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Challenges in Effective Use of DNA

I\/Ilcroarra%/ Technology
Design & Analysis are Digger challengesthan data

management.

— Much greater opportunity for misleading yourselves and
others than traditional single gene/protein studies

Limited availability of experienced statistical

collaborators

Predominance of hype, mis-information, and
dangerous methods promulgated by biomedical
scientists as well as professional
statistical/computational scientists

Predominance of flashy software that encourages
misleading analyses




Objectives of BRB-ArrayTools

* Provide biomedical scientists access to
statistical expertise for the analysis of
expression data
— training in analysis of high dimensional data

— access to critical assessment of methods
published in a rapidly expanding literature



BRB-ArrayTools

Integrated package

Excel-based user interface

— Doesn’t use Excel analyses

— state-of-the art analysis methods programmed in R, Java & Fortran

— Data not stored as worksheets

e >1000 arrays and 65000 genes per project

Based on continuing evaluation of validity and usefulness of
published methods

— Methods carefully selected by R Simon

— Not a repository like Bioconductor

Publicly available for non-commercial uses from BRB
website:



BRB-ArrayTools

* Not tied to any database

— Importer for common databases and platforms
» MadB, GenePix, Agilent, MAS5/GCOS
» Imports .cel files
» Import wizzard for any files output by image analysis program

— Import (collate)
» Expression data (eg separate file for each array)
» Spot (probeset) identifiers

» EXxperiment descriptor worksheet
— Rows correspond to arrays
— Columns are user defined phenotypes to drive the analyses
» Can be updated during analysis

— Imported data saved as project folder containing project workbook and
binary files
» Project workbook can be re-opened in Excel at any time
» Output saved in html files in output folder



BRB-ArrayTools

* Highly computationally efficient
— Non-intensive analyses in R

— Intensive analyses iIn FORTRAN

* eg BRB-AT version of SAM is 9x + more efficient
than Biloconductor or web based versions
— And more accurate

o Extensive gene and pathway annotation
features



BRB-ArrayTools

 Plug-in facility for user written R functions
e Message board and listserve

o Extensive built-in help facilities, tutorials,
datasets, usersguide, data import and
analysis wizzards, sample statistical
analysis sections, ...



BRB-ArrayTools Archive of Human
Tumor Expression Data

» Archive of BRB-ArrayTools zipped project
folders of expression profiles of human tumors
and associated clinical/pathological descriptors

— Published data

e Easy way to archive your data and to analyze
someone else’s data

— Download, unzip, open in Excel


http://linus.nci.nih.gov/brb/DataArchive.html

* Design and Analysis of DNA Microarray

Investigations

— R Simon, EL Korn, MD Radmacher, L McShane, G
Wright, Y Zhao. Springer (2003)



Brief Review of Microarray
Technology



Microarray Expression Profiling

 \Would like to know the concentration of
each protein in a cell

— Proteins do the work of cells

— Proteins have many shapes and parallel assays
for all proteins have not been developed



Microarray Expression Profiling

* One gene transcription produces one MRNA
molecule produces one protein molecule

e # genes = # MRNA types

« MRNA molecule can be reverse transcribed into
DNA and will bind only to the gene from which it
was originally transcribed (to which it Is
homologous)



Microarray Expression Profiling

« Estimates abundance of mRNA molecules
of each type present in cells

— Assay not sensitive enough to analyze single
cells so estimate is for average of sample of
cells

« Microarray contains a spot of DNA
corresponding to each gene

— Spots are in known fixed positions

— Spots contain fewer nucleotides that the full
gene
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Gene Expression Microarrays

« Permit simultaneous evaluation of expression
levels of thousands of genes

e Main platforms
— CDNA printed on glass slides
— Externally synthesized oligos printed on glass slides
— Affymetrix GeneChips
— Oligos in-situ synthesized on glass slides
— CDNA printed on nylon filters
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cDNA & Printed Oligo Arrays

