– Externally synthesized oligos printed on glass slides 
– Affymetrix GeneChips
– Oligos in-situ synthesized on glass slides
– cDNA printed on nylon filters



cDNA Array







cDNA & Printed Oligo Arrays

• Each gene represented by one spot 
(occasionally multiple)

• Two-color (two-channel) system
– Two colors represent the two samples 

competitively hybridized
– Each spot has “red” and “green” measurements 

associated with it





[Affymetrix] Hybridization
Oligo Array



Affymetrix GeneChips

• Contain multiple probes (spots) per gene
• Probes corresponding to the same gene 

must be processed to give a probe-set 
summary intensity for each gene

• Single label system
– Higher reproducibility makes use of dual-labels 

unnecessary



Affymetrix Arrays

• Single sample hybridized to each array
• Each gene represented by a “probe set”

– One probe type per array “cell”
– Typical probe is a 25-mer oligo
– 11-16 PM:MM pairs per probe set

(PM = perfect match, MM = mismatch)



Source: Affymetrix website



Source: Affymetrix website





Biological question
Differentially expressed genes
Sample class prediction etc.

Testing

Biological verification 
and interpretation

Microarray experiment

Estimation

Experimental design

Image analysis

Normalization

Clustering Discrimination
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Image Analysis 

• Intensity is measured at fixed set of locations 
(pixels) arranged in rectangular patterns on the 
solid surface

• The distance between pixels is much less than the 
distance between probes

• The scanning microscope doesn’t know where the 
probes are; it just measures intensities at a fine 
grid of pixels



Image Analysis
1. Gridding: isolate probes

2. Segmentation: 
classification of pixels either 
as signal or background. 
3. Information extraction:  
calculate signal intensity 
background and quality 
Measures for each channel at 
each probe



Need for Normalization for 
Dual-Channel Array Data

• Unequal incorporation of labels 
– green better than red

• Unequal amounts of sample 

• Unequal signal detection



• Dual-channel arrays are normalized 
separately to adjust for dye bias

• Affymetrix arrays are normalized relative to 
each other to equalize intensities



What Genes To Use For Normalization?

• Constantly expressed genes (house-keeping)
• All genes on the array



Global Normalization for Dual-
Channel Arrays

• Assume Ri ~ k Gi
for all genes i in the normalization set

• Median-centered estimate
– k=median{Ri/Gi}
– Ri’ = Ri/k



After Median Centering
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M vs. A
M = log2(R / G)
A = log2(R*G) / 2



Normalization - lowess
• Global lowess



Normalisation - print-tip-group



M vs. A - after print-tip-group normalization



Normalization for Affymetrix Arrays

• Need
– Variations in amount of sample or 

environmental conditions
– Variations in chip, hybridization, scanning



Normalization is needed to minimize non-biological 
variation between arrays



Normalization for Affymetrix Arrays

• Genes used
– Affymetrix identifies housekeeping genes for some of 

their new arrays
• Methods

– Scale each array so that it’s median signal equals a 
target value

– Scale each array so that it’s median signal equals the 
median for a reference array

– Intensity dependent normalization using lowess
smoother based on ratios relative to a reference array



Spot Filtering Strategies

• Exclude if Signal < threshold in either channel

• Exclude if Signal < threshold in both channels

• If Min(R,G) < threshold 
– and Max(R,G) < threshold then exclude
– Otherwise replace Min(R,G) by threshold  



Gene Filtering Strategies
• “Bad” values on too many arrays.

• Not differentially expressed across arrays.
– Proportion of arrays < 1.5 fold different from median for 

gene <20%



Affymetrix Arrays:  
Probe Set Summaries

MAS 4 Algorithm

• AvDiffi = Σj (PMij-MMij) / ni

for each probe set i
Summation over ni =16-20 probes in probe set i

Excludes probe pairs that are more than 3 standard 
deviations from the average difference



Affymetrix Arrays:  
Probe Set (Gene) Summaries

MAS5 Algorithm

• Signal = Σwij (PMij-MMij)+

Uses Tukey biweights that continuously down-
weights probe pairs whose difference is far from the 
average difference

Negative probe pair differences are modified to make 
them non-negative

(PMij-MMij)+ = max{ 0, PMij-MMij}



Data for one probe set, one array

Use of PM/MM differences attempts to eliminate background 
and cross-hybridization signals 



Data for one gene in many arrays



Li-Wong Model

  A multiplicative model for each gene:
     

:  summary expression index for probe set on array k ,
:  probe sensitivity index for probe pair j   
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RMA

• Estimate the background parameters 
globally for each array

• Estimate expression summaries θk for each 
probe set and each array k using Tukey’s
median polish algorithm



Affymetrix Present/Absent Calls

• Based on Mann-Whitney rank test of the 
hypothesis that the probe specific PM-MM 
differences are independent observations 
with median value zero



Design of Microarray Studies



Myth

• That microarray investigations should be 
unstructured data-mining adventures 
without clear objectives



Myth

• That the greatest challenge is managing the mass 
of microarray data

• Greater challenges are:
– Effectively designing and properly analyzing 

experiments that utilize microarray technology
• Distinguishing hype and misinformation from sound 

methodology
• Avoiding software developed by individuals with no 

qualifications for determining valid methodology

– Organizing and facilitating effective interdisciplinary 
collaboration with statisticians, clinicians & biologists



Myth

• That data mining is an appropriate paradigm 
for analysis of microarray data
– find interesting patterns that give clear answers 

to questions that were never asked

• That planning microarray investigations 
does not require “hypotheses” or clear 
objectives



• Good microarray studies have clear 
objectives, but not generally gene specific 
mechanistic hypotheses

• Design and analysis methods should be 
tailored to study objectives



Good Microarray Studies Have 
Clear Objectives

• Class Comparison
– Find genes whose expression differs among 

predetermined classes
• Class Prediction

– Prediction of predetermined class (phenotype) using 
information from gene expression profile

• Class Discovery
– Discover clusters of specimens having similar 

expression profiles
– Discover clusters of genes having similar expression 

profiles



Class Comparison Examples

• Establish that expression profiles differ 
between two histologic types of cancer

• Identify genes whose expression level is 
altered by exposure of cells to an 
experimental drug



Class Prediction Examples

• Predict from expression profiles which 
patients are likely to experience severe 
toxicity from a new drug versus who will 
tolerate it well

• Predict which breast cancer patients will 
relapse within two years of diagnosis versus 
who will remain disease free



Class Discovery Examples

• Discover previously unrecognized subtypes 
of lymphoma

• Identify co-regulated genes



Design Considerations

• Sample and control selection 
• Levels of replication
• Allocation of samples to (cDNA) array 

experiments
• Number of biological samples



• Biological Heterogeneity in Population
• Specimen Collection/ Handling Effects

– Tumor: surgical bx, FNA
– Cell Line: culture condition, confluence 

level
• Biological Heterogeneity in Specimen
• RNA extraction
• RNA amplification
• Fluor labeling
• Hybridization
• Scanning

– PMT voltage
– laser power

Sources of Variability 
(cDNA Array Example)

(Geschwind, Nature Reviews Neuroscience, 2001)



Levels of Replication

• Technical replicates
– RNA sample divided into multiple aliquots and re-

arrayed
• Biological replicates

– Multiple subjects 
– Re-growing the cells under the defined conditions



Technical Replicates of the Same 
RNA Sample

• Useful to establish that experimental technique 
and reagents are adequate
– Not necessary for all samples

• Protection against bad hybridizations
• Technical replicates improve precision for 

comparing a given sample to another given 
sample. For comparing classes, however, it is 
more efficient to use a limited number of arrays 
for more independent biological samples than for 
technical replicates.



Levels of Replication

• For comparing classes, replication of 
samples should generally be at the 
“biological/subject” level because we want 
to make inference to the population of 
“cells/tissues/subjects”, not to the 
population of sub-samples of a single 
biological specimen.



Which Genes are Differentially 
Expressed In Two Conditions or Two 

Tissues?
• Not a clustering problem

– Global similarity measures generally used for 
clustering arrays may not distinguish classes

– Feature selection should be performed in a 
manner that controls the false discovery rate

• Supervised methods
• Requires multiple biological samples from 

each class



Myth

• That comparing tissues or experimental 
conditions is based on looking for red or 
green spots on a single array

• That comparing tissues or experimental 
conditions is based on using Affymetrix 
MAS software to compare two arrays
– Many published statistical methods are limited 

to comparing rna transcript profiles from two 
samples 



Truth

• Comparing expression in two RNA samples 
tells you (at most) only about those two 
samples and may relate more to sample 
handling and assay artifacts than to biology. 
Robust knowledge requires multiple 
samples that reflect biological variability.



