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Challenges in Effective Use of DNA

I\/Ilcroarra%/ Technology
Design & Analysis are Digger challengesthan data

management.

— Much greater opportunity for misleading yourselves and
others than traditional single gene/protein studies

Limited availability of experienced statistical

collaborators

Predominance of hype, mis-information, and
dangerous methods promulgated by biomedical
scientists as well as professional
statistical/computational scientists

Predominance of flashy software that encourages
misleading analyses




Objectives of BRB-ArrayTools

* Provide biomedical scientists access to
statistical expertise for the analysis of
expression data
— training in analysis of high dimensional data

— access to critical assessment of methods
published in a rapidly expanding literature



BRB-ArrayTools

Integrated package

Excel-based user interface

— Doesn’t use Excel analyses

— state-of-the art analysis methods programmed in R, Java & Fortran

— Data not stored as worksheets

e >1000 arrays and 65000 genes per project

Based on continuing evaluation of validity and usefulness of
published methods

— Methods carefully selected by R Simon

— Not a repository like Bioconductor

Publicly available for non-commercial uses from BRB
website:



BRB-ArrayTools

* Not tied to any database

— Importer for common databases and platforms
» MadB, GenePix, Agilent, MAS5/GCOS
» Imports .cel files
» Import wizzard for any files output by image analysis program

— Import (collate)
» Expression data (eg separate file for each array)
» Spot (probeset) identifiers

» EXxperiment descriptor worksheet
— Rows correspond to arrays
— Columns are user defined phenotypes to drive the analyses
» Can be updated during analysis

— Imported data saved as project folder containing project workbook and
binary files
» Project workbook can be re-opened in Excel at any time
» Output saved in html files in output folder



BRB-ArrayTools

* Highly computationally efficient
— Non-intensive analyses in R

— Intensive analyses iIn FORTRAN

* eg BRB-AT version of SAM is 9x + more efficient
than Biloconductor or web based versions
— And more accurate

o Extensive gene and pathway annotation
features



BRB-ArrayTools

 Plug-in facility for user written R functions
e Message board and listserve

o Extensive built-in help facilities, tutorials,
datasets, usersguide, data import and
analysis wizzards, sample statistical
analysis sections, ...



BRB-ArrayTools Archive of Human
Tumor Expression Data

» Archive of BRB-ArrayTools zipped project
folders of expression profiles of human tumors
and associated clinical/pathological descriptors

— Published data

e Easy way to archive your data and to analyze
someone else’s data

— Download, unzip, open in Excel


http://linus.nci.nih.gov/brb/DataArchive.html

* Design and Analysis of DNA Microarray

Investigations

— R Simon, EL Korn, MD Radmacher, L McShane, G
Wright, Y Zhao. Springer (2003)



Brief Review of Microarray
Technology



Microarray Expression Profiling

 \Would like to know the concentration of
each protein in a cell

— Proteins do the work of cells

— Proteins have many shapes and parallel assays
for all proteins have not been developed



Microarray Expression Profiling

* One gene transcription produces one MRNA
molecule produces one protein molecule

e # genes = # MRNA types

« MRNA molecule can be reverse transcribed into
DNA and will bind only to the gene from which it
was originally transcribed (to which it Is
homologous)



Microarray Expression Profiling

« Estimates abundance of mRNA molecules
of each type present in cells

— Assay not sensitive enough to analyze single
cells so estimate is for average of sample of
cells

« Microarray contains a spot of DNA
corresponding to each gene

— Spots are in known fixed positions

— Spots contain fewer nucleotides that the full
gene
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Gene Expression Microarrays

« Permit simultaneous evaluation of expression
levels of thousands of genes

e Main platforms
— CDNA printed on glass slides
— Externally synthesized oligos printed on glass slides
— Affymetrix GeneChips
— Oligos in-situ synthesized on glass slides
— CDNA printed on nylon filters
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cDNA & Printed Oligo Arrays

* Each gene represented by one spot
(occasionally multiple)

e Two-color (two-channel) system

— Two colors represent the two samples
competitively hybridized

— Each spot has “red” and “green” measurements
associated with it
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Affymetrix GeneChips

o Contain multiple probes (spots) per gene

* Probes corresponding to the same gene
must be processed to give a probe-set
summary intensity for each gene

 Single label system

— Higher reproducibility makes use of dual-labels
unnecessary



Affymetrix Arrays

 Single sample hybridized to each array

» Each gene represented by a “probe set”
— One probe type per array “cell”

— Typical probe is a 25-mer oligo

—11-16 PM:MM pairs per probe set
(PM = perfect match, MM = mismatch)



GeneChip Expression Array Design
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GeneChip®™ Expression Analysis Process

. Biotinndated RN&
A % target fram experi-
. mental sarmple

Each probe cell cont aing \*I

Ganachi . millions of copies of aspecific
ENEIIp Sxpras o aligonucleatide probe \\\
analysis probe array a
B
H'ﬁ
i
H'“‘-. H‘H_ *_/___"‘-\-\. i
a -\"\-_ -
““"1.\ . \"‘.“' Sy - -
e Streptravidin-
phe oerythrin
Cconjugate

Irmage of hvbridized probe arvay

Source: Affymetrix website



Affymetrix GeneChips

.dat file: a huge image file
.cel file: cell intensity file
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Biological question
> Differentially expressed genes

Sample class prediction etc.

[ Experimental design ]

!

[ Microarray experiment ]
| 16-bit TIFF files

[ Image analysis }
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Image Analysis

 [ntensity Is measured at fixed set of locations
(pixels) arranged In rectangular patterns on the
solid surface

* The distance between pixels is much less than the
distance between probes

« The scanning microscope doesn’t know where the
probes are; It just measures intensities at a fine
grid of pixels



Image Analysis

1. Gridding: isolate probes

2. Segmentation:
classification of pixels either
as signal or background.

3. Information extraction:
calculate signal intensity
background and quality
Measures for each channel at
each probe
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Need for Normalization for
Dual-Channel Array Data

* Unequal incorporation of labels
— green better than red

« Unequal amounts of sample

« Unequal signal detection



» Dual-channel arrays are normalized
separately to adjust for dye bias

o Affymetrix arrays are normalized relative to
each other to equalize intensities



What Genes To Use For Normalization?

o Constantly expressed genes (house-keeping)
» All genes on the array



Global Normalization for Dual-
Channel Arrays

e Assume R~k G;
for all genes 1 in the normalization set

 Median-centered estimate
—  k=median{Ri/G;}
- R’=R/k




log2(RED signal), MCF7

After Median Centering

MCF7 vs MCF10A, Expt. 3

log2(GREEN signal), MCF10A

In plot of log(red signal)
versus log(green signal), if
point scatter is parallel to
45° line, adjust intercept to 0.



M vs. A
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Normalization - lowess

Global lowess




Normalisation - print-tip-group
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M vs. A - after print-tip-group normalization
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Normalization for Affymetrix Arrays

e Need

— Variations in amount of sample or
environmental conditions

— Variations in chip, hybridization, scanning
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Normalization for Affymetrix Arrays

e Genes used

— Affymetrix identifies housekeeping genes for some of
their new arrays

e Methods

— Scale each array so that it’s median signal equals a
target value

— Scale each array so that it’s median signal equals the
median for a reference array

— Intensity dependent normalization using lowess
smoother based on ratios relative to a reference array



Spot Filtering Strategies
o Exclude if Signal < threshold in either channel
« Exclude if Signal < threshold in both channels

e |If Min(R,G) < threshold
— and Max(R,G) < threshold then exclude
— Otherwise replace Min(R,G) by threshold



Gene Filtering Strategies

o “Bad” values on too many arrays.

* Not differentially expressed across arrays.

— Proportion of arrays < 1.5 fold different from median for

gene <20%



Affymetrix Arrays:

Probe Set Summaries
MAS 4 Algorithm

for each probe set |
Summation over n; =16-20 probes in probe set I

Excludes probe pairs that are more than 3 standard
deviations from the average difference



Affymetrix Arrays:

Probe Set (Gene) Summaries
MASS5 Algorithm

Uses Tukey biweights that continuously down-
weights probe pairs whose difference is far from the
average difference

Negative probe pair differences are modified to make
them non-negative



Data for one probe set, one array
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Li-Wong Model

A multiplicative model for each gene:
PM;, — MM, = 6¢, +¢
6. summary expression index for probe set on array k ,
¢; . probe sensitivity index for probe pair )

&;.- random normal errors

0, =Z¢?J.(F>|\/|jk - MM, )
J



RMA (Irizarry et al.)

log,(PM",) = G +¢, +¢,
6. summary expression index for probe set on array K,
¢, . probe sensitivity index for probe pair |
&;,- randomnormel errors
PM';, = globally background adjusted PM
PM*, =E(S,, | PM,,) where PM,, =S, +bg,
by, ~ N(14,, %)
S, ~exponential (4, )



RMA

o Estimate the background parameters
globally for each array

 Estimate expression summaries 0, for each
probe set and each array k using Tukey’s
median polish algorithm



Affymetrix Present/Absent Calls

* Based on Mann-Whitney rank test of the
hypothesis that the probe specific PM-MM
differences are independent observations
with median value zero



Design of Microarray Studies



Myth

hat microarray investigations should be
unstructured data-mining adventures
without clear objectives



Myth

e That the greatest challenge is managing the mass
of microarray data

» Greater challenges are:

— Effectively designing and properly analyzing
experiments that utilize microarray technology

 Distinguishing hype and misinformation from sound
methodology

» Avoiding software developed by individuals with no
qualifications for determining valid methodology
— Organizing and facilitating effective interdisciplinary
collaboration with statisticians, clinicians & biologists



Myth

e That data mining Is an appropriate paradigm
for analysis of microarray data

— find interesting patterns that give clear answers
to questions that were never asked

 That planning microarray investigations
does not require “hypotheses” or clear
objectives



e Good microarray studies have clear

objectives, but not generally gene specific
mechanistic hypotheses

 Design and analysis methods should be
tailored to study objectives



Good Microarray Studies Have
Clear Objectives

e Class Comparison

— Find genes whose expression differs among
predetermined classes

e Class Prediction

— Prediction of predetermined class (phenotype) using
Information from gene expression profile

» Class Discovery

— Discover clusters of specimens having similar
expression profiles

— Discover clusters of genes having similar expression
profiles



Class Comparison Examples

 Establish that expression profiles differ
between two histologic types of cancer

o |dentify genes whose expression level is
altered by exposure of cells to an
experimental drug



Class Prediction Examples

 Predict from expression profiles which
patients are likely to experience severe
toxicity from a new drug versus who will
tolerate it well

 Predict which breast cancer patients will
relapse within two years of diagnosis versus
who will remain disease free



Class Discovery Examples

 Discover previously unrecognized subtypes
of lymphoma

o |dentify co-regulated genes



Design Considerations

Sample and control selection
Levels of replication

Allocation of samples to (cDNA) array
experiments

Number of biological samples



(Geschwind, Nature Reviews Neuroscience, 2001)

Sources of Variability
(cDNA Array Example)

Biological Heterogeneity in Population

Specimen Collection/ Handling Effects
— Tumor: surgical bx, FNA

— Cell Line: culture condition, confluence
level

Biological Heterogeneity in Specimen
RNA extraction

RNA amplification

Fluor labeling

Hybridization

Scanning

— PMT voltage
— laser power



_evels of Replication

» Technical replicates

— RNA sample divided into multiple aliquots and re-
arrayed

 Biological replicates
— Multiple subjects
— Re-growing the cells under the defined conditions



Technical Replicates of the Same
RNA Sample

o Useful to establish that experimental technique
and reagents are adequate

— Not necessary for all samples
 Protection against bad hybridizations

e Technical replicates improve precision for
comparing a given sample to another given
sample. For comparing classes, however, It IS
more efficient to use a limited number of arrays
for more independent biological samples than for
technical replicates.



|_evels of Replication

* For comparing classes, replication of
samples should generally be at the
“biological/subject” level because we want
to make inference to the population of
“cells/tissues/subjects”, not to the
population of sub-samples of a single
biological specimen.