* Each gene represented by one spot
(occasionally multiple)

e Two-color (two-channel) system

— Two colors represent the two samples
competitively hybridized

— Each spot has “red” and “green” measurements
associated with it
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Affymetrix GeneChips

o Contain multiple probes (spots) per gene

* Probes corresponding to the same gene
must be processed to give a probe-set
summary intensity for each gene

 Single label system

— Higher reproducibility makes use of dual-labels
unnecessary



Affymetrix Arrays

 Single sample hybridized to each array

» Each gene represented by a “probe set”
— One probe type per array “cell”

— Typical probe is a 25-mer oligo

—11-16 PM:MM pairs per probe set
(PM = perfect match, MM = mismatch)



GeneChip Expression Array Design
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GeneChip®™ Expression Analysis Process
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Affymetrix GeneChips

.dat file: a huge image file
.cel file: cell intensity file
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Biological question
> Differentially expressed genes

Sample class prediction etc.

[ Experimental design ]

!

[ Microarray experiment ]
| 16-bit TIFF files

[ Image analysis }
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Image Analysis

 [ntensity Is measured at fixed set of locations
(pixels) arranged In rectangular patterns on the
solid surface

* The distance between pixels is much less than the
distance between probes

« The scanning microscope doesn’t know where the
probes are; It just measures intensities at a fine
grid of pixels



Image Analysis

1. Gridding: isolate probes

2. Segmentation:
classification of pixels either
as signal or background.

3. Information extraction:
calculate signal intensity
background and quality
Measures for each channel at
each probe
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Need for Normalization for
Dual-Channel Array Data

* Unequal incorporation of labels
— green better than red

« Unequal amounts of sample

« Unequal signal detection



» Dual-channel arrays are normalized
separately to adjust for dye bias

o Affymetrix arrays are normalized relative to
each other to equalize intensities



What Genes To Use For Normalization?

o Constantly expressed genes (house-keeping)
» All genes on the array



Global Normalization for Dual-
Channel Arrays

e Assume R~k G;
for all genes 1 in the normalization set

 Median-centered estimate
—  k=median{Ri/G;}
- R’=R/k




log2(RED signal), MCF7

After Median Centering

MCF7 vs MCF10A, Expt. 3

log2(GREEN signal), MCF10A

In plot of log(red signal)
versus log(green signal), if
point scatter is parallel to
45° line, adjust intercept to 0.



M vs. A
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Normalization - lowess

Global lowess




Normalisation - print-tip-group
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M vs. A - after print-tip-group normalization
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Normalization for Affymetrix Arrays

e Need

— Variations in amount of sample or
environmental conditions

— Variations in chip, hybridization, scanning
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Normalization for Affymetrix Arrays

e Genes used

— Affymetrix identifies housekeeping genes for some of
their new arrays

e Methods

— Scale each array so that it’s median signal equals a
target value

— Scale each array so that it’s median signal equals the
median for a reference array

— Intensity dependent normalization using lowess
smoother based on ratios relative to a reference array



Spot Filtering Strategies
o Exclude if Signal < threshold in either channel
« Exclude if Signal < threshold in both channels

e |If Min(R,G) < threshold
— and Max(R,G) < threshold then exclude
— Otherwise replace Min(R,G) by threshold



Gene Filtering Strategies

o “Bad” values on too many arrays.

* Not differentially expressed across arrays.

— Proportion of arrays < 1.5 fold different from median for

gene <20%



Affymetrix Arrays:

Probe Set Summaries
MAS 4 Algorithm

for each probe set |
Summation over n; =16-20 probes in probe set I

Excludes probe pairs that are more than 3 standard
deviations from the average difference



Affymetrix Arrays:

Probe Set (Gene) Summaries
MASS5 Algorithm

Uses Tukey biweights that continuously down-
weights probe pairs whose difference is far from the
average difference

Negative probe pair differences are modified to make
them non-negative



Data for one probe set, one array
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Li-Wong Model

A multiplicative model for each gene:
PM;, — MM, = 6¢, +¢
6. summary expression index for probe set on array k ,
¢; . probe sensitivity index for probe pair )