Class Comparison:
Allocation of Specimens to
cDNA Array Experiments

• Reference Design
• Balanced Block Design

– Dobbin & Simon

• Loop Design 
– Kerr & Churchill



Reference Design

A1

R

A2 B1 B2

R

RED

R RGREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B
R = aliquot from reference pool



Balanced Block Design

A1

A2

B2 A3

B3

B4

A4

RED

B1GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B



Loop Design

A1

A2

B1 A2

B2

B2

A1

RED

B1GREEN

Array 1 Array 2 Array 3 Array 4

Ai = aliquot from ith specimen from class A
Bi = aliquot from ith specimen from class B

(Requires two aliquots per specimen)



• Detailed comparisons of the effectiveness of 
designs: 
– Dobbin K, Simon R. Comparison of microarray designs 

for class comparison and class discovery. 
Bioinformatics 18:1462-9, 2002

– Dobbin K, Shih J, Simon R. Statistical design of 
reverse dye microarrays. Bioinformatics 19:803-10, 
2003

– Dobbin K, Simon R. Questions and answers on the 
design of dual-label microarrays for identifying 
differentially expressed genes, JNCI 95:1362-1369, 
2003



Myth

• Common reference designs for two-color 
arrays are inferior to “loop” designs.



Truth
• Common reference designs are effective for many 

microarray studies. They are robust, permit comparisons 
among separate experiments,  permit unplanned types of 
comparisons to be performed, permit cluster analysis and 
class prediction analysis. 

• Loop designs are non-robust, are very inefficient for class 
discovery (clustering) analyses, are not applicable to class 
prediction analyses and do not easily permit inter-
experiment comparisons. 

• For simple two class comparison problems, balanced block 
designs are the most efficient and require many fewer 
arrays than reference designs. They are not appropriate for 
class discovery or class prediction and are more difficult to 
apply to more complicated class comparison problems.



Myth

• For two color microarrays, each sample of 
interest should be labeled once with Cy3 
and once with Cy5 in dye-swap pairs of 
arrays.  



Dye Swap Design

A1

A1

B1 A2

B2

B2

A2

RED

B1GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B



Dye Bias

• Average differences among dyes in label 
concentration, labeling efficiency, photon 
emission efficiency and photon detection 
are corrected by normalization procedures

• Gene specific dye bias may not be corrected 
by normalization 



• Gene-specific dye bias
– 3681 genes with p<0.001 of 8604 evaluable 

genes

• Gene and sample specific dye bias
– 150 genes with p<0.001



cDNA experiment estimated sizes of the gene-specific dye bias for each of 
the 8,604 genes.  An effect of size 1 corresponds to a 2-fold change in 

expression
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• Dye swap technical replicates of the same two rna
samples are rarely necessary. 

• Using a common reference design, dye swap arrays 
are not necessary for valid comparisons of classes 
since specimens labeled with different dyes are never 
compared.

• For two-label direct comparison designs for 
comparing two classes, it is more efficient to balance 
the dye-class assignments for independent biological 
specimens than to do dye swap technical replicates 



Balanced Block Design

A1

A2

B2 A3

B3

B4

A4

RED

B1GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B



Dye Swap Design

A1

A1

B1 A2

B2

B2

A2

RED

B1GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B



Balanced Block Designs for Two 
Classes

• Half the arrays have a sample from class 1 labeled 
with Cy5 and a sample from class 2 labeled with 
Cy3; 

• The other half of the arrays have a sample from 
class 1 labeled with Cy3 and a sample from class 2 
labeled with Cy5. 

• Each sample appears on only one array. Dye 
swaps of the same rna samples are not necessary 
to remove dye bias and for a fixed number of 
arrays, dye swaps of the same rna samples are 
inefficient



Limitations of Balanced Block 
Designs

• One class comparison
• Does not support cluster analysis
• Requires ANOVA analysis of single 

channel log intensities



cDNA Arrays:  
Reverse Fluor Experiments

Forward vs -Reverse logRatio
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Reverse Labeled Arrays

• Not necessary with reference design if you 
are not interested in direct comparison to 
internal reference
– If reference rna is consistently labeled with the 

same dye, dye bias effects all classes equally 
and does not bias comparison of classes.

– For clustering of specimens, the reference 
design should be used and no reverse labeled 
arrays are necessary.  



Reverse Labeled Arrays

• Using balanced block design to directly 
compare two classes, using each rna sample 
on only one array and balancing labels 
between classes is more efficient than using 
reverse labeled technical replicates.
– For a fixed total number of arrays, use of 

reverse labeled technical replicates reduces the 
number of independent biological samples 
included 



Reverse Labeled Arrays

• Necessary with reference design for some 
arrays if you are interested in direct 
comparison to internal reference
– Gene specific dye bias not removed by 

normalization



Replicate Arrays of Independent 
Samples from Same Tissue

• Useful for establishing that clusters of 
samples represent different disease groups 
rather than just heterogeneity of individual 
tissues or differences in tissue handling



Sample Selection

• Experimental Samples
– Representative of the phenotype or the population 

under investigation.

• Reference Sample (for cDNA array experiments 
using reference design)
– In most cases, does not have to be biologically relevant.

• Expression of most genes, but not too high.
• Same for every array

– Other situations exist (e.g., matched normal & cancer)



Avoid Confounding Classes for 
Analysis With Assay Procedures

• Obtaining samples
• RNA labeling
• Hybridization

– Print set
– reagents



Experimental Design
• Dobbin K, Simon R. Comparison of microarray designs for class 

comparison and class discovery. Bioinformatics 18:1462-9, 2002
• Dobbin K, Shih J, Simon R. Statistical design of reverse dye 

microarrays. Bioinformatics 19:803-10, 2003
• Dobbin K, Shih J, Simon R. Questions and answers on the design of 

dual-label microarrays for identifying differentially expressed genes, 
JNCI 95:1362-69, 2003

• Simon R, Korn E, McShane L, Radmacher M, Wright G, Zhao Y. 
Design and analysis of DNA microarray investigations, Springer 
Verlag (2003)

• Simon R, Dobbin K. Experimental design of DNA microarray 
experiments. Biotechniques 34:1-5, 2002

• Simon R, Radmacher MD, Dobbin K. Design of studies with DNA 
microarrays. Genetic Epidemiology 23:21-36, 2002

• Dobbin K, Simon R. Sample size determination in microarray 
experiments for class comparison and prognostic classification. 
Biostatistics 6:27-38, 2005.



Good Microarray Studies Have 
Clear Objectives

• Class Comparison
– Find genes whose expression differs among 

predetermined classes
• Class Prediction

– Prediction of predetermined class (phenotype) using 
information from gene expression profile

• Class Discovery
– Discover clusters of specimens having similar 

expression profiles
– Discover clusters of genes having similar expression 

profiles



Class Comparison and Class 
Prediction

• Not clustering problems
– Global similarity measures generally used for 

clustering arrays may not distinguish classes
– Don’t control multiplicity or for distinguishing 

data used for classifier development from data 
used for classifier evaluation

• Supervised methods
• Requires multiple biological samples from 

each class



Levels of Replication

• Technical replicates
– RNA sample divided into multiple aliquots and re-

arrayed
• Biological replicates

– Multiple subjects 
– Replication of the tissue culture experiment



• Biological conclusions generally require 
independent biological replicates. The power 
of statistical methods for microarray data 
depends on the number of biological 
replicates.

• Technical replicates are useful insurance to 
ensure that at least one good quality array of 
each specimen will be obtained.



Microarray Platforms for Class 
Comparison

• Single label arrays
– Affymetrix GeneChips

• Dual label arrays
– Common reference design
– Other designs



Common Reference Design

A1

R

A2 B1 B2

R

RED

R RGREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B
R = aliquot from reference pool



Analysis Strategies for Class 
Comparison

• Compare classes on a gene by gene basis using 
statistical tests
– Control for the large number of tests performed
– Types of statistical significance tests

• t-tests or F-tests
– Hierarchical model for sharing variance information among 

genes
• Univariate permutation tests
• Analysis of variance to control for other variables

• Multivariate permutation tests





Class Comparison Blocking

• Paired data
– Pre-treatment and post-treatment samples of same 

patient
– Tumor and normal tissue from the same patient

• Blocking
– Multiple animals in same litter
– Any feature thought to influence gene expression

• Sex of patient
• Batch of arrays



Technical Replicates

• Multiple arrays on alloquots of the same 
RNA sample

• Select the best quality technical replicate or
• Average expression values 



Controlling for Multiple Comparisons

• Bonferroni type procedures control the 
probability of making any false positive 
errors

• Overly conservative for the context of DNA 
microarray studies



Simple Control for Multiple Testing

• If each gene is tested for significance at level α
and there are n genes, then the expected number of 
false discoveries is n α .
– e.g. if n=1000 and α=0.001, then 1 false discovery
– To control E(FD) ≤ u
– Conduct each of k tests at level α = u/k



Simple Procedures

• Control E(FD) ≤ u
– Conduct each of k tests at level u/k
– e.g. To limit of 10 false discoveries in 10,000 

comparisons, conduct each test at p<0.001 level
• Control E(FDP) ≤ γ

– Benjamini-Hochberg procedure



False Discovery Rate (FDR)
• FDR = Expected proportion of false 

discoveries among the tests declared 
significant 

• Studied by Benjamini and Hochberg (1995):