Which Genes are Differentially
Expressed In Two Conditions or Two
Tissues?

e Not a clustering problem

— Global similarity measures generally used for
clustering arrays may not distinguish classes

— Feature selection should be performed in a
manner that controls the false discovery rate

o Supervised methods

* Requires multiple biological samples from
each class



Myth

e That comparing tissues or experimental
conditions is based on looking for red or
green spots on a single array

e That comparing tissues or experimental
conditions Is based on using Affymetrix
MAS software to compare two arrays
— Many published statistical methods are limited

to comparing rna transcript profiles from two
samples



Truth

o Comparing expression in two RNA samples
tells you (at most) only about those two
samples and may relate more to sample
handling and assay artifacts than to biology.
Robust knowledge requires multiple
samples that reflect biological variability.



Class Comparison:
Allocation of Specimens to
cDNA Array Experiments

* Reference Design

« Balanced Block Design
— Dobbin & Simon

* Loop Design
— Kerr & Churchill



Reference Design

RED | Ay A; B, B,

GREEN R R R R

Array 1 Array 2 Array 3  Array 4

A, = ith specimen from class A

B, = i1th specimen from class B
R = aliquot from reference pool



Balanced Block Design

RED | A, B, A, B,

GREEN | B, A, B, A,

Array 1 Array 2 Array 3  Array 4

A, = ith specimen from class A
B, = ith specimen from class B



RED

GREEN

L_oop Design

A

B,

Array 1

e

B,

A,

Array 2

e

A,

B,

Array 3

e

B,

A

Array 4

A, = aliquot from ith specimen from class A
B; = aliquot from ith specimen from class B

(Requires two aliquots per specimen)




* Detailed comparisons of the effectiveness of
designs:

— Dobbin K, Simon R. Comparison of microarray designs
for class comparison and class discovery.
Bioinformatics 18:1462-9, 2002

— Dobbin K, Shih J, Simon R. Statistical design of
reverse dye microarrays. Bioinformatics 19:803-10,
2003

— Dobbin K, Simon R. Questions and answers on the
design of dual-label microarrays for identifying

differentially expressed genes, JINCI 95:1362-1369,
2003



Myth

 Common reference designs for two-color
arrays are inferior to “loop” designs.



Truth

« Common reference designs are effective for many
microarray studies. They are robust, permit comparisons
among separate experiments, permit unplanned types of
comparisons to be performed, permit cluster analysis and
class prediction analysis.

« Loop designs are non-robust, are very inefficient for class
discovery (clustering) analyses are not applicable to class
prediction analyses and do not easily permit inter-
experiment comparisons.

« For simple two class comparison problems, balanced block
designs are the most efficient and require many fewer
arrays than reference designs. They are not appropriate for
class discovery or class prediction and are more difficult to
apply to more complicated class comparison problems.



Myth

* For two color microarrays, each sample of
Interest should be labeled once with Cy3
and once with Cy5 in dye-swap pairs of
arrays.



Dye Swap Design

RED | Ay B, Ag B,

GREEN | B, A, B, A,

Array 1 Array 2 Array 3  Array 4

A, = ith specimen from class A
B, = ith specimen from class B



Dye Bias

* Average differences among dyes in label
concentration, labeling efficiency, photon
emission efficiency and photon detection
are corrected by normalization procedures

» Gene specific dye bias may not be corrected
by normalization



» Gene-specific dye bias

— 3681 genes with p<0.001 of 8604 evaluable
genes

* Gene and sample specific dye bias
— 150 genes with p<0.001



Frequency

1000 1500 2000

500

Estimated orientation effect size



* Dye swap technical replicates of the same two rna
samples are rarely necessary.

e Using a common reference design, dye swap arrays
are not necessary for valid comparisons of classes
since specimens labeled with different dyes are never
compared.

 For two-label direct comparison designs for
comparing two classes, it iIs more efficient to balance
the dye-class assignments for independent biological
specimens than to do dye swap technical replicates



Balanced Block Design

RED | A, B, A, B,

GREEN | B, A, B, A,

Array 1 Array 2 Array 3  Array 4

A, = ith specimen from class A
B, = ith specimen from class B



Dye Swap Design

RED | Ay B, Ag B,

GREEN | B, A, B, A,

Array 1 Array 2 Array 3  Array 4

A, = ith specimen from class A
B, = ith specimen from class B



Balanced Block Designs for Two
Classes

« Half the arrays have a sample from class 1 labeled
with Cy5 and a sample from class 2 labeled with
Cy3;

* The other half of the arrays have a sample from
class 1 labeled with Cy3 and a sample from class 2
labeled with Cyb5.

e Each sample appears on only one array. Dye
swaps of the same rna samples are not necessary
to remove dye bias and for a fixed number of
arrays, dye swaps of the same rna samples are
Inefficient



Limitations of Balanced Block
Designs

e One class comparison

* Does not support cluster analysis

* Requires ANOVA analysis of single
channel log intensities



cDNA Arrays:
Reverse Fluor Experiments

Forward vs -Reverse logRatio
MCF7 vs MCF10A

PERSISTENT GREEN et

1

0

-1

-Avg. of 3 reverse logRatios

yell PERSISTENT RED

-1 0 1
Avg. of 7 forward logRatios



Reverse Labeled Arrays

* Not necessary with reference design if you
are not interested In direct comparison to
Internal reference
— If reference rna is consistently labeled with the

same dye, dye bias effects all classes equally
and does not bias comparison of classes.

— For clustering of specimens, the reference
design should be used and no reverse labeled
arrays are necessary.



Reverse Labeled Arrays

« Using balanced block design to directly
compare two classes, using each rna sample
on only one array and balancing labels
between classes I1s more efficient than using
reverse labeled technical replicates.

— For a fixed total number of arrays, use of
reverse labeled technical replicates reduces the

number of independent biological samples
Included



Reverse Labeled Arrays

* Necessary with reference design for some
arrays If you are interested in direct
comparison to internal reference

— Gene specific dye bias not removed by
normalization



Replicate Arrays of Independent
Samples from Same Tissue

« Useful for establishing that clusters of
samples represent different disease groups
rather than just heterogeneity of individual
tissues or differences In tissue handling



Sample Selection

o Experimental Samples
— Representative of the phenotype or the population
under investigation.
» Reference Sample (for cDNA array experiments
using reference design)
— In most cases, does not have to be biologically relevant.

» Expression of most genes, but not too high.
» Same for every array

— Other situations exist (e.g., matched normal & cancer)



Avolid Confounding Classes for
Analysis With Assay Procedures

* Obtaining samples
 RNA labeling
« Hybridization

— Print set

— reagents



Experimental Design

Dobbin K, Simon R. Comparison of microarray designs for class
comparison and class discovery. Bioinformatics 18:1462-9, 2002

Dobbin K, Shih J, Simon R. Statistical design of reverse dye
microarrays. Bioinformatics 19:803-10, 2003

Dobbin K, Shih J, Simon R. Questions and answers on the design of
dual-label microarrays for identifying differentially expressed genes,
JNCI 95:1362-69, 2003

Simon R, Korn E, McShane L, Radmacher M, Wright G, Zhao Y.
Design and analysis of DNA microarray investigations, Springer
Verlag (2003)

Simon R, Dobbin K. Experimental design of DNA microarray
experiments. Biotechniques 34:1-5, 2002

Simon R, Radmacher MD, Dobbin K. Design of studies with DNA
microarrays. Genetic Epidemiology 23:21-36, 2002

Dobbin K, Simon R. Sample size determination in microarray
experiments for class comparison and prognostic classification.
Biostatistics 6:27-38, 2005.



Good Microarray Studies Have
Clear Objectives

e Class Comparison

— Find genes whose expression differs among
predetermined classes

e Class Prediction

— Prediction of predetermined class (phenotype) using
Information from gene expression profile

» Class Discovery

— Discover clusters of specimens having similar
expression profiles

— Discover clusters of genes having similar expression
profiles



Class Comparison and Class
Prediction

* Not clustering problems

— Global similarity measures generally used for
clustering arrays may not distinguish classes

— Don’t control multiplicity or for distinguishing
data used for classifier development from data
used for classifier evaluation

o Supervised methods

* Requires multiple biological samples from
each class



_evels of Replication

» Technical replicates

— RNA sample divided into multiple aliquots and re-
arrayed

 Biological replicates
— Multiple subjects
— Replication of the tissue culture experiment



 Biological conclusions generally require
Independent biological replicates. The power
of statistical methods for microarray data
depends on the number of biological
replicates.

o Technical replicates are useful insurance to
ensure that at least one good quality array of
each specimen will be obtained.



Microarray Platforms for Class
Comparison

« Single label arrays
— Affymetrix GeneChips

e Dual label arrays
— Common reference design
— Other designs



Common Reference Design

RED | Ay A; B, B,

GREEN R R R R

Array 1 Array 2 Array 3  Array 4

A, = ith specimen from class A

B, = i1th specimen from class B
R = aliquot from reference pool



Analysis Strategies for Class
Comparison

o Compare classes on a gene by gene basis using
statistical tests

— Control for the large number of tests performed

— Types of statistical significance tests

e t-tests or F-tests

— Hierarchical model for sharing variance information among
genes

 Univariate permutation tests
 Analysis of variance to control for other variables

« Multivariate permutation tests
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Class Comparison Blocking

e Paired data

— Pre-treatment and post-treatment samples of same
patient

— Tumor and normal tissue from the same patient

* Blocking
— Multiple animals in same litter

— Any feature thought to influence gene expression
» Sex of patient
» Batch of arrays



Technical Replicates

 Multiple arrays on alloguots of the same
RNA sample
 Select the best quality technical replicate or

» Average expression values



Controlling for Multiple Comparisons

* Bonferroni type procedures control the
probability of making any false positive
errors

e Overly conservative for the context of DNA
microarray studies



Simple Control for Multiple Testing

 |f each gene Is tested for significance at level o
and there are n genes, then the expected number of
false discoveriesisn o .