&;.- random normal errors

0, =Z¢?J.(F>|\/|jk - MM, )
J



RMA (Irizarry et al.)

log,(PM",) = G +¢, +¢,
6. summary expression index for probe set on array K,
¢, . probe sensitivity index for probe pair |
&;,- randomnormel errors
PM';, = globally background adjusted PM
PM*, =E(S,, | PM,,) where PM,, =S, +bg,
by, ~ N(14,, %)
S, ~exponential (4, )



RMA

o Estimate the background parameters
globally for each array

 Estimate expression summaries 0, for each
probe set and each array k using Tukey’s
median polish algorithm



Affymetrix Present/Absent Calls

* Based on Mann-Whitney rank test of the
hypothesis that the probe specific PM-MM
differences are independent observations
with median value zero



Design of Microarray Studies



Myth

hat microarray investigations should be
unstructured data-mining adventures
without clear objectives



Myth

e That the greatest challenge is managing the mass
of microarray data

» Greater challenges are:

— Effectively designing and properly analyzing
experiments that utilize microarray technology

 Distinguishing hype and misinformation from sound
methodology

» Avoiding software developed by individuals with no
qualifications for determining valid methodology
— Organizing and facilitating effective interdisciplinary
collaboration with statisticians, clinicians & biologists



Myth

e That data mining Is an appropriate paradigm
for analysis of microarray data

— find interesting patterns that give clear answers
to questions that were never asked

 That planning microarray investigations
does not require “hypotheses” or clear
objectives



e Good microarray studies have clear

objectives, but not generally gene specific
mechanistic hypotheses

 Design and analysis methods should be
tailored to study objectives



Good Microarray Studies Have
Clear Objectives

e Class Comparison

— Find genes whose expression differs among
predetermined classes

e Class Prediction

— Prediction of predetermined class (phenotype) using
Information from gene expression profile

» Class Discovery

— Discover clusters of specimens having similar
expression profiles

— Discover clusters of genes having similar expression
profiles



Class Comparison Examples

 Establish that expression profiles differ
between two histologic types of cancer

o |dentify genes whose expression level is
altered by exposure of cells to an
experimental drug



Class Prediction Examples

 Predict from expression profiles which
patients are likely to experience severe
toxicity from a new drug versus who will
tolerate it well

 Predict which breast cancer patients will
relapse within two years of diagnosis versus
who will remain disease free



Class Discovery Examples

 Discover previously unrecognized subtypes
of lymphoma

o |dentify co-regulated genes



Design Considerations

Sample and control selection
Levels of replication

Allocation of samples to (cDNA) array
experiments

Number of biological samples



(Geschwind, Nature Reviews Neuroscience, 2001)

Sources of Variability
(cDNA Array Example)

Biological Heterogeneity in Population

Specimen Collection/ Handling Effects
— Tumor: surgical bx, FNA

— Cell Line: culture condition, confluence
level

Biological Heterogeneity in Specimen
RNA extraction

RNA amplification

Fluor labeling

Hybridization

Scanning

— PMT voltage
— laser power



_evels of Replication

» Technical replicates

— RNA sample divided into multiple aliquots and re-
arrayed

 Biological replicates
— Multiple subjects
— Re-growing the cells under the defined conditions



Technical Replicates of the Same
RNA Sample

o Useful to establish that experimental technique
and reagents are adequate

— Not necessary for all samples
 Protection against bad hybridizations

e Technical replicates improve precision for
comparing a given sample to another given
sample. For comparing classes, however, It IS
more efficient to use a limited number of arrays
for more independent biological samples than for
technical replicates.



|_evels of Replication

* For comparing classes, replication of
samples should generally be at the
“biological/subject” level because we want
to make inference to the population of
“cells/tissues/subjects”, not to the
population of sub-samples of a single
biological specimen.