Not rejected Rejected Total

True null 
hypotheses

890 10 
False 

discoveries

900

False null 
hypotheses

10 90
True 

discoveries

100

100 1000



If you analyze n probe sets and select 
as “significant” the k genes whose p ≤

p*

• FDR ~ n p* / k



Limitations of Simple Procedures

• p values based on normal theory are not accurate 
in the extreme tails of the distribution

• Difficult to achieve extreme quantiles for 
permutation p values of individual genes

• Multiple comparisons controlled by adjustment of 
univariate (single gene) p values may not take 
advantage of correlation among genes 



Gene-by-Gene Comparison of 
Classes

• t-test for comparing two classes
– For dual-color arrays compare log-ratios, not ratios
– For GeneChips compare log signals
– tg=(meang1-meang2)/standard-errorg

– Standard-errorg=  sg (1/n1 + 1/n2)1/2

– sg =within-class standard deviation
– Computes statistical significance level as the probability of 

obtaining a t value as large in absolute value as actually obtained if 
the two classes had the same true means and the sampling variation 
had a  Gaussian distribution

– Gaussian distribution is symmetric “bell-shaped curve” which 
decreases at rate exp(-x2)



Limitations of Parametric t-test

• Expression values may not be approximately 
Gaussian

• t distribution approximation to the distribution of t 
under the null hypothesis is not accurate at the 
extreme tail of the distribution

• t distribution approximation is less accurate for 
small sample sizes

• Small sample size limits accuracy of estimation of 
sg
– Few degrees of freedom for t limits statistic power for 

detecting differences in mean expression levels



Gene-by-Gene Comparison of 
Classes

• Permutation t-test
– Compute the t statistic comparing the two 

classes for a gene but don’t use the Gaussian 
distribution assumption to translate the t value 
into a p value

– Consider all possible permutations of the labels 
of which arrays correspond to which class, 
holding fixed the number of total arrays in each 
class



Gene-by-Gene Comparison of 
Classes

• Permutation t-test (cont)
– For each permutation of class labels re-compute 

the t statistic comparing the classes with regard 
to a specific gene

– Determine the proportion of the permutations 
that gave a t value at least as large in absolute 
value as the one corresponding to the true data

– That proportion  is the permutation p value



Limitation of Univariate Permutation 
Analysis

• Statistical significance level is limited by 
the number of possible permutations of the 
class labels. For small sample sizes, 
statistical significance at a stringent 
significance level (e.g. p<0.001) either 
cannot be achieved or is achieved with 
limited statistical power



Gene-by-Gene Comparison of 
Classes

• All of these tests assume that the different 
arrays are independent. Hence replicate 
arrays must be either averaged, or the best 
quality one selected for inclusion in the 
analysis, or a more complex ANOVA 
model be used for analysis



Gene-by-Gene Comparison of 
Classes

• F-test
– The generalization of the t-test when there are more 

than 2 classes to compare.
• Significance indicates that the class means are more different 

than one expects by chance but it does not indicate which 
classes are different from which other classes. 

• The statistically significant genes may differ with regard to the 
patterns of differences among classes that they show. 
Clustering the set of significant genes is useful to sort the 
genes into sets with uniform patterns.



Gene-by-Gene Comparison of 
Classes

• F-test
– The standard F test computes statistical 

significance based on an assumption of 
Gaussian distribution of sampling variability.

– The permutation F-test is a generalization of the 
permutation t-test and the associated p values 
are not based on Gaussian assumptions.



t-test Comparisons of Gene 
Expression for gene j

• xj~N(µj1 , σj
2)  for class 1

• xj~N(µj2 , σj
2)  for class 2

• H0j: µj1 = µj2



Estimate variances individually

Treat each     as a separate unknown quantity, and estimate 
separately for each gene.

Advantages:  Allows each gene to have it’s own variance.

Disadvantages:  In cases of small sample size estimate will 
have few degrees of freedom.  Ignores the wealth of 
information provided by other genes

2
jσ



Pool Variance

Assume  all genes have same residual variance so that

Use all genes to estimate single variance value

Advantages:
Large Numbers of degrees of freedom for variance 
estimate

Disadvantages:
Not realistic, in observed data, some genes can be 10 
times more variable than other genes 

22 σσ =j



Randomized Variance Model

Assume that the variances of the genes are themselves drawn at 
random from an inverse Gamma distribution

a and b are parameters that can be estimated from the entire set of genes.

a will indicate the shape or peakedness of the distribution  of variances
b will scale the size of the variance, such that abE =)/1( 2σ



Randomized Variance Model

Advantages:
• Allows for the variance to realistically vary between genes

• Uses information from all genes to contribute to variance estimates 
increasing reliability of estimate.

Disadvantages:
• Requires additional assumptions about the distribution of the 

variances

• Estimates of variance may still be noisy



Randomized Variance t-test

• Pr(σ-2=x) = xa-1exp(-x/b)/Γ(a)ba
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Modified T-test
As an application of testing between 2 varieties, the standard T-test is 
usable with the following modification.

where,

and the number of degrees of freedom increases from n-2 to n-2+2a.

This is similar to a result by Baldi and Long (Bioinfomatics 2001)
Who approached this problem from a purely Bayesian standpoint.



Estimation of parameters a and b

Under our model for σ2  we find that for each gene,

Since we observe thousands of genes, we can arrive 
at quite accurate estimates of a and b by maximizing 
the likelihood  of these observations with respect to 
these parameters.



Additional Procedures

• “SAM” - Significance Analysis of Microarrays
– Tusher et al., PNAS, 2001
– Estimate FDR
– Statistical properties unclear

• Multivariate permutation tests
– Korn et al., (Journal of Statistical Planning & 

Inference)
– Control number or proportion of false discoveries
– Can specify confidence level of control



Multivariate Permutation Procedures

• More effective than univariate permutation tests 
especially with limited number of samples
– Based on the α percentile of the distribution of the 

(k+1)st smallest p value under multivariate permutation 
distribution; not on the α/G percentile of the 
distribution of the univariate p value for a specific gene 

• Stronger control than simple methods which 
control only expected number and proportion of 
false discoveries



Multivariate Permutation Procedures
(Simon et al. 2003, Korn et al. 2004)

Allows statements like:
FD Procedure: We are 90% confident that the 

(actual) number of false discoveries is no 
greater than 5.

FDP Procedure:  We are 90% confident that the 
(actual) proportion of false discoveries does not 
exceed .10.



Control 
Pr{Number of FD > n} ≤ α

• y  = α quantile of the distribution of the 
(n+1) st smallest p value under the 
multivariate permutation distribution.

• Include the genes corresponding to the n 
smallest p values in the gene list

• Include gene corresponding to p(i) if p(i) < y



Multivariate Permutation Tests

• Distribution-free 
– even if they use t statistics

• Preserve/exploit correlation among tests by 
permuting each profile as a unit

• More effective than univariate permutation 
tests especially with limited number of 
samples



Control 
Pr{FDP > γ} ≤ α

• Determine y(u) = α quantile of the distribution of 
the (u+1)st smallest p value under the multivariate 
permutation distribution.
– For u = 1,2,3, …

• Include in the list of differentially expressed genes 
the gene corresponding to the i’th smallest p value 
as long as p(i) < y(⎣γ i⎦)
– Sequentially for i = 1,2, …
– ⎣γ i⎦ = largest integer less than or equal to γ i





Quantitative trait tool
• Selects genes which are univariately correlated 

with a quantitative trait such as age.
• Controls number and proportion of false 

discoveries in entire list:  uses a multivariate 
permutation test which takes advantage of the 
correlation among genes.

• Produces a gene list which can be used for further 
analysis.





Survival analysis tools
• Find Genes Correlated with Survival tool, selects 

genes which are univariately correlated with 
survival

• Controls number and proportion of false 
discoveries in entire list:  uses a multivariate 
permutation test which takes advantage of the 
correlation among genes

• Produces a gene list which can be used for further 
analysis



Identifying Genes Correlated With 
Survival

0

i

Instantaneous hazard of death at time t

( ) ( )exp( )

= log ratio or log signal for gene i

Calculate p value for each gene i

Apply a multivariate permutation 
procedure to the p  values, permuting

i i

i

t t x

x

λ λ β=

survival times rather than class labels





Gene Set Expression Comparison

• Compute p value of differential expression for each gene in 
a gene set (k=number of genes)

• Compute a summary (S) of these p values
• Determine whether the value of the summary test statistic 

S is more extreme than would be expected from a random 
sample of k genes (probe-sets) on that platform

• Two types of summaries provided
– Average of log p values
– Kolmogorov-Smirnov statistic; largest distance between the 

cumulative distribution of the p values and the uniform distribution 
expected if none of the genes were differentially expressed



Gene Set Expression Comparison

• p value for significance of summary statistic 
need not be as extreme as .001 usually, 
because the number of gene sets analyzed is 
usually much less than the number of 
individual genes analyzed

• Conclusions of significance are for gene 
sets in this tool, not for individual genes





Comparison of Gene Set Expression 
Comparison to O/E Analysis in Class 

Comparison

• Gene set expression tool is based on all 
genes in a set, not just on those significant 
at some threshold value