— e.¢. 1f n=1000 and «.=0.001, then 1 false discovery
— To control E(FD) < u
— Conduct each of k tests at level o = u/k



Simple Procedures

e Control E(FD) <u

— Conduct each of k tests at level u/k

—e.g. To limit of 10 false discoveries in 10,000
comparisons, conduct each test at p<0.001 level

e Control E(FDP) <y
— Benjamini-Hochberg procedure



False Discovery Rate (FDR)
FDR = Expected proportion of false
discoveries among the tests declared

significant
Studied by Benjamini and Hochberg (1995).



Not rejected Rejected Total
True null 890 10 900
hypotheses False
discoveries
False null 10 90 100
hypotheses True
discoveries
100 1000




If you analyze n probe sets and select
as “significant” the k genes whose p <

p*

 FDR ~n p* /K



Limitations of Simple Procedures

 p values based on normal theory are not accurate
In the extreme tails of the distribution

 Difficult to achieve extreme quantiles for
permutation p values of individual genes

« Multiple comparisons controlled by adjustment of
univariate (single gene) p values may not take
advantage of correlation among genes



Gene-by-Gene Comparison of

Classes

 t-test for comparing two classes

For dual-color arrays compare log-ratios, not ratios
For GeneChips compare log signals
t;=(mean,;-mean,)/standard-error,

Standard-error= s, (1/n; + 1/n,)*?
S =within-class standard deviation

Computes statistical significance level as the probability of
obtaining a t value as large in absolute value as actually obtained if
the two classes had the same true means and the sampling variation
had a Gaussian distribution

Gaussian distribution is symmetric “bell-shaped curve” which
decreases at rate exp(-x?)



Limitations of Parametric t-test

Expression values may not be approximately
Gausslan

t distribution approximation to the distribution of t
under the null hypothesis Is not accurate at the
extreme tail of the distribution

t distribution approximation is less accurate for
small sample sizes

Small sample size limits accuracy of estimation of
S
g
— Few degrees of freedom for t limits statistic power for
detecting differences in mean expression levels



Gene-by-Gene Comparison of
Classes

e Permutation t-test

— Compute the t statistic comparing the two
classes for a gene but don’t use the Gaussian
distribution assumption to translate the t value
Into a p value

— Consider all possible permutations of the labels
of which arrays correspond to which class,
holding fixed the number of total arrays in each
class



Gene-by-Gene Comparison of
Classes

e Permutation t-test (cont)

— For each permutation of class labels re-compute
the t statistic comparing the classes with regard
to a specific gene

— Determine the proportion of the permutations
that gave a t value at least as large in absolute
value as the one corresponding to the true data

— That proportion is the permutation p value



Limitation of Univariate Permutation
Analysis

o Statistical significance level is limited by
the number of possible permutations of the
class labels. For small sample sizes,
statistical significance at a stringent
significance level (e.g. p<0.001) either
cannot be achieved or is achieved with
limited statistical power



Gene-by-Gene Comparison of
Classes

 All of these tests assume that the different
arrays are independent. Hence replicate
arrays must be either averaged, or the best
quality one selected for inclusion In the
analysis, or a more complex ANOVA
model be used for analysis



Gene-by-Gene Comparison of

Classes

e [-test

— The generalization of the t-test when there are more
than 2 classes to compare.

« Significance indicates that the class means are more different
than one expects by chance but it does not indicate which
classes are different from which other classes.

» The statistically significant genes may differ with regard to the
patterns of differences among classes that they show.
Clustering the set of significant genes is useful to sort the
genes into sets with uniform patterns.



Gene-by-Gene Comparison of
Classes

e F-test

— The standard F test computes statistical
significance based on an assumption of
Gaussian distribution of sampling variability.

— The permutation F-test Is a generalization of the
permutation t-test and the associated p values
are not based on Gaussian assumptions.



t-test Comparisons of Gene
Expression for gene |

* Xi~N(u;;, , 5;%) forclass 1
* Xi~N(u;, , 5;°) for class 2

* HOj Hjl “12



Estimate variances individually

2
O .
J
Treat each  as a separate unknown quantity, and estimate

separately for each gene.
Advantages: Allows each gene to have it’s own variance.

Disadvantages: In cases of small sample size estimate will
have few degrees of freedom. Ignores the wealth of
information provided by other genes



Pool Variance

Assume all genes have same regidual variance so that

Gj = O

Use all genes to estimate single variance value

Advantages:

Large Numbers of degrees of freedom for variance
estimate

Disadvantages:

Not realistic, in observed data, some genes can be 10
times more variable than other genes



Randomized Variance Model

Assume that the variances of the genes are themselves drawn at
random from an inverse Gamma distribution

crj_2 ~ Gamma(t; a,b)

t*~ L exp(—t/b)
I'(a)b®

a and b are parameters that can be estimated from the entire set of genes.

a will indicate the shape or peakedness of the distribution of variances
b will scale the size of the variance, such that E(1/o%) =ab



Randomized Variance Model

Advantages:
» Allows for the variance to realistically vary between genes

» Uses information from all genes to contribute to variance estimates
Increasing reliability of estimate.

Disadvantages:

» Requires additional assumptions about the distribution of the
variances

 Estimates of variance may still be noisy



Randomized Variance t-test

e Pr(c2=x) = x&lexp(-x/b)/T'(a)b?

t— /’lil_ll’lIZ
=~ 1 1
6t + 2




Modified T-test

As an application of testing between 2 varieties, the standard T-test is
usable with the following modification.

Y-Y Y1-Y
t= L 2 becomes t= 1 2

- 1 1 ~ 1 1
Tpooled / n + 2 Jpooﬂedﬂ 1 + o

where,

(n - 2)312)00led + 2b_1
(n—2)+2a

Opooled =

and the number of degrees of freedom increases from n-2 to n-2+2a.

This is similar to a result by Baldi and Long (Bioinfomatics 2001)
Who approached this problem from a purely Bayesian standpoint.



Estimation of parameters a and b

Under our model for o> we find that for each gene,

ab
n—=k

(SSHI) ~ F{n—k],2a

Since we observe thousands of genes, we can arrive
at quite accurate estimates of a and b by maximizing
the likelihood of these observations with respect to

these parameters.



Additional Procedures

e “SAM” - Significance Analysis of Microarrays
— Tusher et al., PNAS, 2001
— Estimate FDR
— Statistical properties unclear

« Multivariate permutation tests

— Korn et al., (Journal of Statistical Planning &
Inference)

— Control number or proportion of false discoveries
— Can specify confidence level of control



Multivariate Permutation Procedures

More effective than univariate permutation tests
especially with limited number of samples

— Based on the o percentile of the distribution of the
(k+1)st smallest p value under multivariate permutation
distribution; not on the a/G percentile of the
distribution of the univariate p value for a specific gene

 Stronger control than simple methods which
control only expected number and proportion of

false discoveries



Multivariate Permutation Procedures
(Simon et al. 2003, Korn et al. 2004)

Allows statements like:

FD Procedure: We are 90% confident that the
(actual) number of false discoveries is no
greater than 5.

FDP Procedure: We are 90% confident that the
(actual) proportion of false discoveries does not
exceed .10.



Control
Pr{Number of FD > n} <«

* vy = a quantile of the distribution of the
(n+1) st smallest p value under the
multivariate permutation distribution.

 Include the genes corresponding to the n
smallest p values in the gene list

* Include gene corresponding to p; If p; <y



Multivariate Permutation Tests

 Distribution-free
— even If they use t statistics

* Preserve/exploit correlation among tests by
permuting each profile as a unit

* More effective than univariate permutation
tests especially with limited number of
samples



Control
Pr{FDP >y} <«

« Determine y(u) = o quantile of the distribution of
the (u+1)st smallest p value under the multivariate

permutation distribution.
— Foru=123, ...

 Include in the list of differentially expressed genes
the gene corresponding to the 1’th smallest p value
as long as p; <y( leg
- Sequentlally fori=1,2,.
— Ly il = largest integer Iess than orequaltoy
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Quantitative trait tool

* Selects genes which are univariately correlated
with a quantitative trait such as age.

« Controls number and proportion of false
discoveries in entire list: uses a multivariate
permutation test which takes advantage of the

correlation among genes.

* Produces a gene list which can be used for further
analysis.
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Survival analysis tools

 Find Genes Correlated with Survival tool, selects
genes which are univariately correlated with
survival

e Controls number and proportion of false
discoveries in entire list: uses a multivariate
permutation test which takes advantage of the
correlation among genes

 Produces a gene list which can be used for further
analysis



ldentifying Genes Correlated With
Survival

Instantaneous hazard of death at time t
A(t) = 4, (D) exp(5x;)

X. = log ratio or log signal for gene i
Calculate p value for each gene i
Apply a multivariate permutation

procedure to the p, values, permuting
survival times rather than class labels



» Fatient Array

B

B C D E F = N
BRCA1 v BRCAZ v Sporadic |BRCAN Y BRCAZ BRCA1 v Sporadic BRCAZ v Sporadic BRCAT v nott
20 Sporadic notBRCAI
1 BRCAI BRCA BRCA BRCA

5 BRCA1 Find Genes Correlated with Survival

3 BRCAI

7 BRCAI ) ) N ) ) )

This procedure tests For genes which are significantly associated with survival,

2 BRCA P ? aneerty

4 BRCA1 — Experimental design: ————— — Find gene lists determined by:
10 BRCAZ — Status column;

9 BRCAZ {0 = censored, 1 = death) % Significance threshold of univariate tests: I 0,001

g BRCAZ I ﬂ
22 BRCAZ
16 Sporadic . _ _ " Restriction on propartion of False discaveries:
17 Sporadic [~ (Column defining survival tme: Maximurn propartion of false discoveries: I o1
15 Sporadic | j ,

e Confidence level (between 0 and 100%:); I

18 Sporadic =
19 Sporadic
21 Sporadic [™ Average over replicates of: " Restriction on number of False discoveries:

b BRCAI Maximum number of False discoveries: I

' 10
ISIEis e | ;I Confid level (bet 0 and 100%:):
14 BRCAD onfidence level (bebween 0 an At I &
11 BRCAZ
12 BRCAZ
MOTE: This analysis is currently set ko run on all genes passing the Filber, Seleck gene subsets |
I, Cancel | Cptions | Reset | Help

|

-

oy

descriptors / Filtered log ratic 4/ Gene annotations 4 Gene identifiers /




Gene Set Expression Comparison

Compute p value of differential expression for each gene in
a gene set (k=number of genes)

Compute a summary (S) of these p values

Determine whether the value of the summary test statistic
S 1s more extreme than would be expected from a random
sample of k genes (probe-sets) on that platform

Two types of summaries provided
— Awverage of log p values

— Kolmogorov-Smirnov statistic; largest distance between the
cumulative distribution of the p values and the uniform distribution
expected if none of the genes were differentially expressed



Gene Set Expression Comparison

 p value for significance of summary statistic
need not be as extreme as .001 usually,
because the number of gene sets analyzed is
usually much less than the number of
Individual genes analyzed