Which Genes are Differentially
Expressed In Two Conditions or Two
Tissues?

e Not a clustering problem

— Global similarity measures generally used for
clustering arrays may not distinguish classes

— Feature selection should be performed in a
manner that controls the false discovery rate

o Supervised methods

* Requires multiple biological samples from
each class



Myth

e That comparing tissues or experimental
conditions is based on looking for red or
green spots on a single array

e That comparing tissues or experimental
conditions Is based on using Affymetrix
MAS software to compare two arrays
— Many published statistical methods are limited

to comparing rna transcript profiles from two
samples



Truth

o Comparing expression in two RNA samples
tells you (at most) only about those two
samples and may relate more to sample
handling and assay artifacts than to biology.
Robust knowledge requires multiple
samples that reflect biological variability.



Class Comparison:
Allocation of Specimens to
cDNA Array Experiments

* Reference Design

« Balanced Block Design
— Dobbin & Simon

* Loop Design
— Kerr & Churchill



Reference Design

RED | Ay A; B, B,

GREEN R R R R

Array 1 Array 2 Array 3  Array 4

A, = ith specimen from class A

B, = i1th specimen from class B
R = aliquot from reference pool



Balanced Block Design

RED | A, B, A, B,

GREEN | B, A, B, A,

Array 1 Array 2 Array 3  Array 4

A, = ith specimen from class A
B, = ith specimen from class B



RED

GREEN

L_oop Design

A

B,

Array 1

e

B,

A,

Array 2

e

A,

B,

Array 3

e

B,

A

Array 4

A, = aliquot from ith specimen from class A
B; = aliquot from ith specimen from class B

(Requires two aliquots per specimen)




* Detailed comparisons of the effectiveness of
designs:

— Dobbin K, Simon R. Comparison of microarray designs
for class comparison and class discovery.
Bioinformatics 18:1462-9, 2002

— Dobbin K, Shih J, Simon R. Statistical design of
reverse dye microarrays. Bioinformatics 19:803-10,
2003

— Dobbin K, Simon R. Questions and answers on the
design of dual-label microarrays for identifying

differentially expressed genes, JINCI 95:1362-1369,
2003



Myth

 Common reference designs for two-color
arrays are inferior to “loop” designs.



Truth

« Common reference designs are effective for many
microarray studies. They are robust, permit comparisons
among separate experiments, permit unplanned types of
comparisons to be performed, permit cluster analysis and
class prediction analysis.

« Loop designs are non-robust, are very inefficient for class
discovery (clustering) analyses are not applicable to class
prediction analyses and do not easily permit inter-
experiment comparisons.

« For simple two class comparison problems, balanced block
designs are the most efficient and require many fewer
arrays than reference designs. They are not appropriate for
class discovery or class prediction and are more difficult to
apply to more complicated class comparison problems.



Myth

* For two color microarrays, each sample of
Interest should be labeled once with Cy3
and once with Cy5 in dye-swap pairs of
arrays.



Dye Swap Design

RED | Ay B, Ag B,

GREEN | B, A, B, A,

Array 1 Array 2 Array 3  Array 4

A, = ith specimen from class A
B, = ith specimen from class B



Dye Bias

* Average differences among dyes in label
concentration, labeling efficiency, photon
emission efficiency and photon detection
are corrected by normalization procedures

» Gene specific dye bias may not be corrected
by normalization



» Gene-specific dye bias

— 3681 genes with p<0.001 of 8604 evaluable
genes

* Gene and sample specific dye bias
— 150 genes with p<0.001



Frequency

1000 1500 2000

500

Estimated orientation effect size



* Dye swap technical replicates of the same two rna
samples are rarely necessary.

e Using a common reference design, dye swap arrays
are not necessary for valid comparisons of classes
since specimens labeled with different dyes are never
compared.