• O/E analysis does not provide statistical 
significance for gene sets



Fallacy of Clustering Classes 
Based on Selected Genes

• Even for arrays randomly distributed between 
classes, genes will be found that are 
“significantly” differentially expressed

• With 8000 genes measured, 400 false positives 
will be differentially expressed with  p < 0.05  

• Arrays in the two classes will necessarily cluster 
separately when using a distance measure based 
on genes selected to distinguish the classes



Class Prediction

• Predict membership of a specimen into pre-defined 
classes
– Disease vs normal
– Poor vs good response to treatment
– Long vs short survival



Traditional Approach for Marker 
Development

• Focus on candidate protein  involved in 
disease pathogenesis

• Develop assay
• Conduct retrospective study of whether 

marker is prognostic using available 
specimens

• Marker dies because
– Therapeutic relevance not established
– Inter-laboratory reproducibility not established



Genomic Approach to Diagnostic/Prognostic 
Marker Development

• Select therapeutically relevant population
– Node negative well staged breast cancer patients who 

have not received chemotherapy and have long follow-
up

– Early stage ovarian cancer patients and normal controls
• Perform genome wide expression profiling
• Develop multi-gene/protein predictor of outcome
• Obtain unbiased estimate of prediction accuracy
• Independently confirm results



Limitations of Genomic Approach

• Difficulty relating differentially expressed genes 
to cause of disease
– or to real therapeutic targets

• Availibility of tissue and clinical follow-up for 
therapeutically relevant questions
– Many studies address overly simple problems or 

heterogeneous non-therapeutically relevant populations
– Inclusion of advance disease patients
– Comparing completely different types of cancer



Limitations of Genomic Approach

• Difficulty in performing adequate validation 
studies

• Lack of inter-laboratory reproducibility 
evaluations



Class Prediction Model
• Given a sample with an expression profile vector x of log-

ratios or log signals and unknown class. 
• Predict which class the sample belongs to
• The class prediction model is a function f which maps from 

the set of vectors x to the set of class labels {1,2} (if there 
are two classes). 

• f generally utilizes only some of the components of x (i.e. 
only some of the genes)

• Specifying the model f involves specifying some 
parameters (e.g. regression coefficients) by fitting the 
model to the data (learning the data).



Components of Class Prediction

• Feature (gene) selection
– Which genes will be included in the model

• Select model type 
– E.g. DLDA, Nearest-Neighbor, …

• Fitting parameters (regression coefficients) 
for model 



Class Prediction Paradigm

• Select features (F) to be included in predictive 
model using training data in which class 
membership of the samples is known

• Fit predictive model containing features F using 
training data
– Diagonal linear discriminant analysis
– Neural network

• Evaluate predictive accuracy of model on 
completely independent data not used in any way 
for development of the model



Feature Selection
• Key component of supervised analysis
• Genes that are differentially expressed among the classes 

at a significance level α (e.g. 0.01) 
– The α level is selected to control the number of genes in the 

model, not to control the false discovery rate
• Methods for class prediction are different than those for class 

comparison
– The accuracy of the significance test used for feature selection is 

not of major importance as identifying differentially expressed 
genes is not the ultimate objective

– For survival prediction, the genes with significant univariate Cox 
PH regression coefficients



Feature Selection

• Small subset of genes which together give 
most accurate predictions 
– Step-up regression
– Combinatorial optimization algorithms

• Genetic algorithms

• Principal components of genes
• Gene cluster averages



Linear Classifiers for Two Classes
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Linear Classifiers for Two Classes

• Compound covariate predictor

Instead of for DLDA
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Linear Classifiers for Two Classes

• Support vector machines with inner product 
kernel are linear classifiers with weights 
determined to minimize errors

• Perceptrons with principal components as 
input are linear classifiers with no well 
defined criterion for defining weights



Advantages of Simple Linear 
Classifiers

• Do not over-fit data
– Incorporate influence of multiple variables 

without attempting to select the best small 
subset of variables

– Do not attempt to model the multivariate 
interactions among the predictors and outcome



Evaluating a Classifier

• “Prediction is difficult, especially the 
future.”
– Neils Bohr

• Fit of a model to the same data used to 
develop it is no evidence of prediction 
accuracy for independent data.



Split-Sample Evaluation

• Training-set
– Used to select features, select model type, determine 

parameters and cut-off thresholds

• Test-set
– Withheld until a single model is fully specified using 

the training-set.
– Fully specified model is applied to the expression 

profiles in the test-set to predict class labels. 
– Number of errors is counted



Split-Sample Evaluation

• Used for Rosenwald et al. study of 
prognosis in DLBL lymphoma.
– 200 cases training-set
– 100 cases test-set



Leave-one-out Cross Validation

• Leave-one-out cross-validation simulates 
the process of separately developing a 
model on one set of data and predicting for 
a test set of data not used in developing the 
model
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Non-cross-validated Prediction

1. Prediction rule is built using full data set.
2. Rule is applied to each specimen for class 

prediction. 

training set

test set
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Cross-validated Prediction (Leave-one-out method)
1. Full data set is divided into training and 

test sets (test set contains 1 specimen).
2. Prediction rule is built from scratch

using the training set.
3. Rule is applied to the specimen in the 

test set for class prediction. 
4. Process is repeated until each specimen 

has appeared once in the test set.



Cross-validated Misclassification Rate of 
Any Multivariable Classifier

• Omit sample 1
– Develop multivariate classifier from scratch on 

training set with sample 1 omitted
– Predict class for sample 1 and record whether 

prediction is correct



Cross-validated Misclassification Rate of  
Any Multivariate Classifier

• Repeat analysis for training sets with each 
single sample omitted one at a time

• e = number of misclassifications determined 
by cross-validation



• Cross validation is only valid if the training set is not used 
in any way in the development of the model. Using the 
complete set of samples to select genes violates this 
assumption and invalidates cross-validation.

• With proper cross-validation, the model must be developed 
from scratch for each leave-one-out training set. This 
means that gene selection must be repeated for each leave-
one-out training set. 

• The cross-validated estimate of misclassification error 
applies to the model building process, not to the particular 
model or the particular set of genes used in the model.



Prediction on Simulated Null Data

Generation of Gene Expression Profiles
• 14 specimens (Pi is the expression profile for specimen i)
• Log-ratio measurements on 6000 genes
• Pi ~ MVN(0, I6000)
• Can we distinguish between the first 7 specimens (Class 1) and the last 7 

(Class 2)?

Prediction Method
• Compound covariate prediction (discussed later)
• Compound covariate built from the log-ratios of the 10 most differentially 

expressed genes.



Percentage of simulated data sets
with m or fewer misclassifications

m
Non-cross-validated

class prediction
Cross-validated
class prediction

0 99.85 0.60
1 100.00 2.70
2 100.00 6.20
3 100.00 11.20
4 100.00 16.90
5 100.00 24.25
6 100.00 34.00
7 100.00 42.55
8 100.00 53.85
9 100.00 63.60

10 100.00 74.55
11 100.00 83.50
12 100.00 91.15
13 100.00 96.85
14 100.00 100.00





Incomplete (incorrect) Cross-
Validation

• Biologists and computer scientists are using all the 
data to select genes and then cross-validating only 
the parameter estimation (learning) component of 
model development
– Highly biased
– Many published complex methods which make strong 

claims based on incorrect cross-validation. 
• Frequently seen in complex feature set selection algorithms
• Also seen in proposals for decision tree classifiers and neural 

networks



Compound covariate predictor

• Feature selection
– Select genes with two-class t-statistics significant at 

p<p* 

• Form a compound covariate predictor as:

• Determine the cutpoint of the predictor as the 
midpoint between its mean in one class and its 
mean in the other class

ΣΣiittiixxii { where    where    ttii =  t=  t--statistic,     statistic,     xxii = log= log--ratio,ratio,
and sum is taken over all significant genesand sum is taken over all significant genes{



Advantages of Compound 
Covariate Classifier

• Does not over-fit data
– Incorporates influence of multiple variables 

without attempting to select the best small 
subset of variables

– Does not attempt to model the multivariate 
interactions among the predictors and outcome

– A one-dimensional classifier with contributions 
from variables correlated with outcome



Gene-Expression Profiles in 
Hereditary Breast Cancer

( Hedenfalk et al., NEJM, 2001)

• Breast tumors studied:
7 BRCA1+ tumors
8 BRCA2+ tumors
7 sporadic tumors

• Log-ratios measurements of 
3226 genes for each tumor 
after initial data filtering

cDNA Microarrays
Parallel Gene Expression Analysis

RESEARCH QUESTION
Can we distinguish BRCA1+ from BRCA1– cancers and BRCA2+ from 
BRCA2– cancers based solely on their gene expression profiles?