» Conclusions of significance are for gene
sets In this tool, not for individual genes
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Comparison of Gene Set Expression
Comparison to O/E Analysis In Class
Comparison

» Gene set expression tool is based on all
genes In a set, not just on those significant
at some threshold value

* O/E analysis does not provide statistical
significance for gene sets



Fallacy of Clustering Classes
Based on Selected Genes

« Even for arrays randomly distributed between
classes, genes will be found that are
“significantly” differentially expressed

« With 8000 genes measured, 400 false positives
will be differentially expressed with p < 0.05

 Arrays in the two classes will necessarily cluster
separately when using a distance measure based
on genes selected to distinguish the classes



Class Prediction

* Predict membership of a specimen into pre-defined
classes
— Disease vs normal
— Poor vs good response to treatment
— Long vs short survival



Traditional Approach for Marker
Development

Focus on candidate protein Involved In
disease pathogenesis

Develop assay

Conduct retrospective study of whether
marker Is prognostic using available
specimens

Marker dies because
— Therapeutic relevance not established
— Inter-laboratory reproducibility not established



Genomic Approach to Diagnostic/Prognostic
Marker Development

Select therapeutically relevant population

— Node negative well staged breast cancer patients who
have not received chemotherapy and have long follow-

up
— Early stage ovarian cancer patients and normal controls

Perform genome wide expression profiling
Develop multi-gene/protein predictor of outcome
Obtain unbiased estimate of prediction accuracy
Independently confirm results



Limitations of Genomic Approach

 Difficulty relating differentially expressed genes
to cause of disease
— or to real therapeutic targets

 Availibility of tissue and clinical follow-up for
therapeutically relevant questions

— Many studies address overly simple problems or
heterogeneous non-therapeutically relevant populations

— Inclusion of advance disease patients
— Comparing completely different types of cancer



Limitations of Genomic Approach

 Difficulty in performing adequate validation
studies

 Lack of inter-laboratory reproducibility
evaluations



Class Prediction Model

Given a sample with an expression profile vector x of log-
ratios or log signals and unknown class.

Predict which class the sample belongs to

The class prediction model is a function f which maps from
the set of vectors x to the set of class labels {1,2} (if there
are two classes).

f generally utilizes only some of the components of x (i.e.
only some of the genes)

Specifying the model f involves specifying some
parameters (e.g. regression coefficients) by fitting the
model to the data (learning the data).



Components of Class Prediction

* Feature (gene) selection
— Which genes will be included in the model

o Select model type
— E.g. DLDA, Nearest-Neighbor, ...

 Fitting parameters (regression coefficients)
for model



Class Prediction Paradigm

o Select features (F) to be included in predictive
model using training data in which class
membership of the samples is known

 Fit predictive model containing features F using
training data
— Diagonal linear discriminant analysis
— Neural network

 Evaluate predictive accuracy of model on
completely independent data not used in any way
for development of the model




Feature Selection

« Key component of supervised analysis

» Genes that are differentially expressed among the classes
at a significance level a (e.g. 0.01)

— The o level is selected to control the number of genes in the
model, not to control the false discovery rate

» Methods for class prediction are different than those for class
comparison

— The accuracy of the significance test used for feature selection is
not of major importance as identifying differentially expressed
genes is not the ultimate objective

— For survival prediction, the genes with significant univariate Cox
PH regression coefficients



Feature Selection

« Small subset of genes which together give
most accurate predictions

— Step-up regression
— Combinatorial optimization algorithms
« Genetic algorithms

 Principal components of genes
e Gene cluster averages



|_Inear Classifiers for Two Classes

()= wx

X = vector of log ratios or log signals
F = features (genes) included in model
w. = weight for i'th feature

decision boundary I(x) > or <d



|_Inear Classifiers for Two Classes

e Compound covariate predictor

Yi(l) I Yi(z)

W, oC —~
O

Instead of for DLDA

Yi(l) N Yi(z)

W oC ~
o



|_Inear Classifiers for Two Classes

o Support vector machines with inner product
kernel are linear classifiers with weights
determined to minimize errors

 Perceptrons with principal components as
Input are linear classifiers with no well
defined criterion for defining weights



Advantages of Simple Linear
Classifiers

Do not over-fit data

— Incorporate influence of multiple variables
without attempting to select the best small
subset of variables

— Do not attempt to model the multivariate
Interactions among the predictors and outcome



Evaluating a Classifier

o “Prediction is difficult, especially the
future.”

— Nells Bohr

 Fit of a model to the same data used to
develop it Is no evidence of prediction
accuracy for independent data.



Split-Sample Evaluation

e Training-set
— Used to select features, select model type, determine
parameters and cut-off thresholds
e Test-set

— Withheld until a single model is fully specified using
the training-set.

— Fully specified model is applied to the expression
profiles in the test-set to predict class labels.

— Number of errors is counted



Split-Sample Evaluation

o Used for Rosenwald et al. study of
prognosis in DLBL lymphoma.

— 200 cases training-set
— 100 cases test-set



|_eave-one-out Cross Validation

» |eave-one-out cross-validation simulates
the process of separately developing a
model on one set of data and predicting for

a test set of data not used in developing the
model



Non-cross-validated Prediction

log-expression ratios

1. Prediction rule is built using full data set.

2. Rule is applied to each specimen for class
prediction.

full data set

specimens

Cross-validated Prediction (Leave-one-out method)

1. Full data set is divided into training and
test sets (test set contains 1 specimen).
2. Prediction rule is built from scratch
using the training set.
3. Rule is applied to the specimen in the
test set for class prediction.
4. Process Is repeated until each specimen
has appeared once in the test set.

log-expression ratios

training set

specimens




Cross-validated Misclassification Rate of
Any Multivariable Classifier

 Omitsample 1

— Develop multivariate classifier from scratch on
training set with sample 1 omitted

— Predict class for sample 1 and record whether
prediction Is correct



Cross-validated Misclassification Rate of
Any Multivariate Classifier

e Repeat analysis for training sets with each
single sample omitted one at a time

e ¢ = number of misclassifications determined
by cross-validation



« Cross validation is only valid if the training set is not used
In any way in the development of the model. Using the
complete set of samples to select genes violates this
assumption and invalidates cross-validation.

« With proper cross-validation, the model must be developed
from scratch for each leave-one-out training set. This
means that gene selection must be repeated for each leave-
one-out training set.

* The cross-validated estimate of misclassification error
applies to the model building process, not to the particular
model or the particular set of genes used in the model.



Prediction on Simulated Null Data

Generation of Gene Expression Profiles

* 14 specimens (P; is the expression profile for specimen i)
* Log-ratio measurements on 6000 genes

* P; ~ MVN(O, lggg0)

» Can we distinguish between the first 7 specimens (Class 1) and the last 7
(Class 2)?

Prediction Method
« Compound covariate prediction (discussed later)

« Compound covariate built from the log-ratios of the 10 most differentially
expressed genes.




Percentage of simulated data sets
with m or fewer misclassifications

Non-cross-validated Cross-validated

m class prediction class prediction
0 99.85 0.60
1 100.00 2.70
2 100.00 6.20
3 100.00 11.20
4 100.00 16.90
5 100.00 24.25
6 100.00 34.00
7 100.00 42.55
8 100.00 53.85
9 100.00 63.60

10 100.00 74.55

11 100.00 83.50

12 100.00 91.15

13 100.00 96.85

14 100.00 100.00
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Incomplete (incorrect) Cross-
Validation

* Biologists and computer scientists are using all the
data to select genes and then cross-validating only
the parameter estimation (learning) component of
model development

— Highly biased
— Many published complex methods which make strong
claims based on incorrect cross-validation.
» Frequently seen in complex feature set selection algorithms
» Also seen in proposals for decision tree classifiers and neural
networks



Compound covariate predictor

Feature selection

— Select genes with two-class t-statistics significant at
p<p’

Form a compound covariate predictor as:

T X {Where U = t-statistic, X;=log-ratio
and sum is taken over all significant genes

Determine the cutpoint of the predictor as the
midpoint between its mean in one class and its
mean in the other class



Advantages of Compound
Covariate Classifier

e Does not over-fit data

— Incorporates influence of multiple variables
without attempting to select the best small
subset of variables

— Does not attempt to model the multivariate
Interactions among the predictors and outcome

— A one-dimensional classifier with contributions
from variables correlated with outcome



Gene-Expression Profiles In
Hereditary Breast Cancer

( Hedenfalk et al., NEJM, 2001)

cDNA Microarrays
Parallel Gene Expression Analysis

 Breast tumors studied:
/ BRCA1+ tumors
8 BRCA2+ tumors
7 sporadic tumors

* Log-ratios measurements of
3226 genes for each tumor
after initial data filtering

RESEARCH QUESTION
Can we distinguish BRCA1+ from BRCA1- cancers and BRCA2+ from
BRCAZ2- cancers based solely on their gene expression profiles?




Classification of hereditary breast cancers with the compound covariate predictor

Number of Proportion of random
differentially m = number of permutations with m or
Class labels expressed genes misclassifications fewer misclassifications
3RCA1" vs. BRCA1™ 9 1 (0 BRCA1", 1 BRCAL) 0.004

3RCA2" vs. BRCA2™ 11 4 (3BRCA2", 1 BRCA2Y) 0.043




BRCAI

# of significant

m = # of misclassified elements

% of random
permutations with m

" genes (misclassified samples) or fewer
misclassifications

10 182 3 (513714, 514510, s14321) 0.4

10 53 2 (s14510, s14321) 1.0

10 9 1 (s14321) 0.2




BRCAZ2

# of significant

m = # of misclassified elements

% of random
permutations with m

" genes (misclassified samples) or fewer
misclassifications

10 212 4 (s11900, s14486, s14572, s14324) 0.8

10 49 3 (s11900, s14486, s14324) 2.2

10 11 4 (s11900, s14486, s14616, s14324) 6.6




Permutation Distribution of Cross-
validated Misclassification Rate of a
Multivariate Classifier

« Randomly permute class labels and repeat
the entire cross-validation

e Re-do for all (or 1000) random
nermutations of class labels

o Permutation p value is fraction of random
permutations that gave as few
misclassifications as e In the real data




Exact Permutation Test

Premise: Under the null hypothesis of no systematic difference in
expression profiles between the two classes, it can be assumed that
assignment of class labels to expression profiles is purely coincidental.

Performing the test

1. Consider every possible permutation of the class labels among the
gene expression profiles.

2. Determine the proportion of the permutations that result in a
misclassification error rate less than or equal to the observed error
rate.

3. This proportion is the achieved significance level in a test of the
null hypothesis.



Monte Carlo Permutation Test

Examining all permutations is computationally burdensome.
Instead, a Monte Carlo method 1s used...

* N, Permutations of the labels are randomly generated.

 The proportion of these permutations that have m or fewer
misclassifications is an estimate of the achieved significance
level in a test of the null hypothesis.

* n .. IS chosen such that the variability in the estimate is less

perm

than an acceptable level.