 For two-label direct comparison designs for
comparing two classes, it iIs more efficient to balance
the dye-class assignments for independent biological
specimens than to do dye swap technical replicates



Balanced Block Design

RED | A, B, A, B,

GREEN | B, A, B, A,

Array 1 Array 2 Array 3  Array 4

A, = ith specimen from class A
B, = ith specimen from class B



Dye Swap Design

RED | Ay B, Ag B,

GREEN | B, A, B, A,

Array 1 Array 2 Array 3  Array 4

A, = ith specimen from class A
B, = ith specimen from class B



Balanced Block Designs for Two
Classes

« Half the arrays have a sample from class 1 labeled
with Cy5 and a sample from class 2 labeled with
Cy3;

* The other half of the arrays have a sample from
class 1 labeled with Cy3 and a sample from class 2
labeled with Cyb5.

e Each sample appears on only one array. Dye
swaps of the same rna samples are not necessary
to remove dye bias and for a fixed number of
arrays, dye swaps of the same rna samples are
Inefficient



Limitations of Balanced Block
Designs

e One class comparison

* Does not support cluster analysis

* Requires ANOVA analysis of single
channel log intensities



cDNA Arrays:
Reverse Fluor Experiments

Forward vs -Reverse logRatio
MCF7 vs MCF10A

PERSISTENT GREEN et

1

0

-1

-Avg. of 3 reverse logRatios

yell PERSISTENT RED

-1 0 1
Avg. of 7 forward logRatios



Reverse Labeled Arrays

* Not necessary with reference design if you
are not interested In direct comparison to
Internal reference
— If reference rna is consistently labeled with the

same dye, dye bias effects all classes equally
and does not bias comparison of classes.

— For clustering of specimens, the reference
design should be used and no reverse labeled
arrays are necessary.



Reverse Labeled Arrays

« Using balanced block design to directly
compare two classes, using each rna sample
on only one array and balancing labels
between classes I1s more efficient than using
reverse labeled technical replicates.

— For a fixed total number of arrays, use of
reverse labeled technical replicates reduces the

number of independent biological samples
Included



Reverse Labeled Arrays

* Necessary with reference design for some
arrays If you are interested in direct
comparison to internal reference

— Gene specific dye bias not removed by
normalization



Replicate Arrays of Independent
Samples from Same Tissue

« Useful for establishing that clusters of
samples represent different disease groups
rather than just heterogeneity of individual
tissues or differences In tissue handling



Sample Selection

o Experimental Samples
— Representative of the phenotype or the population
under investigation.
» Reference Sample (for cDNA array experiments
using reference design)
— In most cases, does not have to be biologically relevant.

» Expression of most genes, but not too high.
» Same for every array

— Other situations exist (e.g., matched normal & cancer)



Avolid Confounding Classes for
Analysis With Assay Procedures

* Obtaining samples
 RNA labeling
« Hybridization

— Print set

— reagents



Experimental Design

Dobbin K, Simon R. Comparison of microarray designs for class
comparison and class discovery. Bioinformatics 18:1462-9, 2002

Dobbin K, Shih J, Simon R. Statistical design of reverse dye
microarrays. Bioinformatics 19:803-10, 2003

Dobbin K, Shih J, Simon R. Questions and answers on the design of
dual-label microarrays for identifying differentially expressed genes,
JNCI 95:1362-69, 2003

Simon R, Korn E, McShane L, Radmacher M, Wright G, Zhao Y.
Design and analysis of DNA microarray investigations, Springer
Verlag (2003)

Simon R, Dobbin K. Experimental design of DNA microarray
experiments. Biotechniques 34:1-5, 2002

Simon R, Radmacher MD, Dobbin K. Design of studies with DNA
microarrays. Genetic Epidemiology 23:21-36, 2002

Dobbin K, Simon R. Sample size determination in microarray
experiments for class comparison and prognostic classification.
Biostatistics 6:27-38, 2005.