Classification of hereditary breast cancers with the compound covariate predictor

Class labels

Number of
differentially

expressed genes
m = number of

misclassifications

Proportion of random
permutations with m or
fewer misclassifications

BRCA1+ vs. BRCA1− 9 1 (0 BRCA1+, 1 BRCA1−) 0.004
BRCA2+ vs. BRCA2− 11 4 (3 BRCA2+, 1 BRCA2−) 0.043



BRCA1

αg # of significant
genes

m = # of misclassified elements
(misclassified samples)

% of random
permutations with m

or fewer
misclassifications

10-2 182 3 (s13714, s14510, s14321) 0.4
10-3 53 2 (s14510, s14321) 1.0
10-4 9 1 (s14321) 0.2



BRCA2

αg # of significant
genes

m = # of misclassified elements
(misclassified samples)

% of random
permutations with m

or fewer
misclassifications

10-2 212 4 (s11900, s14486, s14572, s14324) 0.8
10-3 49 3 (s11900, s14486, s14324) 2.2
10-4 11 4 (s11900, s14486, s14616, s14324) 6.6



Permutation Distribution of Cross-
validated Misclassification Rate of a 

Multivariate Classifier
• Randomly permute class labels and repeat 

the entire cross-validation
• Re-do for all (or 1000) random 

permutations of class labels
• Permutation p value is fraction of random 

permutations that gave as few 
misclassifications as e in the real data



Exact Permutation Test

Premise: Under the null hypothesis of no systematic difference in 
expression profiles between the two classes, it can be assumed that 
assignment of class labels to expression profiles is purely coincidental.

Performing the test

1. Consider every possible permutation of the class labels among the 
gene expression profiles.

2. Determine the proportion of the permutations that result in a
misclassification error rate less than or equal to the observed error 
rate.

3. This proportion is the achieved significance level in a test of the
null hypothesis.



Monte Carlo Permutation Test

Examining all permutations is computationally burdensome.
Instead, a Monte Carlo method is used…

• nperm permutations of the labels are randomly generated.

• The proportion of these permutations that have m or fewer 
misclassifications is an estimate of the achieved significance 
level in a test of the null hypothesis.

• nperm is chosen such that the variability in the estimate is less 
than an acceptable level.

• If the true proportion of permutations with m ≤ 2 is 0.05, 
nperm= 2000 ensures the coefficient of variation of the 
estimate of the achieved significance level is less than 0.1.



Distribution of the Number of Misclassifications
for a Simulated Data Set
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Compound Covariate Classification of DLCL Data. 
(GCC vs Activated B)

42 Samples, 2317 Genes
Nominal alpha Number of 

DEGs
Number of 

misclassifications
Permutational p 

value
0.01 275 3 0.00

0.001 97 5 0.00

0.0001 39 4 0.00

0.00001 16 4 0.00

0.000001 3 7 0.01



Compound Covariate Classifier
CLL Mutational Status

18 Samples
Nominal 

Alpha
Number of 

DEGs
X-validation 

Errors

Permutation 
p value

Misclassific’s
in 10 new 
samples

0.001 56 1 0.001 1

0.0001 7 5 0.107 1



Quadratic Discriminant Analysis

• Assumes that log-ratios (log intensities) 
have a multi-variate Gaussian distribution.

• The two classes have different mean vectors 
and potentially different covariance 
matrices.

• Using the training data, estimate the mean 
vector and covariance matrix for each class.



Quadratic Discriminant Analysis

• To classify a new sample, compute the probability 
density for the log-ratio expression profile of the 
new sample for each class. Compute these two 
values using the class-specific mean vectors and 
covariance matrices estimated in the training data. 
The computation also utilizes the Gaussian 
distribution assumption.

• Classify the new sample in the class with the 
larger value of the probability density for the 
expression profile of the new sample. 



Quadratic Discriminant Analysis

• With G genes in the model, there are G 
components of the mean vector to be 
estimated for each class and G(G+1)/2 
components of the covariance matrix for 
each class. Hence a total of G(G+3) 
parameters to be estimated.

• With N samples, one has only NG pieces of 
data.



Diagonal Linear Discriminant
Analysis

• Full QDA performs poorly when G >N. One can 
help somewhat by selecting the G genes to include 
based on univariate discrimination power. 

• The number of parameters can be dramatically 
reduced by assuming that the variances are the 
same in the two classes and that covariance among 
genes can be ignored. This reduces the number of 
parameters to 3G. This is DLDA. It has performed 
as well as much more complex methods in 
comparisons conducted by Dudoit et al. 



Diagonal Linear Discriminant
Analysis

• Golub’s Weighted Voting Method and Radmacher 
et al’s Compound Covariate Predictor are similar 
to DLDA.

• These methods, as well as other, are generally 
implemented with feature (gene) selection based 
on univariate classification power. In performing 
cross-validation to estimate mis-classification rate, 
the gene selection step must be repeated starting 
with the full set of genes for each leave-one-out 
training set.



Neural Network Classification 
Kahn et al. Nature Med. 2001

• Not really a neural network (fortunately).
• A perceptron with no hidden nodes and a linear 

transfer function at each node.
• Inputs are first 10 principal components

– The linear combinations of the genes that have greatest 
variation among samples and are orthogonal

• The method is essentially equivalent to DLDA 
based on the 10 PC’s as predictors

• They didn’t cross-validate the computation of the 
10 PC’s.



Linear Classifiers for Two Classes

• Support vector machines with inner product 
kernel are linear classifiers with weights 
determined to separate the classes with a 
hyperplain that minimizes the length of the 
weight vector



Support Vector Machine
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Compound Covariate Bayes
Classifier

• Compound covariate y = Σtixi
– Sum over the genes selected as differentially expressed
– xi the expression level of the ith selected gene for the 

case whose class is to be predicted
– ti the t statistic for testing differential expression for the 

i’th gene
• Proceed as for the naïve Bayes classifier but using 

the single compound covariate as predictive 
variable
– GW Wright et al. PNAS 2005.



Other Simple Methods

• Nearest neighbor classification
• Nearest k-neighbors
• Nearest centroid classification
• Shrunken centroid classification



Nearest Neighbor Classifier
• To classify a sample in the validation set as being 

in outcome class 1 or outcome class 2, determine 
which sample in the training set it’s gene 
expression profile is most similar to.
– Similarity measure used is based on genes selected as 

being univariately differentially expressed between the 
classes

– Correlation similarity or Euclidean distance generally 
used 

• Classify the sample as being in the same class as 
it’s nearest neighbor in the training set



K-Nearest Neighbor Classifier

• Find the k samples that are most similar to 
the sample to be classified

• Identify the majority class among the k 
nearest neighbor samples

• Classify the unknown sample as being in 
the majority class



Nearest Centroid Classifier
• For a training set of data, select the genes that are 

informative for distinguishing the classes
• Compute the average expression profile (centroid) of the 

informative genes in each class
• Classify a sample in the validation set based on which 

centroid in the training set it’s gene expression profile is 
most similar to.



Nearest Shunken Centroids
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Nearest Shunken Centroids
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Other Methods

• Top-scoring pairs
– Claim that it gives accurate prediction with few 

pairs because pairs of genes are selected to 
work well together

• Random Forrest
– Very popular in machine learning community
– Complex classifier



When There Are More Than 2 
Classes

• Nearest neighbor type methods

• Decision tree of binary classifiers



Decision Tree of Binary Classifiers

• Partition the set of classes {1,2,…,K} into two disjoint subsets S1 and 
S2

• Develop a binary classifier for distinguishing the composite classes S1
and S2

• Compute the cross-validated classification error for 
distinguishing S1 and S2

• Repeat the above steps for all possible partitions in order to find the 
partition S1and S2 for which the cross-validated classification error is 
minimized

• If S1and S2 are not singleton sets, then repeat all of the above steps 
separately for the classes in S1and S2 to optimally partition each of 
them



Myth

• That complex classification algorithms such 
as neural networks perform better than 
simpler methods for class prediction.



Truth

• Artificial intelligence sells to journal reviewers 
and peers who cannot distinguish hype from 
substance when it comes to microarray data 
analysis. 

• Comparative studies have shown that simpler 
methods work as well or better for microarray 
problems because the number of candidate 
predictors exceeds the number of samples by 
orders of magnitude. 



When p>>n 
The Linear Model is Too Complex

• It is always possible to find a set of features 
and a weight vector for which the 
classification error on the training set is 
zero.

• Why consider more complex models?



Classification of BRCA2 Germline
Mutations

Classification Method Correct Prediction with 
LOO-CV

Compound Covariate Predictor 86%

Fisher LDA 64%

Diagonal LDA 86%

1-Nearest Neighbor 91%

3-Nearest Neighbor 77%

Support Vector Machine
(linear kernel)

82%

Classification Tree 55%





Comparison of discrimination methods
Speed et al

In this field many people are inventing new methods of 
classification or using quite complex ones (e.g. SVMs). Is this 
necessary?

We did a study comparing several methods on three publicly 
available tumor data sets: the Leukemia data set, the Lymphoma 
data set, and the NIH 60 tumor cell line data, as well as some 
unpublished data sets.

We compared NN, FLDA, DLDA, DQDA and CART, the last 
with or without aggregation (bagging or boosting).

The results were unequivocal: simplest is best!