* If the true proportion of permutations with m < 2 is 0.05,
n....= 2000 ensures the coefficient of variation of the

perm~—

estimate of the achieved significance level is less than 0.1.



probability

Distribution of the Number of Misclassifications

for a Simulated Data Set

0.25
Binomial (n=14, p=0.5)
Permutation
0.20 -
0.15 -
0107 L
I
0.05 -
OOO T T T T T T T
2 4 6 8 10 12 14

number of misclassifications




Compound Covariate Classification of DLCL Data.
(GCC vs Activated B)
42 Samples, 2317 Genes

Nominal alpha Number of Number of Permutational p
DEGs misclassifications value
0.01 275 3 0.00
0.001 97 5 0.00
0.0001 39 4 0.00
0.00001 16 4 0.00
0.000001 3 7 0.01




Compound Covariate Classifier
CLL Mutational Status

18 Samples
Nominal | Number of | X-validation | Permutation M_isclassific’s
Alpha DEGs Errors p value in 10 new
samples
0.001 56 1 0.001 1
0.0001 7 5 0.107 1




Quadratic Discriminant Analysis

« Assumes that log-ratios (log intensities)
have a multi-variate Gaussian distribution.

 The two classes have different mean vectors

and potentially different covariance
matrices.

 Using the training data, estimate the mean
vector and covariance matrix for each class.



Quadratic Discriminant Analysis

* To classify a new sample, compute the probability
density for the log-ratio expression profile of the
new sample for each class. Compute these two
values using the class-specific mean vectors and
covariance matrices estimated in the training data.
The computation also utilizes the Gaussian
distribution assumption.

» Classify the new sample in the class with the
larger value of the probability density for the
expression profile of the new sample.



Quadratic Discriminant Analysis

* With G genes in the model, there are G
components of the mean vector to be
estimated for each class and G(G+1)/2
components of the covariance matrix for
each class. Hence a total of G(G+3)
parameters to be estimated.

o With N samples, one has only NG pieces of
data.



Diagonal Linear Discriminant
Analysis

e Full QDA performs poorly when G >N. One can
nelp somewhat by selecting the G genes to include
pased on univariate discrimination power.

e The number of parameters can be dramatically
reduced by assuming that the variances are the
same in the two classes and that covariance among
genes can be ignored. This reduces the number of
parameters to 3G. This is DLDA. It has performed
as well as much more complex methods In
comparisons conducted by Dudoit et al.




Diagonal Linear Discriminant
Analysis

e Golub’s Weighted Voting Method and Radmacher
et al’s Compound Covariate Predictor are similar
to DLDA.

* These methods, as well as other, are generally
Implemented with feature (gene) selection based
on univariate classification power. In performing
cross-validation to estimate mis-classification rate,
the gene selection step must be repeated starting
with the full set of genes for each leave-one-out
training set.



Neural Network Classification
Kahn et al. Nature Med. 2001

Not really a neural network (fortunately).

A perceptron with no hidden nodes and a linear
transfer function at each node.
Inputs are first 10 principal components

— The linear combinations of the genes that have greatest
variation among samples and are orthogonal

The method is essentially equivalent to DLDA
based on the 10 PC’s as predictors

They didn’t cross-validate the computation of the
10 PC’s.



|_Inear Classifiers for Two Classes

o Support vector machines with inner product
kernel are linear classifiers with weights
determined to separate the classes with a
hyperplain that minimizes the length of the
weight vector



Support Vector Machine

minimize » w;
i

subjecttoy, (w'x'? +b)>1

where y; =+1 for class 1 or 2.



Compound Covariate Bayes
Classifier

e Compound covariate y = Xt
— Sum over the genes selected as differentially expressed

— X; the expression level of the ith selected gene for the
case whose class iIs to be predicted

— 1. the t statistic for testing differential expression for the
I’th gene
* Proceed as for the naive Bayes classifier but using
the single compound covariate as predictive
variable
— GW Wright et al. PNAS 2005.



Other Simple Methods

Nearest neighbor classification
Nearest k-neighbors

Nearest centroid classification
Shrunken centroid classification



Nearest Neighbor Classifier

o To classify a sample in the validation set as being
In outcome class 1 or outcome class 2, determine
which sample in the training set it’s gene
expression profile is most similar to.

— Similarity measure used Is based on genes selected as
being univariately differentially expressed between the
classes

— Correlation similarity or Euclidean distance generally
used

 Classify the sample as being in the same class as
It’s nearest neighbor in the training set



K-Nearest Neighbor Classifier

* Find the k samples that are most similar to
the sample to be classified

o |dentify the majority class among the k
nearest neighbor samples

 Classify the unknown sample as being In
the majority class



Nearest Centroid Classifier

e For atraining set of data, select the genes that are
Informative for distinguishing the classes

o Compute the average expression profile (centroid) of the
Informative genes In each class

» Classify a sample in the validation set based on which
centroid In the training set it’s gene expression profile is
most similar to.



Nearest Shunken Centroids

X, = mean of gene i in class k
centroid = vector of class means
X. = overall mean of gene i
Yik _Yi

m,S;

C=

s. = standard deviation of gene i expression
within each class

— ’l 1

Yi'k =X; + mksidi’k
di,k = Sign(dik){l dik |_A}+



Nearest Shunken Centroids
Discriminant Score

X = expression profile of sample to be classified

§k(X*) = Z(

—2logr,

o \2
X; _Xik)
s’

7, = prior probability that sample is in class k
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Other Methods

* Top-scoring pairs
— Claim that it gives accurate prediction with few

pairs because pairs of genes are selected to
work well together

« Random Forrest
— Very popular in machine learning community
— Complex classifier



When There Are More Than 2
Classes

* Nearest neighbor type methods

» Decision tree of binary classifiers



Decision Tree of Binary Classifiers

Partition the set of classes {1,2,...,K} into two disjoint subsets S, and
SZ
Develop a binary classifier for distinguishing the composite classes S,
and S,

» Compute the cross-validated classification error for

distinguishing S, and S,

Repeat the above steps for all possible partitions in order to find the
partition S;and S, for which the cross-validated classification error is
minimized
If S,and S, are not singleton sets, then repeat all of the above steps
separately for the classes in S,and S, to optimally partition each of
them



Myth

hat complex classification algorithms such
as neural networks perform better than
simpler methods for class prediction.



Truth

o Artificial intelligence sells to journal reviewers
and peers who cannot distinguish hype from
substance when it comes to microarray data
analysis.

e Comparative studies have shown that simpler
methods work as well or better for microarray
problems because the number of candidate
predictors exceeds the number of samples by
orders of magnitude.



When p>>n
The Linear Model i1s Too Complex

* |t Is always possible to find a set of features
and a weight vector for which the
classification error on the training set Is
Zero.

* \WWhy consider more complex models?



Classification of BRCA2 Germline

Mutations
Classification Method | Correct Prediction with
LOO-CV
Compound Covariate Predictor 86%
Fisher LDA 64%
Diagonal LDA 86%
1-Nearest Neighbor 91%
3-Nearest Neighbor 77%
Support Vector Machine 82%
(linear kernel)

Classification Tree 55%




D atazet Linear and quadratic discriminant analysis Classification trees Mearest neighbors
FLDA DLDA  Golub DQDA GV  Bag Boost CFD
Leukemin Median 3 a 1 1 3 2 1 1 1
{I{ =32 p=10, nrs = 2-1_-) Upper quartile 1 1 2 2 1 2 2 2 1
Leukemia Median 3 1 NA 1 1 1 1 1 1
(K =3, p =40, nrs = 21} Upper quartile 1 2 MNA 2 3 2 2 2 1
Lymphoma Median i 1 A a 2 2 1 1 a
(K =3,p=050,nrs =27) Upper quartile 8 1 MNA 1 3 3 3 3 1
WNCT 60 Median 11 7 HNA o 12 10 e e b3
(K =8,p =30, nrg =21} Upper quartile 11 8 NA 10 13 11 11 10 10




Comparison of discrimination methods
Speed et al

In this field many people are inventing new methods of
classification or using quite complex ones (e.g. SVMSs). Is this
necessary?

We did a study comparing several methods on three publicly
available tumor data sets: the Leukemia data set, the Lymphoma
data set, and the NIH 60 tumor cell line data, as well as some
unpublished data sets.

We compared NN, FLDA, DLDA, DQDA and CART, the last
with or without aggregation (bagging or boosting).

The results were unequivocal: simplest is best!



Approaches to Intra-study
Validation

« Split data into training set and validation set

— Validation set not accessed until proposed
classification system is fully specified based on
training set

 Algorithmic cross-validation or bootstrap



Invalid Criticisms of Cross-
Validation

e “You can always find a set of features that
will provide perfect prediction for the
training and test sets.”

— For complex models, there may be many sets of
features that provide zero training errors.

— A modeling strategy that either selects among
those sets or aggregates among those models,
will have a generalization error which will be
validly estimated by cross-validation.
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ABSTRACT

Muotivation: In genomic studies, thousands of lealures are
collected on relatively few samples. One of the goals of
these studies ks to bulld classfiers to predict the outcome of
future obeervations, Thers are three inherant steps to tis
procass: feelure selection, model selection, and prediction
sesessmant. With & focus on prediction assessment, We comm-
pare several methods for estimating the “rue’ prediction error
of a pradicticn modal in the presance of feature selaction,
Resulis: For small studies where features are selected from
thousands of candidates, the resubstitution and simple split-
sample estmates are sericusly biased. In these small samp-
ez, laave-ons-out (LOOCY), 10-old crass-validabon (CWV),
and the 832+ booltsirap have tha smallest bias for diago-
nal discriminant analysis, nearast naighbeor, and dassification
Irgas, LOOQCV and 10-fold GV have tha smallast bias for linear
discriminant analysis. Additionally, LOOGV, 5- and 10-fld GV,
and tha B32+ boatstrap hava tha kowes! maan squara arrar,
Tha B32+ bootstrap is quite biasad in small sampla sizes
with strong signal fo nolse ralios. Differences in perfarmancs
amaong resampling methods are reduced as the number of
specimens available increase.

Avnilability: A complate compilalion of resulls in lables and
figures |s available in Molinaro o ol (2005} R code for
simulalions and analyses is available from the authors,
Contact: Bnnette molinarofiiyele edu

1 INTRODUCTION

In genemic experiments one frequently encounters high
dimensional data and small sample sizes, Microarsays simul-
tnecusly moendior expression levels For several thonsands
of genes. Pretgomic profiling swdies using SELDI-TOF
(surface-entinced bser desorption and donization tme-of-
flight] measure siee and eharge of predeins and profein frag-
ments by mass speciroscopy, and result imoup to 15,000
imbengity levels at prespecified miass values for each spectrom.
Sample sizes m such experimenis are rppically less than LK.

1o i commesponideios sl b siessal

L iy studies observations are knowin o belong to pre-
determined classes and the task is to budd predictors or
classifiers for new observations whose class is unknown
Deciding which genes or proteomic measurements o include
in the prediction is called fowiure selecilon amd is 8 eru-
cial step in developing a class predicior, Including oo many
noisy variahles reduwces accuracy of the prediction and may
lead 1o ever-fiing of data, resulting in promising but often
non-reproducible resulis {Ranscholl, 2004).