Good Microarray Studies Have
Clear Objectives

e Class Comparison

— Find genes whose expression differs among
predetermined classes

e Class Prediction

— Prediction of predetermined class (phenotype) using
Information from gene expression profile

» Class Discovery

— Discover clusters of specimens having similar
expression profiles

— Discover clusters of genes having similar expression
profiles



Class Comparison and Class
Prediction

* Not clustering problems

— Global similarity measures generally used for
clustering arrays may not distinguish classes

— Don’t control multiplicity or for distinguishing
data used for classifier development from data
used for classifier evaluation

o Supervised methods

* Requires multiple biological samples from
each class



_evels of Replication

» Technical replicates

— RNA sample divided into multiple aliquots and re-
arrayed

 Biological replicates
— Multiple subjects
— Replication of the tissue culture experiment



 Biological conclusions generally require
Independent biological replicates. The power
of statistical methods for microarray data
depends on the number of biological
replicates.

o Technical replicates are useful insurance to
ensure that at least one good quality array of
each specimen will be obtained.



Microarray Platforms for Class
Comparison

« Single label arrays
— Affymetrix GeneChips

e Dual label arrays
— Common reference design
— Other designs



Common Reference Design

RED | Ay A; B, B,

GREEN R R R R

Array 1 Array 2 Array 3  Array 4

A, = ith specimen from class A

B, = i1th specimen from class B
R = aliquot from reference pool



Analysis Strategies for Class
Comparison

o Compare classes on a gene by gene basis using
statistical tests

— Control for the large number of tests performed

— Types of statistical significance tests

e t-tests or F-tests

— Hierarchical model for sharing variance information among
genes

 Univariate permutation tests
 Analysis of variance to control for other variables

« Multivariate permutation tests
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Class Comparison Blocking

e Paired data

— Pre-treatment and post-treatment samples of same
patient

— Tumor and normal tissue from the same patient

* Blocking
— Multiple animals in same litter

— Any feature thought to influence gene expression
» Sex of patient
» Batch of arrays



Technical Replicates

 Multiple arrays on alloguots of the same
RNA sample
 Select the best quality technical replicate or

» Average expression values



Controlling for Multiple Comparisons

* Bonferroni type procedures control the
probability of making any false positive
errors

e Overly conservative for the context of DNA
microarray studies



Simple Control for Multiple Testing

 |f each gene Is tested for significance at level o
and there are n genes, then the expected number of
false discoveriesisn o .

— e.¢. 1f n=1000 and «.=0.001, then 1 false discovery
— To control E(FD) < u
— Conduct each of k tests at level o = u/k



Simple Procedures

e Control E(FD) <u

— Conduct each of k tests at level u/k

—e.g. To limit of 10 false discoveries in 10,000
comparisons, conduct each test at p<0.001 level

e Control E(FDP) <y
— Benjamini-Hochberg procedure



False Discovery Rate (FDR)
FDR = Expected proportion of false
discoveries among the tests declared

significant
Studied by Benjamini and Hochberg (1995).



Not rejected Rejected Total
True null 890 10 900
hypotheses False
discoveries
False null 10 90 100
hypotheses True
discoveries
100 1000




If you analyze n probe sets and select
as “significant” the k genes whose p <

p*

 FDR ~n p* /K



Limitations of Simple Procedures

 p values based on normal theory are not accurate
In the extreme tails of the distribution

 Difficult to achieve extreme quantiles for
permutation p values of individual genes

« Multiple comparisons controlled by adjustment of
univariate (single gene) p values may not take
advantage of correlation among genes



Gene-by-Gene Comparison of

Classes

 t-test for comparing two classes

For dual-color arrays compare log-ratios, not ratios
For GeneChips compare log signals
t;=(mean,;-mean,)/standard-error,

Standard-error= s, (1/n; + 1/n,)*?
S =within-class standard deviation

Computes statistical significance level as the probability of
obtaining a t value as large in absolute value as actually obtained if
the two classes had the same true means and the sampling variation
had a Gaussian distribution

Gaussian distribution is symmetric “bell-shaped curve” which
decreases at rate exp(-x?)