Approaches to Intra-study 
Validation 

• Split data into training set and validation set
– Validation set not accessed until proposed 

classification system is fully specified based on 
training set

• Algorithmic cross-validation or bootstrap



Invalid Criticisms of Cross-
Validation

• “You can always find a set of features that 
will provide perfect prediction for the 
training and test sets.”
– For complex models, there may be many sets of 

features that provide zero training errors. 
– A modeling strategy that either selects among 

those sets or aggregates among those models, 
will have a generalization error which will be 
validly estimated by cross-validation.







Simulated Data
40 cases, 10 genes selected from 5000

Method Estimate Std Deviation
True .078
Resubstitution .007 .016
LOOCV .092 .115
10-fold CV .118 .120
5-fold CV .161 .127
Split sample 1-1 .345 .185
Split sample 2-1 .205 .184
.632+ bootstrap .274 .084



DLBCL Data
Method Bias Std Deviation MSE

LOOCV -.019 .072 .008

10-fold CV -.007 .063 .006

5-fold CV .004 .07 .007

Split 1-1 .037 .117 .018

Split 2-1 .001 .119 .017

.632+ bootstrap -.006 .049 .004



Simulated Data
40 cases

Method Estimate Std Deviation
True .078
10-fold .118 .120
Repeated 10-fold .116 .109
5-fold .161 .127
Repeated 5-fold .159 .114
Split 1-1 .345 .185
Repeated split 1-1 .371 .065



Common Problems With Internal 
Classifier Validation

• Pre-selection of genes using entire dataset

• Failure to consider optimization of tuning 
parameter part of classification algorithm
– Varma & Simon, BMC Bioinformatics 2006

• Erroneous use of predicted class in 
regression model



Incomplete (incorrect) Cross-
Validation

• Let M(b,D) denote a classification model developed on a 
set of data D where the model is of a particular type that is 
parameterized by a scalar b. 

• Use cross-validation to estimate the classification error of 
M(b,D) for a grid of values of b; Err(b). 

• Select the value of b* that minimizes Err(b).
• Caution: Err(b*) is a biased estimate of the prediction error 

of M(b*,D).
• This error is made in some commonly used methods



Complete (correct) Cross-Validation

• Construct a learning set D as a subset of the full set S of 
cases.   

• Use cross-validation restricted to D in order to estimate the 
classification error of M(b,D) for a grid of values of b; 
Err(b). 

• Select the value of b* that minimizes Err(b).
• Use the mode M(b*,D) to predict for the cases in S but not 

in D (S-D) and compute the error rate in S-D
• Repeat this full procedure for different learning sets D1 , D2 

and average the error rates of the models M(bi*,Di) over 
the corresponding validation sets S-Di 



Does an Expression Profile Classifier Predict 
More Accurately Than Standard Prognostic 

Variables?

• Not an issue of which variables are significant 
after adjusting for which others or which are 
independent predictors
– Predictive accuracy and inference are different

• The two classifiers can be compared with regard 
to predictive accuracy

• The predictiveness of the expression profile 
classifier can be evaluated within levels of the 
classifier based on standard prognostic variables



Does an Expression Profile Classifier Predict 
More Accurately Than Standard Prognostic 

Variables?

• Some publications fit logistic model to 
standard covariates and the cross-validated 
predictions of expression profile classifiers

• This is valid only with split-sample analysis 
because the cross-validated predictions are 
not independent

log ( ) ( | )i iit p y x i zα β γ= + − +



External Validation

• Should address clinical utility, not just predictive 
accuracy
– Therapeutic relevance

• Should incorporate all sources of variability likely 
to be seen in broad clinical application
– Expression profile assay distributed over time and 

space
– Real world tissue handling
– Patients selected from different centers than those used 

for developing the classifier



Survival Risk Group Prediction
• Evaluate individual genes by fitting single variable 

proportional hazards regression models to log signal or log 
ratio for gene

• Select genes based on p-value threshold for single gene PH 
regressions

• Compute first k principal components of the selected genes
• Fit PH regression model with the k pc’s as predictors. Let 

b1 , …, bk denote the estimated regression coefficients
• To predict for case with expression profile vector x, 

compute the k supervised pc’s y1 , …, yk and the predictive 
index λ = b1 y1 + … + bk yk



Survival Risk Group Prediction

• LOOCV loop:
– Create training set by omitting i’th case

• Develop supervised pc PH model for training set
• Compute cross-validated predictive index for i’th

case using PH model developed for training set
• Compute predictive risk percentile of predictive 

index for i’th case among predictive indices for 
cases in the training set 



Survival Risk Group Prediction

• Plot Kaplan Meier survival curves for cases 
with cross-validated risk percentiles above 
50% and for cases with cross-validated risk 
percentiles below 50%
– Or for however many risk groups and 

thresholds is desired
• Compute log-rank statistic comparing the 

cross-validated Kaplan Meier curves



Survival Risk Group Prediction

• Repeat the entire procedure for all (or large 
number) of permutations of survival times and 
censoring indicators to generate the null 
distribution of the log-rank statistic
– The usual chi-square null distribution is not valid 

because the cross-validated risk percentiles are 
correlated among cases 

• Evaluate statistical significance of the association 
of survival and expression profiles by referring the 
log-rank statistic for the unpermuted data to the 
permutation null distribution



Survival Risk Group Prediction

• Other approaches to survival risk group 
prediction have been published

• The supervised pc method is implemented 
in BRB-ArrayTools

• BRB-ArrayTools also provides for 
comparing the risk group classifier based on 
expression profiles to one based on standard 
covariates and one based on a combination 
of both types of variables



BRB-ArrayTools
Class Prediction

• Classifiers
– Compound covariate predictor
– Diagonal LDA
– K-Nearest Neighbor Classification
– Nearest Centroid
– Support Vector Machines
– Random Forest Classifier
– Shrunken Centroids (PAM)
– Top Scoring Pairs
– Binary Tree Classifier



BRB-ArrayTools
Class Prediction

• Validation
– Split Sample
– Leave one out cross validation
– K-fold cross validation
– Repeated K-fold cross validation
– .632+ Bootstrap resampling



BRB-ArrayTools
Class Prediction

• Gene Selection
– Re-done for each re-sampled training set
– Univariate significance level less than specified 

threshold
• Option for threshold for gene selection optimized by 

inner loop of cross-validation

– Pairs of genes that work well together
– Shrunken centroids



BRB-ArrayTools
Class Prediction

• Permutation test of significance of cross-
validated misclassification rate

• Predictions for new patients 



BRB-ArrayTools
Survival Risk Group Prediction

• No need to transform data to good vs bad 
outcome. Censored survival is directly analyzed

• Gene selection based on significance in univariate
Cox Proportional Hazards regression

• Uses k principal components of selected genes
• Gene selection re-done for each resampled

training set
• Develop k-variable Cox PH model for each leave-

one-out training set 



BRB-ArrayTools
Survival Risk Group Prediction

• Classify left out sample as above or below median 
risk based on model not involving that sample

• Repeat, leaving out 1 sample at a time to obtain 
cross-validated risk group predictions for all cases

• Compute Kaplan-Meier survival curves of the two 
predicted risk groups

• Permutation analysis to evaluate statistical 
significance of separation of K-M curves



BRB-ArrayTools
Survival Risk Group Prediction

• Compare Kaplan-Meier curves for gene 
expression based classifier to that for 
standard clinical classifier

• Develop classifier using standard clinical 
staging plus genes that add to standard 
staging





















Class Prediction

• Cluster analysis is frequently used in 
publications for class prediction in a 
misleading way



Fallacy of Clustering Classes 
Based on Selected Genes

• Even for arrays randomly distributed between 
classes, genes will be found that are 
“significantly” differentially expressed

• With 10,000 genes measured, about 500 false 
positives will be differentially expressed with  p < 
0.05  

• Arrays in the two classes will necessarily cluster 
separately when using a distance measure based 
on genes selected to distinguish the classes



Class Discovery



Two Types of “Classification”?

Class Discovery
• Identification of previously 

unknown classes of specimens
• Use of “unsupervised” methods

– Hierarchical Clustering
– k-means Clustering
– SOMs
– Others

• Prevalent method used in 
literature for analysis of gene 
expression data.

Class Prediction
• Assignment of specimens into 

known classes
• Use of “supervised” methods

– CART
– Discriminant Analysis
– SVM
– CCP

• Class prediction is more 
powerful than class discovery 
for distinguishing specimens 
based on a priori defined 
classes.



Class Discovery

• For determining whether a set of samples 
(eg tumors) is homogeneous with regard to 
expression profile

• To identify set of co-expressed, and perhaps 
co-regulated genes



Class Discovery of Samples

• Complex diseases often represent umbrella 
diagnoses and that heterogeneity limits the 
power of linkage and association studies

• Treatment selection and therapeutics 
development may be enhanced by 
biologically meaningful classification



Cluster Analysis

• Distance measure
– Euclidean distance
– Mahalanobis distance
– 1- correlation
– Mutual information
– Bayes factor

• Feature (gene) set
– All
– Variably expressed
– Selected to optimize 

clustering

• Algorithm
– Hierarchical 
– K means
– Self Organized Map
– Generative Topographical 

Map
– Autoclass
– Bioclust
– Gene shaving
– Plaid
– Splash
– BiClustering



Clustering and Classification

• Analysis performed on log-ratios with two 
channel arrays 

• Analysis performed on log signal values for 
GeneChips



Hierarchical Agglomerative
Clustering Algorithm

• Merge two closest observations into a cluster.
– How is distance between individual observations 

measured?