Amnodher difficulty is model selection with numerous ¢las-
sification models available. An imporant siep in reporning
resulis is assessing the chosen model™s error rale, or gene-
ralzzability. In the absence of independent validation dat, &
commmon approach o estmatng predictve aceuracy 15 hased
o some form of resampling the ongimal doga, ep., eross-
walidation. These techmiques divade the data mto o learming
sel and o test set and range n complesity from the popular
learning-test gplit o v-fold cross-valdation, Momte-Carlo -
fold cross-valdatron, and bestsirap resampling. Few compa-
risons of stndard resampling methods have been performed
to v, aved ol of them exhibit imitations that make their
conclusions inapplicable o most genemic seitings, Barly
comparizons of resampling techniques in the leerature are
focussed on model selection a8 opposed to prediction erros
estmation |Breiman and Spector, 19462, Burman, 19890, In
two recent assessments of resampling technigues for error
estimation {Braga-Meto and Dougherty, 2004, Efron, 2004),
feature selection wis nod included as part of the resampling
procedures, causing the conclusions 1o be inappropriate for
the high-dimensional sening.

We have performed an extengive comparison of resamp-
ling methods 1o estimate prediction error using simadated
{large signal 1o noise mitol, microamay {ntermediate signal
1o noise ratio} and proteomic data (low signal 1o noise o),
encompassing increasing sample sizes with large numbers
of features. The mmpact of festure selection on the perfor-
mance of vanous cross validation owethods s highlighied.
Ihe results elucidate the "best” sesampling echnigues for

1) Dixiord Universty Press 2005
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Simulated Data

40 cases, 10 genes selected from 5000

Method Estimate Std Deviation
True 078

Resubstitution .007 016
LOOCV .092 115
10-fold CV 118 120
5-fold CV 161 127
Split sample 1-1 .345 185
Split sample 2-1 205 184
.632+ bootstrap 274 .084




DLBCL Data

Method Bias Std Deviation MSE
LOOCV -.019 072 .008
10-fold CV -.007 .063 .006
5-fold CV .004 .07 .007
Split 1-1 037 117 018
Split 2-1 .001 119 017
.632+ bootstrap -.006 .049 .004




Simulated Data

40 cases

Method Estimate Std Deviation
True 078

10-fold 118 120
Repeated 10-fold |.116 109

5-fold 161 127
Repeated 5-fold 159 114

Split 1-1 345 185
Repeated split 1-1  |.371 065




Common Problems With Internal
Classifier VValidation

* Pre-selection of genes using entire dataset

 Failure to consider optimization of tuning
parameter part of classification algorithm

— Varma & Simon, BMC Bioinformatics 2006

* Erroneous use of predicted class In
regression model



Incomplete (incorrect) Cross-
Validation

Let M(b,D) denote a classification model developed on a
set of data D where the model is of a particular type that is
parameterized by a scalar b.

Use cross-validation to estimate the classification error of
M(b,D) for a grid of values of b; Err(b).

Select the value of b* that minimizes Err(b).

Caution: Err(b*) is a biased estimate of the prediction error
of M(b*,D).
This error i1s made in some commonly used methods



Complete (correct) Cross-Validation

o Construct a learning set D as a subset of the full set S of
cases.

» Use cross-validation restricted to D in order to estimate the
classification error of M(b,D) for a grid of values of b;
Err(b).

Select the value of b* that minimizes Err(b).

Use the mode M(b*,D) to predict for the cases in S but not
In D (S-D) and compute the error rate in S-D

Repeat this full procedure for different learning sets D, , D,
and average the error rates of the models M(b,*,D,) over
the corresponding validation sets S-D,;



Does an Expression Profile Classifier Predict
More Accurately Than Standard Prognostic
Variables?

* Not an issue of which variables are significant
after adjusting for which others or which are
Independent predictors

— Predictive accuracy and inference are different

* The two classifiers can be compared with regard
to predictive accuracy

e The predictiveness of the expression profile
classifier can be evaluated within levels of the
classifier based on standard prognostic variables



Does an Expression Profile Classifier Predict
More Accurately Than Standard Prognostic
Variables?

o Some publications fit logistic model to
standard covariates and the cross-validated

predictions of expression profile classifiers
logit(p)=a+ BYy(X|-1)+ 7z

« This is valid only with split-sample analysis
because the cross-validated predictions are
not independent



External VValidation

« Should address clinical utility, not just predictive
accuracy
— Therapeutic relevance

« Should incorporate all sources of variability likely
to be seen in broad clinical application

— Expression profile assay distributed over time and
space

— Real world tissue handling

— Patients selected from different centers than those used
for developing the classifier



Survival Risk Group Prediction

Evaluate individual genes by fitting single variable
proportional hazards regression models to log signal or log
ratio for gene

Select genes based on p-value threshold for single gene PH
regressions

Compute first k principal components of the selected genes

Fit PH regression model with the k pc’s as predictors. Let
b,, ..., b denote the estimated regression coefficients

To predict for case with expression profile vector X,
compute the k supervised pc’sy,, ..., Y, and the predictive
index A =b;y,+ ... +b.y,



Survival Risk Group Prediction

LOOCYV loop:
— Create training set by omitting i’th case

Develop supervised pc PH model for training set

Compute cross-validated predictive index for 1I’th
case using PH model developed for training set

Compute predictive risk percentile of predictive
Index for 1’th case among predictive indices for
cases In the training set



Survival Risk Group Prediction

 Plot Kaplan Meler survival curves for cases
with cross-validated risk percentiles above
50% and for cases with cross-validated risk
percentiles below 50%

— Or for however many risk groups and
thresholds Is desired

« Compute log-rank statistic comparing the
cross-validated Kaplan Meier curves



Survival Risk Group Prediction

* Repeat the entire procedure for all (or large
number) of permutations of survival times and
censoring indicators to generate the null
distribution of the log-rank statistic

— The usual chi-square null distribution is not valid
because the cross-validated risk percentiles are
correlated among cases

» Evaluate statistical significance of the association
of survival and expression profiles by referring the

log-rank statistic for the unpermuted data to the
permutation null distribution



Survival Risk Group Prediction

« Other approaches to survival risk group
prediction have been published

e The supervised pc method Is implemented
In BRB-ArrayTools

 BRB-ArrayTools also provides for
comparing the risk group classifier based on
expression profiles to one based on standard
covariates and one based on a combination
of both types of variables



BRB-ArrayTools
Class Prediction

» Classifiers
— Compound covariate predictor
— Diagonal LDA
— K-Nearest Neighbor Classification
— Nearest Centroid
— Support Vector Machines
— Random Forest Classifier
— Shrunken Centroids (PAM)
— Top Scoring Pairs
— Binary Tree Classifier



BRB-ArrayTools
Class Prediction

 Validation
— Split Sample
— Leave one out cross validation
— K-fold cross validation
— Repeated K-fold cross validation
— .632+ Bootstrap resampling




BRB-ArrayTools
Class Prediction

e Gene Selection
— Re-done for each re-sampled training set

— Univariate significance level less than specified
threshold

 Option for threshold for gene selection optimized by
Inner loop of cross-validation

— Pairs of genes that work well together
— Shrunken centroids



BRB-ArrayTools
Class Prediction

e Permutation test of significance of cross-
validated misclassification rate

 Predictions for new patients



BRB-ArrayTools
Survival Risk Group Prediction

No need to transform data to good vs bad
outcome. Censored survival is directly analyzed

Gene selection based on significance In univariate
Cox Proportional Hazards regression

Uses k principal components of selected genes

Gene selection re-done for each resampled
training set

Develop k-variable Cox PH model for each leave-
one-out training set



BRB-ArrayTools
Survival Risk Group Prediction

Classify left out sample as above or below median
risk based on model not involving that sample

Repeat, leaving out 1 sample at a time to obtain
cross-validated risk group predictions for all cases

Compute Kaplan-Meier survival curves of the two
predicted risk groups

Permutation analysis to evaluate statistical
significance of separation of K-M curves



BRB-ArrayTools
Survival Risk Group Prediction

 Compare Kaplan-Meier curves for gene
expression based classifier to that for
standard clinical classifier

* Develop classifier using standard clinical
staging plus genes that add to standard
staging
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This procedure computes a classifier which can be used Far predicting the class of a new sample.

— Calumnn defining classes:

| =

I Use random variance model for univariate tests,

[~ aAverage over replicates of:

— fzene seleckion
' Individual geres:

| I~

[” Arrays are paired between classes,

Pair samples by:
| -

— Prediction methods:

v Compound covariate predictor
[V Diagonal linear discriminant analysis
¥ K-nearest neighbaors {for k=1 and 3)

v Mearest centroid

v Support vector machines

% significant univariately at alpha level: | 0,001

Cptimize over the grid of alpha-levels
tand cross-validate optimization)

Wikh univariate misclassification 0.2
rake below:

r With Fold-ratio of geometric means
between bwo classes exceeding:

™ Gene pairs

AINIEREANE

Mumber of pairs selected by the

"Greedy pairs” method: 23

MOTE: This analysis is

currently set ko run on all Select gere subsets

genes passing the filker,

(nls Cancel |

Opkions |

Reset | Help

I IWeaulloblastama

hledulloblz hWedulloblastorma

ent descriptors / Gene annotations £ Fitered log intensity / Gene identifiers 4/ Scatterplot # Cluster vie | « |
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Class prediction

Age Code Medulo vs Glio vs PMRhabda valMedula vs Medula vs AT/RT

This procedure computes a classifier which can be used Far predicting the class of a new sample.

Class Prediction Options

— Cross-validation method:
% Leave-one-out validation

' - Fald walidation
Repeated kimes

™ 0,632 bootstrap walidation

r Do skatistical significance kest of cross-walidated

mis-classification rake.

mumber of permutations For

significance test of cross-validated

mis-classification rake:

1o

[ use separate test sel;
Colurnn conkaining “kraining”,

"oredict”, "exclude” [abels:

Mame ko use For oukput files:

I ClassPrediction

Ik | Cancel |

Opkions |

v Support vector machines

———

genes passing the filker,

(nls Cancel |

I Opkions

Reset |

Help

I Wedaulloblastama

hWledulloblz WMedulloblastorma

ent descriptors / Gene annotations £ Fitered log intensity / Gene identifiers 4/ Scatterplot # Cluster vie | « |
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Class prediction

Age Code Medulo vs Glio vs PMRhabda valMedula vs Medula vs AT/RT

This procedure computes a classifier which can be used Far predicting the class of a new sample.