Limitations of Parametric t-test

Expression values may not be approximately
Gausslan

t distribution approximation to the distribution of t
under the null hypothesis Is not accurate at the
extreme tail of the distribution

t distribution approximation is less accurate for
small sample sizes

Small sample size limits accuracy of estimation of
S
g
— Few degrees of freedom for t limits statistic power for
detecting differences in mean expression levels



Gene-by-Gene Comparison of
Classes

e Permutation t-test

— Compute the t statistic comparing the two
classes for a gene but don’t use the Gaussian
distribution assumption to translate the t value
Into a p value

— Consider all possible permutations of the labels
of which arrays correspond to which class,
holding fixed the number of total arrays in each
class



Gene-by-Gene Comparison of
Classes

e Permutation t-test (cont)

— For each permutation of class labels re-compute
the t statistic comparing the classes with regard
to a specific gene

— Determine the proportion of the permutations
that gave a t value at least as large in absolute
value as the one corresponding to the true data

— That proportion is the permutation p value



Limitation of Univariate Permutation
Analysis

o Statistical significance level is limited by
the number of possible permutations of the
class labels. For small sample sizes,
statistical significance at a stringent
significance level (e.g. p<0.001) either
cannot be achieved or is achieved with
limited statistical power



Gene-by-Gene Comparison of
Classes

 All of these tests assume that the different
arrays are independent. Hence replicate
arrays must be either averaged, or the best
quality one selected for inclusion In the
analysis, or a more complex ANOVA
model be used for analysis



Gene-by-Gene Comparison of

Classes

e [-test

— The generalization of the t-test when there are more
than 2 classes to compare.

« Significance indicates that the class means are more different
than one expects by chance but it does not indicate which
classes are different from which other classes.

» The statistically significant genes may differ with regard to the
patterns of differences among classes that they show.
Clustering the set of significant genes is useful to sort the
genes into sets with uniform patterns.



Gene-by-Gene Comparison of
Classes

e F-test

— The standard F test computes statistical
significance based on an assumption of
Gaussian distribution of sampling variability.

— The permutation F-test Is a generalization of the
permutation t-test and the associated p values
are not based on Gaussian assumptions.



t-test Comparisons of Gene
Expression for gene |

* Xi~N(u;;, , 5;%) forclass 1
* Xi~N(u;, , 5;°) for class 2

* HOj Hjl “12



Estimate variances individually

2
O .
J
Treat each  as a separate unknown quantity, and estimate

separately for each gene.
Advantages: Allows each gene to have it’s own variance.

Disadvantages: In cases of small sample size estimate will
have few degrees of freedom. Ignores the wealth of
information provided by other genes



Pool Variance

Assume all genes have same regidual variance so that

Gj = O

Use all genes to estimate single variance value

Advantages:

Large Numbers of degrees of freedom for variance
estimate

Disadvantages:

Not realistic, in observed data, some genes can be 10
times more variable than other genes



Randomized Variance Model

Assume that the variances of the genes are themselves drawn at
random from an inverse Gamma distribution

crj_2 ~ Gamma(t; a,b)

t*~ L exp(—t/b)
I'(a)b®

a and b are parameters that can be estimated from the entire set of genes.

a will indicate the shape or peakedness of the distribution of variances
b will scale the size of the variance, such that E(1/o%) =ab



Randomized Variance Model

Advantages:
» Allows for the variance to realistically vary between genes

» Uses information from all genes to contribute to variance estimates
Increasing reliability of estimate.

Disadvantages:

» Requires additional assumptions about the distribution of the
variances

 Estimates of variance may still be noisy



Randomized Variance t-test

e Pr(c2=x) = x&lexp(-x/b)/T'(a)b?

t— /’lil_ll’lIZ
=~ 1 1
6t + 2




Modified T-test

As an application of testing between 2 varieties, the standard T-test is
usable with the following modification.

Y-Y Y1-Y
t= L 2 becomes t= 1 2

- 1 1 ~ 1 1
Tpooled / n + 2 Jpooﬂedﬂ 1 + o

where,

(n - 2)312)00led + 2b_1
(n—2)+2a

Opooled =

and the number of degrees of freedom increases from n-2 to n-2+2a.