• Continue merging closest clusters/observations.
– How is distance between clusters measured? 

• Average linkage
• Complete linkage
• Single linkage



Common Distance Metrics for
Hierarchical Clustering

• Euclidean distance
– Measures absolute distance 

(square root of sum of 
squared differences) 

• 1-Correlation
– Large values reflect lack of 

linear association (pattern 
dissimilarity)



Linkage Metrics
• Average linkage

– Distance between clusters is average of all pair-wise distances 
between members of the two clusters

• Complete linkage
– Distance is maximum of pair-wise distances
– Tends to produce compact clusters

• Single linkage
– Distance is minimum of pair-wise distances
– Prone to “chaining” and sensitive to noise

• Centroid/Eisen linkage
– Distance is the distance between the centroids of the two clusters 
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(Data from Bittner et al., 
Nature, 2000)



Gene Centering

• Subtracting overall average value for each gene
• Does not influence Euclidean distance between 

samples
• Does influence correlation between samples

– Reduces influence of genes whose expression in 
internal reference is very different than in samples 

– Beneficial for clustering samples when internal 
reference is arbitrary



Gene Standardization

• Dividing gene expression by standard 
deviation or maximum value for that gene

• Useful for single channel data to reduce the 
influence of high intensity genes

• Not useful for two channel data because it 
amplifies noise for non-informative genes
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Genes Used for Clustering

• Samples may cluster differently with regard 
to different gene sets

• All genes
• All “well measured” genes

– Genes with fewer than specified percentage of 
values filtered because of low intensity or poor 
imaging

• Genes with most variation across samples



Measures of Gene Expression 
Variability

• Proportion of arrays in which the gene is 
two-fold different from it’s mean or median 
value

• Variance of gene expression across the 
arrays (Vi) 
– In the upper k’th percentile of variance for all 

genes
– Is statistically significantly greater than the 

median variance for all genes



Genes Used for Clustering 
Samples

• Genes selected as being differentially 
expressed between pre-defined classes
– The cluster dendrogram is a visual display that 

the samples are distinct with regard to these 
genes, but it is not independent evidence of the 
biological relevance of the genes



Fallacy of Clustering Classes 
Based on Selected Genes

• Even for arrays randomly distributed between 
classes, genes will be found that are 
“significantly” differentially expressed

• With 8000 genes measured, 400 false positives 
will be differentially expressed with  p < 0.05  

• Arrays in the two classes will necessarily cluster 
separately when using a distance measure based 
on genes selected to distinguish the classes



Clustering Algorithms

• K-means
– Pre-specify K. 
– Initialize with a center for each cluster
– Grow each cluster by adding unassigned 

elements (samples or genes) to the cluster 
center they are nearest 

– Redefine cluster centers as clusters grow and 
permit elements to shift clusters

– Various implementations and variants



Bittner Melanoma Data



Self Organizing Maps
SOM’s

• Often described in the language of artificial and natural 
neural networks but really just a clustering algorithm

• A spatially smooth version of K-means with large K
• Cluster centers are computationally determined so that the 

distances among centers corresponds to the distances 
among points arranged in a regular 2-d or 3-d lattice. Each 
cluster center projects to a single lattice point. 

• Clusters corresponding to adjacent lattice points are similar 
giving a continuous variation appearance to the clusters

• Can be useful for clustering genes using time series data











Validation of Clusters

• Clustering algorithms find clusters, even 
when they are spurious

• Clusters found may change with re-assaying 
tumors or selection of new tumors



Clustering Arrays

• Cluster significance
• Cluster reproducibility



Cluster Significance
McShane et al 

• Transform expression data to 3-d principal 
component space

• Compute median of empirical distribution of 
distance of each sample from its nearest neighbor 

• Compute distribution of above statistic for data 
generated from multivariate Gaussian null 
distribution in principal component space

• Repeat for 1000 samples from the Gaussian null 
distribution



Cluster Significance

• Determine the proportion of the null 
distribution replications that the median of 
nearest neighbor distances is as small as for 
the median of nearest neighbor distances 
with the actual data



Assessing Cluster Reproducibility:
Data Perturbation Methods

• Most believable clusters are those that persist 
given small perturbations of the data.

– Perturbations represent an anticipated level of noise in 
gene expression measurements.

– Perturbed data sets are generated by adding random 
errors to each original data point.

• McShane et al. Gaussian errors
• Kerr and Churchill (PNAS, 2001) – Bootstrap residual errors



Assessing Cluster Reproducibility:
Data Perturbation Methods

• Perturb the log-gene measurements and re-cluster.

• For each original cluster:
– Compute the proportion of elements that occur together in the 

original cluster and remain together in the perturbed data 
clustering when cutting dendrogram at the same level k. D-
index.

– Average the cluster-specific proportions over many perturbed 
data sets to get an R-index for each cluster.



Discrepancy Index

k = 3

c1 c2 c3

Perturbed Data
3) Perturb data by adding random 
Gaussian noise to each data point.

4) Perform clustering and cut into a 
similar number of clusters as original 
data.

5) Map from each original cluster ci to 
the perturbed cluster that minimizes the 
sum of missing (m) elements.

p1 p2

}

p3= c1
*

Original Data
1) Perform clustering on data.

2) Cut at height that results in k clusters.

= c2
* = c3

*



Discrepancy Index

p1 = c1
*

}
Original Data Perturbed Data

c1 c3c2 p2 p3= c2
* = c3

*

k = 3

m
(missing)

n
(contaminating)

c1 →  c1
*: 1 1

c2 →  c2
*: 1 2

c3 →  c3
*: 1 0

( ) 6
3

1

=∑ +=′
=i

ii
nmε

Compute minimal mn-error for 
this cut of original data:

ε′ can be averaged over many 
perturbations resulting in    .ε ′



Melanoma Gene Expression Data
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19 tumor cluster of interest

Q: Can gene expression profiles of melanoma be used to distinguish
sub-classes of disease? (M. Bittner et al.)



Cluster Reproducibility: Melanoma
(Bittner et al., Nature, 2000)

Expression profiles of 31 melanomas were examined with a variety of class 
discovery methods. A group of 19 melanomas consistently clustered together.

For hierarchical clustering, the 
cluster of interest had an 
R-index = 1.0.

⇒ highly reproducible

Melanomas in the 19 element 
cluster tended to have:

• reduced invasiveness
• reduced motility



Melanoma Data:
Discrepancy Index - Individual Clusters

k
Cluster

Membership m ′ n ′
7 5-24 0.00 0.00

8 5 0.00 5.13

8 6-24 0.00 0.27
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Visualization Tools
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(Assersohn et al., Clinical Cancer Research, 2002)



Heat Map

Hierarchical Clustering of Lymphoma Data (Alizadeh et al., Nature, 2000)



Multidimensional Scaling

• How to most accurately represent the pairwise
distances between expression profiles (vector of 
log-ratios or vector of log intensities) in 5000-d 
space in a 3-dimensional plot
– Pair-wise distance relationships cannot be exactly 

represented in low dimension
– MDS gives a best approximation
– The first three principal components are approximately 

optimal for 3-d representation



Principal Components for 
Representing Samples

• The first principal component is the linear 
combination of gene expression levels that 
has the greatest variation among all linear 
combinations 
– xi denotes the log-ratio for the i’th gene
– Linear combination = a1x1+…+ anxn

– Where a1
2 + … + an

2 = 1



Principal Components for 
Representing Samples

• The second principal component is the 
linear combination of gene expression 
levels that shows the largest variation 
among all linear combinations orthogonal to 
the first principal component
– Linear combination b1x1+…+ bnxn is 

orthogonal if a1b1+…+ anbn =0



Principal Components for 
Representing Samples

• Principal components being linear combinations 
of genes are not easily interpretable in terms of 
which genes are highly represented

• Principal components can be very useful for 
visualizing distance relationships between samples 
where they capture much of the variation 
eventhough they may not be identified with 
specific genes 



 

 

MDS: Breast Tumor and FNA Samples

(Assersohn et al., Clinical Cancer Research, 2002)

Color = Patient
Large circle = Tumor
Small circle = FNA



MDS Plots

Blue Spheres: BRCA1

Gold Spheres: BRCA2

Gray Spheres: Sporadic

Using all genes

Using differentially expressed genes





Scatterplots
• Array vs array

– Log-ratio vs log-ratio or log signal vs log signal
• MA for single array  

– Mean of log red and log green intensities vs log-ratio
• Scatterplot of phenotype averages