Class Prediction Options

% Leave-one-out

r - fal

Repeated [

™ 0,632 bookstray

[ use separate kg

gLt RN Class Prediction Options 2

— Support vector machine parameters: —————— Jcross-validated

Cost {tuning parameter): I 1

Weight of misclassifications in Class
1 relative to Class 2 (where Class 1 100
denotes the class label which would

come Firsk in an alphanumetic sarking I
1
af the class labels):

Colurnn conkainin

I

"oredict”, "excl ¥ iUse internal fixed random seed. |

0.4 | Reset |

Ik | Cancel

Cpkions I Reset | Help

A e areS o TEETT e e COSETE
v Support veckor machines genes passing the filter, |
(0] 4 Cancel | Options | Reset | Help

I Wedaulloblastama

hWledulloblz WMedulloblastorma
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Prediction Analysis of Microarrays (PAM)

This taol is an inketFace ko the Prediction Analysis of Micraarrays (PAM) Package developed by
R, Tibshirani, T. Hastie, B, Marasimha and G, Chu, Shrunken centroids algorithm is used For class

predictions,

— Calurn defining classes:

— Mame ko use For autput Files:

El

| pam

[ Use separate test set

Caolumn containing "kraining
"exclude” labels:

, "predict”,

all genes passing the Filker,

Select gene subsets

=

MOTE: This analwsis is currently set bo run on

[ awverage over replicates of

|

O Cancel

Reset

Help

RN T PR S U U U AT JPU i U

1

3

0 Medulloblastoma

1 Medulloblastoma

1 Medulloblastoma

Medullobla Medulloblastoma
Medullobla Medulloblastoma
Medullobla Medulloblastoma

ent descriptors / Gene annotations £ Fitered log intensity / Gene identifiers 4/ Scatterplot # Cluster vie | « |
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Binary tree class prediction
CHS N
Chs This ool camputes a binary tree classifier which can be used for predicting the class of a new sample, At
each stage (tree node), classes are divided inka bwo groups, Cross-validation mis-classificakion rate is used
CHS ko characterize the quality of the division. A division with the lowest mis-classification rate is used as a
CHE node of the kree, Then, procedure is repeated for each branch with bwo or more classes,
CrHE
— Calurnn defining classes: — Prediction methaod:
I ;I ' Compound covariate predictor
™ K-nearest neighbors {for k=11
[~ Use separate test set ™ k-nearest neighbors (for K=3)
Colurmn containing "training", "predict", ——— " Mearest centroid
"exclude” labels: )
| _I T Support vector machines
.
" Diagonal inear discriminant analysis
=0 1
0 1 - — Predictars should only include genes:
fverage over replicates of:
o0 L 1 & Significant univariately at level: I 0,001
=0 1 | LI
0 1 With univariate
0 1 misclassification rate below: .23
MOTE: This analysis is ith Fald-ratio of i
=0 1 Wiith fold-ratio of geometric
currently sek to run on [™ means between bwa classes z
0 1 all genes passing the Seleck gene subsets exceeding:
] 1 Filker.
=0 1
0 1
=[] 1 K Cancel | Cptions | Reset | Help
0 1 =

ent descriptors / Gene annotations £ Fitered log intensity / Gene identifiers 4/ Scatterplot # Cluster vie | « |
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Binary tree class prediction options

Binary tree class prediction

This ool camputes a binary tree classifier which can be used for predicting the class of a new sample, At
each stage (tree node), classes are divided inka bwo groups, Cross-validation mis-classificakion rate is used
ko characterize the quality of the division. A division with the lowest mis-classification rate is used as a

node of the kree, Then, procedure is repeated for each branch with bwo or more classes,

— Binary Tree opkions:

r Use k-fald cross-validation rather than
leave-one-out cross-validation algorithm,

e

[ Do cross-walidation of the entire algorithm,

Walue of K (defining k-

Do not splik classes if the best

achievable error rate is maore than: | 0.5

— Suppart veckar machine parameters;

Cosk (kuning parameker):

—

Weight of misclassifications in Class 1
relative to Class 2 {where Class 1

denokes the class label which would
come first in an alphanumeric sorting af I 1
the class labels):

— Mame to use for output Files:

BinaryTreePredickion

[ Perform GO Observed ws, Expected analysis,

Cancel |

Reset | Help

LUTT RTINS LT T LT I masses 2
all genes passing the Select gene subsets exceeding:
Filker,
K Cancel | I Ciptions Reset | Help

ent descriptors / Gene annotations £ Fitered log intensity / Gene identifiers 4/ Scatterplot # Cluster vie | « |
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Survival Risk Prediction

This tool is used for Survival Risk Prediction based on the Supervised Principal Components method.
(Bair, E. and Tibshirani, R, PLaS Biology 2:511-522, 2004)

— Experimental design:
— Status column;

— Find gene lists determined by:

(0 = censored, 1 = death)

| =l
— Zolurn defining survival time:

! El

Significance threshold of Cox
Model:

0.001

Mumber of Principal Components
{1-10):

T
—

[ aAverage over replicates of:

| I

[ Use separate test set

— olumn conkaining “training”, “predict”
"exclude” labels:

| I~

— Covariakes
[ Clinical Covariates

— Column defining Covariatel: —

| =
— Column defining Covariate?: —

| I

— Column defining Covariate3: —

| I

MOTE: This analvsis is currently set ko run on all genes passing the Filker,

Select gene subsets

Ik Zancel |

Options | Reset |

ent descriptors / Gene annotations 4 Filtered log intensity 4/ Gene identifiers / Scatterplot # Cluster wiee [ 4 |

Help -
|,
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Survival Risk Prediction

This tool is used
(Bair, E. and Tik

— Experimental
— Skakus column)
(0 = censore

g

— Calurmn definir

—

r Average ove

I

[ Use separate

— Column containij
"exclude” label

I

MOTE: This an

|— Cross Yalidation Method:

Survival Risk Options

Risk Groups
* 2-Risk Groups

Prognastic Inde:x
Percentile:

™ 3-Risk Groups

o

% Leave One Out C¥

i 10- Fold v

— Log Rank Tesk:

Munber af permukations Far

|- Perform Permukation kesks

K

Zancel

1om
significance af the log rank tesk;
— Mame ko use For aukput Files:
I SurvivalRiskPrediction
Ik Cancel | Reset | Help
I Opkions Reset

(e sbsets

ent descriptors / Gene annotations 4 Filtered log intensity 4/ Gene identifiers / Scatterplot # Cluster wiee [ 4 |

Help -
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Class compatison
Class prediction

Survival analysis

Quantitative ktrait analysis 3

Filter and subset the data

F = T

]

EI_'-.-'S!MEdUM ws Medulo ws AT/RT

AT/RT
ATRT

e

Plugins

Litilities

Help

Abouk BRE-ArrayTools
fibaut R-COM

License agreement

FPHET

FPHET

FHET

PMET

PHET
0 Medulloblastoma
1 Medulloblastoma
1 Medulloblastoma
1 Medulloblastoma
2 Medulloblastoma
0 Medulloblastoma
1 Medulloblastoma
1 Medulloblastoma
1 Medulloblastoma
0 Medulloblastoma
1 Medulloblastoma
0 Medulloblastoma
1 Medulloblastoma
1 Medulloblastoma

FHET
FHET
FHET
FHET
FMET

Analysis of Yariance

AMNOYA an log intensities

AMNOYA For Mixed-EFfects Model
Time Series Analysis

Random Forest For class prediction
Class prediction by kop scaring pairs
M ws A plok

Pairwise Correlation Plok
armoothed CDF

Extract selected genes

Export 1 Color Data To R

Export 2 Color Daka To R

Load Plug In

Manage Plug Ins

Create Plug In

Advanced Plug In Editar

[Medullobla Medulloblastoma
Medullobla Medulloblastoma
fedullobla Medulloblastoma
Medullobla Medulloblastoma
Medullobla Medulloblastoma
Medullobla Medulloblastoma

ent descriptors / Gene annotations £ Fitered log intensity / Gene identifiers 4/ Scatterplot # Cluster vie | « |




Class Prediction

» Cluster analysis Is frequently used In
publications for class prediction in a
misleading way



Fallacy of Clustering Classes
Based on Selected Genes

« Even for arrays randomly distributed between
classes, genes will be found that are
“significantly” differentially expressed

 With 10,000 genes measured, about 500 false
positives will be differentially expressed with p <
0.05

 Arrays in the two classes will necessarily cluster

separately when using a distance measure based
on genes selected to distinguish the classes



Class Discovery



Two Types of “Classification”?

Class Discovery

Identification of previously
unknown classes of specimens
Use of “unsupervised” methods
— Hierarchical Clustering
— k-means Clustering
— SOMs
— Others
Prevalent method used in

literature for analysis of gene
expression data.

Class Prediction

Assignment of specimens into
known classes
Use of “supervised” methods

— CART

— Discriminant Analysis

- SVM

— CCP
Class prediction is more
powerful than class discovery
for distinguishing specimens
based on a priori defined
classes.



Class Discovery

* For determining whether a set of samples
(eg tumors) Is homogeneous with regard to
expression profile

* To identify set of co-expressed, and perhaps
co-regulated genes



Class Discovery of Samples

o Complex diseases often represent umbrella
diagnoses and that heterogeneity limits the
power of linkage and association studies

* Treatment selection and therapeutics
development may be enhanced by
biologically meaningful classification



Cluster Analysis

e Distance measure

Euclidean distance
Mahalanobis distance
1- correlation

Mutual information
Bayes factor

e Feature (gene) set
— All
— Variably expressed

Selected to optimize
clustering

e Algorithm

Hierarchical
K means
Self Organized Map

Generative Topographical
Map

Autoclass
Bioclust
Gene shaving
Plaid

Splash
BiClustering



Clustering and Classification

 Analysis performed on log-ratios with two
channel arrays

 Analysis performed on log signal values for
GeneChips



Hierarchical Agglomerative
Clustering Algorithm

* Merge two closest observations into a cluster.

— How i1s distance between individual observations
measured?

« Continue merging closest clusters/observations.