This is similar to a result by Baldi and Long (Bioinfomatics 2001)
Who approached this problem from a purely Bayesian standpoint.



Estimation of parameters a and b

Under our model for o> we find that for each gene,

ab
n—=k

(SSHI) ~ F{n—k],2a

Since we observe thousands of genes, we can arrive
at quite accurate estimates of a and b by maximizing
the likelihood of these observations with respect to

these parameters.



Additional Procedures

e “SAM” - Significance Analysis of Microarrays
— Tusher et al., PNAS, 2001
— Estimate FDR
— Statistical properties unclear

« Multivariate permutation tests

— Korn et al., (Journal of Statistical Planning &
Inference)

— Control number or proportion of false discoveries
— Can specify confidence level of control



Multivariate Permutation Procedures

More effective than univariate permutation tests
especially with limited number of samples

— Based on the o percentile of the distribution of the
(k+1)st smallest p value under multivariate permutation
distribution; not on the a/G percentile of the
distribution of the univariate p value for a specific gene

 Stronger control than simple methods which
control only expected number and proportion of

false discoveries



Multivariate Permutation Procedures
(Simon et al. 2003, Korn et al. 2004)

Allows statements like:

FD Procedure: We are 90% confident that the
(actual) number of false discoveries is no
greater than 5.

FDP Procedure: We are 90% confident that the
(actual) proportion of false discoveries does not
exceed .10.



Control
Pr{Number of FD > n} <«

* vy = a quantile of the distribution of the
(n+1) st smallest p value under the
multivariate permutation distribution.

 Include the genes corresponding to the n
smallest p values in the gene list

* Include gene corresponding to p; If p; <y



Multivariate Permutation Tests

 Distribution-free
— even If they use t statistics

* Preserve/exploit correlation among tests by
permuting each profile as a unit

* More effective than univariate permutation
tests especially with limited number of
samples



Control
Pr{FDP >y} <«

« Determine y(u) = o quantile of the distribution of
the (u+1)st smallest p value under the multivariate

permutation distribution.
— Foru=123, ...

 Include in the list of differentially expressed genes
the gene corresponding to the 1’th smallest p value
as long as p; <y( leg
- Sequentlally fori=1,2,.
— Ly il = largest integer Iess than orequaltoy
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Quantitative trait tool

* Selects genes which are univariately correlated
with a quantitative trait such as age.

« Controls number and proportion of false
discoveries in entire list: uses a multivariate
permutation test which takes advantage of the

correlation among genes.

* Produces a gene list which can be used for further
analysis.
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Survival analysis tools

 Find Genes Correlated with Survival tool, selects
genes which are univariately correlated with
survival

e Controls number and proportion of false
discoveries in entire list: uses a multivariate
permutation test which takes advantage of the
correlation among genes

 Produces a gene list which can be used for further
analysis



ldentifying Genes Correlated With
Survival

Instantaneous hazard of death at time t
A(t) = 4, (D) exp(5x;)

X. = log ratio or log signal for gene i
Calculate p value for each gene i
Apply a multivariate permutation

procedure to the p, values, permuting
survival times rather than class labels
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Gene Set Expression Comparison

Compute p value of differential expression for each gene in
a gene set (k=number of genes)

Compute a summary (S) of these p values

Determine whether the value of the summary test statistic
S 1s more extreme than would be expected from a random
sample of k genes (probe-sets) on that platform

Two types of summaries provided
— Awverage of log p values

— Kolmogorov-Smirnov statistic; largest distance between the
cumulative distribution of the p values and the uniform distribution
expected if none of the genes were differentially expressed



Gene Set Expression Comparison

 p value for significance of summary statistic
need not be as extreme as .001 usually,
because the number of gene sets analyzed is
usually much less than the number of
Individual genes analyzed

» Conclusions of significance are for gene
sets In this tool, not for individual genes
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Comparison of Gene Set Expression
Comparison to O/E Analysis In Class
Comparison

» Gene set expression tool is based on a