– Plots average log-ratio or log signal, averaged over 
classes of arrays

• Identification of outliers
• Click on plots to hyperlink to clone reports
• Double-click to view gene annotations (if 

available)



Scatterplot of phenotype averages
Pomeroy dataset


	Design &Analysis of DNA Microarray Studies With BRB-ArrayTools
	http://linus.nci.nih.gov/brb
	Challenges in Effective Use of DNA Microarray Technology
	Objectives of BRB-ArrayTools
	BRB-ArrayTools
	BRB-ArrayTools
	BRB-ArrayTools
	BRB-ArrayTools
	BRB-ArrayTools Archive of Human Tumor Expression Data
	
	Brief Review of Microarray Technology
	Microarray Expression Profiling
	Microarray Expression Profiling
	Microarray Expression Profiling
	Gene Expression Microarrays
	cDNA & Printed Oligo Arrays
	[Affymetrix] HybridizationOligo Array
	Affymetrix GeneChips
	Affymetrix Arrays
	Image Analysis
	Image Analysis
	Need for Normalization for Dual-Channel Array Data
	
	What Genes To Use For Normalization?
	Global Normalization for Dual-Channel Arrays
	After Median Centering
	M vs. A
	Normalization - lowess
	Normalisation - print-tip-group
	M vs. A - after print-tip-group normalization
	Normalization for Affymetrix Arrays
	Normalization is needed to minimize non-biological variation between arrays
	Normalization for Affymetrix Arrays
	Spot Filtering Strategies
	Gene Filtering Strategies
	Affymetrix Arrays:  Probe Set SummariesMAS 4 Algorithm
	Affymetrix Arrays:  Probe Set (Gene) SummariesMAS5 Algorithm
	Data for one probe set, one array
	Data for one gene in many arrays
	RMA
	Affymetrix Present/Absent Calls
	Design of Microarray Studies
	Myth
	Myth
	Myth
	
	Good Microarray Studies Have Clear Objectives
	Class Comparison Examples
	Class Prediction Examples
	Class Discovery Examples
	Design Considerations
	Levels of Replication
	Technical Replicates of the Same RNA Sample
	Levels of Replication
	Which Genes are Differentially Expressed In Two Conditions or Two Tissues?
	Myth
	Truth
	Class Comparison:Allocation of Specimens tocDNA Array Experiments
	Reference Design
	Balanced Block Design
	Loop Design
	
	Myth
	Truth
	Myth
	Dye Swap Design
	Dye Bias
	
	cDNA experiment estimated sizes of the gene-specific dye bias for each of the 8,604 genes.  An effect of size 1 corresponds to
	
	Balanced Block Design
	Dye Swap Design
	Balanced Block Designs for Two Classes
	Limitations of Balanced Block Designs
	Reverse Labeled Arrays
	Reverse Labeled Arrays
	Reverse Labeled Arrays
	Replicate Arrays of Independent Samples from Same Tissue
	Sample Selection
	Avoid Confounding Classes for Analysis With Assay Procedures
	Experimental Design
	Good Microarray Studies Have Clear Objectives
	Class Comparison and Class Prediction
	Levels of Replication
	
	Microarray Platforms for Class Comparison
	Common Reference Design
	Analysis Strategies for Class Comparison
	Class Comparison Blocking
	Technical Replicates
	Controlling for Multiple Comparisons
	Simple Control for Multiple Testing
	Simple Procedures
	False Discovery Rate (FDR)
	If you analyze n probe sets and select as “significant” the k genes whose p ≤ p*
	Limitations of Simple Procedures
	Gene-by-Gene Comparison of Classes
	Limitations of Parametric t-test
	Gene-by-Gene Comparison of Classes
	Gene-by-Gene Comparison of Classes
	Limitation of Univariate Permutation Analysis
	Gene-by-Gene Comparison of Classes
	Gene-by-Gene Comparison of Classes
	Gene-by-Gene Comparison of Classes
	t-test Comparisons of Gene Expression for gene j
	Estimate variances individually
	Pool Variance
	Randomized Variance Model
	Randomized Variance Model
	Randomized Variance t-test
	Modified T-test
	Estimation of parameters a and b
	Additional Procedures
	Multivariate Permutation Procedures
	Multivariate Permutation Procedures(Simon et al. 2003, Korn et al. 2004)
	Control Pr{Number of FD > n}  
	Multivariate Permutation Tests
	Control Pr{FDP > }  
	Quantitative trait tool
	Survival analysis tools
	Identifying Genes Correlated With Survival
	Gene Set Expression Comparison
	Gene Set Expression Comparison
	Comparison of Gene Set Expression Comparison to O/E Analysis in Class Comparison
	Fallacy of Clustering Classes Based on Selected Genes
	Class Prediction
	Traditional Approach for Marker Development
	Genomic Approach to Diagnostic/Prognostic Marker Development
	Limitations of Genomic Approach
	Limitations of Genomic Approach
	Class Prediction Model
	Components of Class Prediction
	Class Prediction Paradigm
	Feature Selection
	Feature Selection
	Linear Classifiers for Two Classes
	Linear Classifiers for Two Classes
	Linear Classifiers for Two Classes
	Advantages of Simple Linear Classifiers
	Evaluating a Classifier
	Split-Sample Evaluation
	Split-Sample Evaluation
	Leave-one-out Cross Validation
	Cross-validated Misclassification Rate of Any Multivariable Classifier
	Cross-validated Misclassification Rate of  Any Multivariate Classifier
	
	Prediction on Simulated Null Data
	
	Incomplete (incorrect) Cross-Validation
	Compound covariate predictor
	Advantages of Compound Covariate Classifier
	BRCA1
	BRCA2
	Permutation Distribution of Cross-validated Misclassification Rate of a Multivariate Classifier
	Exact Permutation Test
	Compound Covariate Classification of DLCL Data. (GCC vs Activated B)42 Samples, 2317 Genes
	Compound Covariate ClassifierCLL Mutational Status18 Samples
	Quadratic Discriminant Analysis
	Quadratic Discriminant Analysis
	Quadratic Discriminant Analysis
	Diagonal Linear Discriminant Analysis
	Diagonal Linear Discriminant Analysis
	Neural Network Classification Kahn et al. Nature Med. 2001
	Linear Classifiers for Two Classes
	Support Vector Machine
	Compound Covariate Bayes Classifier
	Other Simple Methods
	Nearest Neighbor Classifier
	K-Nearest Neighbor Classifier
	Nearest Centroid Classifier
	Nearest Shunken Centroids
	Nearest Shunken CentroidsDiscriminant Score
	Other Methods
	When There Are More Than 2 Classes
	Decision Tree of Binary Classifiers
	Myth
	Truth
	When p>>n The Linear Model is Too Complex
	Classification of BRCA2 Germline Mutations
	Comparison of discrimination methodsSpeed et al
	Approaches to Intra-study Validation
	Invalid Criticisms of Cross-Validation
	Simulated Data40 cases, 10 genes selected from 5000
	DLBCL Data
	Simulated Data40 cases
	Common Problems With Internal Classifier Validation
	Incomplete (incorrect) Cross-Validation
	Complete (correct) Cross-Validation
	Does an Expression Profile Classifier Predict More Accurately Than Standard Prognostic Variables?
	Does an Expression Profile Classifier Predict More Accurately Than Standard Prognostic Variables?
	External Validation
	Survival Risk Group Prediction
	Survival Risk Group Prediction
	Survival Risk Group Prediction
	Survival Risk Group Prediction
	Survival Risk Group Prediction
	BRB-ArrayToolsClass Prediction
	BRB-ArrayToolsClass Prediction
	BRB-ArrayToolsClass Prediction
	BRB-ArrayToolsClass Prediction
	BRB-ArrayToolsSurvival Risk Group Prediction
	BRB-ArrayToolsSurvival Risk Group Prediction
	BRB-ArrayToolsSurvival Risk Group Prediction
	Class Prediction
	Fallacy of Clustering Classes Based on Selected Genes
	Class Discovery
	Two Types of “Classification”?
	Class Discovery
	Class Discovery of Samples
	Cluster Analysis
	Clustering and Classification
	Hierarchical AgglomerativeClustering Algorithm
	Common Distance Metrics forHierarchical Clustering
	Linkage Metrics
	Gene Centering
	Gene Standardization
	Genes Used for Clustering
	Measures of Gene Expression Variability
	Genes Used for Clustering Samples
	Fallacy of Clustering Classes Based on Selected Genes
	Clustering Algorithms
	Self Organizing MapsSOM’s
	Validation of Clusters
	Clustering Arrays
	Cluster SignificanceMcShane et al
	Cluster Significance
	Assessing Cluster Reproducibility: Data Perturbation Methods
	Assessing Cluster Reproducibility: Data Perturbation Methods
	Cluster Reproducibility: Melanoma(Bittner et al., Nature, 2000)
	Melanoma Data:Discrepancy Index - Individual Clusters
	Visualization Tools
	Heat Map
	Multidimensional Scaling
	Principal Components for Representing Samples
	Principal Components for Representing Samples
	Principal Components for Representing Samples
	MDS Plots
	Scatterplots