— How is distance between clusters measured?
» Average linkage
o Complete linkage
 Single linkage



Common Distance Metrics for
Hierarchical Clustering

Euclidean distance large, 1-Correlation small

e Euclidean distance

— Measures absolute distance
(square root of sum of
squared differences)

logRatio
04 02 00 02 04
= c
i g 3
N

e 1-Correlati
Orre atlon Euclidean distance small, 1-Correlation large

— Large values reflect lack of
linear association (pattern
dissimilarity)

logRatio
04 02 00 02 04
i i i
- 8 g
g 21



Linkage Metrics

Average linkage

— Distance between clusters is average of all pair-wise distances
between members of the two clusters

Complete linkage
— Distance is maximum of pair-wise distances
— Tends to produce compact clusters
Single linkage
— Distance is minimum of pair-wise distances
— Prone to “chaining” and sensitive to noise
Centroid/Eisen linkage
— Distance is the distance between the centroids of the two clusters
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Clustering of Melanoma Tumors Using Average Linkage
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Clustering of Melanoma Tumors Using Complete Linkage
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Dendrograms using 3 different
linkage methods,
distance = 1-correlation

(Data from Bittner et al.,
Nature, 2000)



Gene Centering

» Subtracting overall average value for each gene

e Does not influence Euclidean distance between
samples

» Does influence correlation between samples

— Reduces influence of genes whose expression in
Internal reference is very different than in samples

— Beneficial for clustering samples when internal
reference Is arbitrary



Gene Standardization

 Dividing gene expression by standard
deviation or maximum value for that gene

 Useful for single channel data to reduce the
Influence of high intensity genes

* Not useful for two channel data because It
amplifies noise for non-informative genes
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Genes Used for Clustering

Samples may cluster differently with regard
to different gene sets

All genes

All “well measured” genes

— Genes with fewer than specified percentage of
values filtered because of low intensity or poor
Imaging

Genes with most variation across samples



Measures of Gene Expression
Variability

 Proportion of arrays in which the gene is
two-fold different from 1t’s mean or median

value
 Variance of gene expression across the
arrays (V;)
— In the upper k’th percentile of variance for all

genes

— |Is statistically significantly greater than the
median variance for all genes



Genes Used for Clustering
Samples

» Genes selected as being differentially
expressed between pre-defined classes

— The cluster dendrogram is a visual display that
the samples are distinct with regard to these
genes, but it i1s not independent evidence of the
biological relevance of the genes



Fallacy of Clustering Classes
Based on Selected Genes

« Even for arrays randomly distributed between
classes, genes will be found that are
“significantly” differentially expressed

« With 8000 genes measured, 400 false positives
will be differentially expressed with p < 0.05

 Arrays in the two classes will necessarily cluster
separately when using a distance measure based
on genes selected to distinguish the classes



Clustering Algorithms

e K-means
— Pre-specify K.
— Initialize with a center for each cluster

— Grow each cluster by adding unassigned
elements (samples or genes) to the cluster
center they are nearest

— Redefine cluster centers as clusters grow and
permit elements to shift clusters

— Various implementations and variants



k—means (k=5)

k—means (k=B)

k—means (k=7)

hierarchical clustering
average linkage
Euclidean distance
cutat?

hierarchical clustering
average linkage
1-correlation distance
cutat?

Bittner Melanoma Data



Self Organizing Maps
SOM’s
Often described in the language of artificial and natural
neural networks but really just a clustering algorithm
A spatially smooth version of K-means with large K

Cluster centers are computationally determined so that the
distances among centers corresponds to the distances
among points arranged in a regular 2-d or 3-d lattice. Each
cluster center projects to a single lattice point.

Clusters corresponding to adjacent lattice points are similar
giving a continuous variation appearance to the clusters

Can be useful for clustering genes using time series data



Gl s G2 M GlI 5 GZIM

=
1
E
]
I
0 20 40 ol B0 100 120 140 10
Timwe [man |

<) [ocesociamci mcs)

Exprassion

Time [min]
[oLer os mer mwm|

N RN
T |

.'_
T
——
-+
—|—-|

Exprassion

Frag. 2. Yeast Cell Oycle SOM. (a3 6 = 5 SO, The 828 gencs that passed the vanation filer were grouped into 30 clusters. Each clusier 1=
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Judging the Quality of Gene Expression-Based
Clustering Methods Using Gene Annotation

Francis D. Gibbons and Frederick P. Roth'

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical Schoo| Boston, Massachusetts 02115,
UsA

We compare several commonly used expression-based gene clustering aleorithms using a ficure of merit based
on the mutual information between cluster membership and known ocene attributes. By studying various
publicly available expression data sets we conclude that enrichment of clusters for biological function is, in
seneral, highest at rather low cluster numbers, As a measure of dissimilarity between the expression patterns of
two genes, no method outperforms Euclidean distance for ratio-based measurements, or Pearson distance for
non-ratio-based measurements at the optimal choice of cluster number. We show the self-oreanized-map
approach to be best for both measurement types at higher numbers of clusters. Clusters of genes derived from
single- and average-linkage hierarchical clustering tend to produce worse-than-random results.

[The aleorithm described is available ar heep:/ fllama.med.harvard.edu, under Software,]



Gibbons and Roth

Table 1. Four Data Sets Analyzed, Representing Both Affymetrix- and Two-Color cDNA Microarrays, Cell Cycle and Non-Cell Cyde
Data Sets

Name Ratio based? # of genes # of points Description
Cho Mo 3000 15 Two cell cycles, two of original
timepoints—dropped because
of unreliability
CJRR (Cohen et al. 2002: Ma 3000 52 YAP1/2 knockouts with peroxide
Jelinsky et al. 2000; and cadmium added, yeast A
Robertson et al. 2000; kinase TPKT/2/3 mutants,
Roth et al. 1998) chemical and damaging

agerts, galactose, heat shock,
and mating type

Gasch Yes 3000 175 Various conditions: temperature
shock; exposure to H,0,,
menadione, diamide, and DTT:
osmotic shock: amino acid
starvation; nitrogen depletion;
stationary phase

Spellman Yes 3000 75 Cultures synchronized in cell
cycle by three independent
methods
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Figure 2 Four data sets clustered using &-means, hierarchical, and self-erganized map algorithms. The herizental axis shows the number of
clusters desired, and the vertical axis shows z-scores. Data sets are (a) Cho, (&) CJRR, () Gasch, and {d} Spellman.



Validation of Clusters

 Clustering algorithms find clusters, even
when they are spurious

 Clusters found may change with re-assaying
tumors or selection of new tumors



Clustering Arrays

 Cluster significance
o Cluster reproducibility



Cluster Significance

McShane et al

Transform expression data to 3-d principal
component space

Compute median of empirical distribution of
distance of each sample from its nearest neighbor

Compute distribution of above statistic for data
generated from multivariate Gaussian null
distribution in principal component space

Repeat for 1000 samples from the Gaussian null
distribution



Cluster Significance

o Determine the proportion of the null
distribution replications that the median of

nearest neighbor distances Is as small as for
the median of nearest neighbor distances
with the actual data



Assessing Cluster Reproducibility:
Data Perturbation Methods

* Most believable clusters are those that persist
given small perturbations of the data.

— Perturbations represent an anticipated level of noise In
gene expression measurements.

— Perturbed data sets are generated by adding random
errors to each original data point.
* McShane et al. Gaussian errors
» Kerr and Churchill (PNAS, 2001) — Bootstrap residual errors



Assessing Cluster Reproducibility:
Data Perturbation Methods

 Perturb the log-gene measurements and re-cluster.

 For each original cluster:

— Compute the proportion of elements that occur together in the
original cluster and remain together in the perturbed data
clustering when cutting dendrogram at the same level k. D-
Index.

— Average the cluster-specific proportions over many perturbed
data sets to get an R-index for each cluster.



Discrepancy Index

Original Data

1) Perform clustering on data.

Perturbed Data

3) Perturb data by adding random
Gaussian noise to each data point.

2) Cut at height that results in k clusters.

[ ]

x! x2 x3 vl v2 v3 z! z2 23 xl x2 v3

[ ]

o

4) Perform clustering and cut into a
similar number of clusters as original
data.

5) Map from each original cluster c; to
the perturbed cluster that minimizes the
sum of missing (m) elements.

k=3 ~— =1~ "~"""""1~" """~~~ i

[ ] I"I I__I [ ]
¥

JERE W P3=C3



Discrepancy Index

Original Data Perturbed Data
S I R —— Sy ) _
| \
xl x2 x3 ﬁrl? ¥3 EE;IE z3 x}l_;—rlz 3 y,el’_ ;Iz xg z3 zjl_;l.?

= e T e eevw e

m n Compute minimal mn-error for
(missing) (contaminating)  thjs cyt of original data:

c,—>c: 1 1 3

N g’:Z(m_+n_):6
Co— Co . 1 2 iy !

* g can be averaged over many
Cg—>C3: 1 0 perturbations resulting in €’



1 - correlation

Melanoma Gene Expression Data

Q: Can gene expression profiles of melanoma be used to distinguish
sub-classes of disease? (M. Bittner et al.)
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Cluster Reproducibility: Melanoma

(Bittner et al., Nature, 2000)

Expression profiles of 31 melanomas were examined with a variety of class
discovery methods. A group of 19 melanomas consistently clustered together.
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For hierarchical clustering, the

cluster of interest had an

R-index = 1.0.
= highly reproducible

oz

Melanomas in the 19 element
cluster tended to have:

* reduced invasiveness

* reduced motility
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Melanoma Data:
Discrepancy Index - Individual Clusters

Cluster
k | Membership m’ n'
7 5-24 0.00 0.00
8 5 0.00 5.13
8 6-24 0.00 0.27




Visualization Tools



1-correlation

Color-Coded Hierarchical Clustering Dendrogram for
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Breast Tumor and FNA Samples

Color = Patient
T = Tumor sample
F = Fine needle aspirate

HB4(F1) —|

HB1(F1) —‘
HB1(T) 4’

ES2(T) —|
ES2(F2) —I

HB4(T) _—
HB3(F1)
HB3(T)
HB2(T)

o

—~
N
'
=
s
L

ES1(T)
ES1(F3) 4|

ES1(F1)

HB2(F1)
HB2(F2)
HB2(F3)

(Assersohn et al., Clinical Cancer Research, 2002)
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Heat Map

A Sl

I Germinal Centre
B call

T cell
Activated B cell

| Prolileration
| Lymph nodes

Hierarchical Clusterihé of Lymphorﬁa Data (ATizadeh et al., Nature, 2000)
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Multidimensional Scaling

* How to most accurately represent the pairwise
distances between expression profiles (vector of
log-ratios or vector of log intensities) in 5000-d
space In a 3-dimensional plot

— Pair-wise distance relationships cannot be exactly
represented in low dimension

— MDS gives a best approximation

— The first three principal components are approximately
optimal for 3-d representation



Principal Components for
Representing Samples

he first principal component is the linear

combination of gene expression levels that
has the greatest variation among all linear

combinations

— X; denotes the log-ratio for the 1’th gene

— Linear combination = a,X;+...+ a X,

— Wherea,?+ ... +a2=1




Principal Components for
Representing Samples

he second principal component Is the
linear combination of gene expression
levels that shows the largest variation
among all linear combinations orthogonal to
the first principal component

— Linear combination b,X;+...+ b X IS
orthogonal if a,b,+...+a b, =0




Principal Components for
Representing Samples

 Principal components being linear combinations
of genes are not easily interpretable in terms of
which genes are highly represented

 Principal components can be very useful for
visualizing distance relationships between samples
where they capture much of the variation
eventhough they may not be identified with
specific genes



MDS: Breast Tumor and FNA Samples

Color = Patient
Large circle = Tumor
Small circle = FNA

(Assersohn et al., Clinical Cancer Research, 2002)



MDS Plots

Blue Spheres: BRCAl
Gold Spheres: BRCA2

Gray Spheres: Sporadic

Using all genes

Using differentially expressed genes
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Scatterplots

Array vs array
— Log-ratio vs log-ratio or log signal vs log signal

MA for single array
— Mean of log red and log green intensities vs log-ratio

Scatterplot of phenotype averages

— Plots average log-ratio or log signal, averaged over
classes of arrays

Identification of outliers
Click on plots to hyperlink to clone reports

Double-click to view gene annotations (if
available)



Scatterplot of phenotype averages
Pomeroy dataset
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