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ABSTRACT 

Appropriate statistical design and analysis of gene expression microarray studies is 

critical in order to draw valid and useful conclusions from expression profiling studies of 

animal models.  In this article, several aspects of study design are discussed, including 

the number of animals that need to be studied to ensure sufficiently powered studies, 

usefulness of replication and pooling, and allocation of samples to arrays.  Data 

preprocessing methods for both cDNA dual-label spotted arrays and Affymetrix-style 

oligonucleotide arrays are reviewed.  High-level analysis strategies are briefly discussed 

for each of the types of study aims, namely class comparison, class discovery, and class 

prediction.  For class comparison, methods are discussed for identifying genes 

differentially expressed between classes while guarding against unacceptably high 

numbers of false positive findings.  Various clustering methods are discussed for class 

discovery aims.  Class prediction methods are briefly reviewed, and reference is made to 

the importance of proper validation of predictors.   

 

Key words:  gene expression profiling; animal models of cancer; statistics; study design; 

analysis of microarray data 
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INTRODUCTION 

Gene expression microarray analysis of animal models of mammary cancer holds the 

potential for a better understanding of mammary cancer development and the 

mechanisms of action of agents for prevention and treatment of mammary cancers.  

Careful statistical design and analysis of these microarray studies will enhance the 

insights gained and ensure the validity of conclusions drawn from these studies.  

Microarray studies of human breast tumors are complicated by the heterogeneous clinical 

presentation of the tumors, the genetic diversity in the normal human breast tissue 

backgrounds from which the cancers arose, and the varied environmental factors to which 

the breast tissues have been exposed.  Further, it is difficult to obtain human specimens 

from early or sub-clinical stages of breast cancer progression.  Carefully designed animal 

model experiments can control for factors such as genetic strain, tumor induction 

mechanism, and timing of observations throughout the stages of cancer progression.  

Better understanding of the genetic alterations that occur in the controlled animal model 

settings should translate to an improved understanding in the more complex human tumor 

setting.   

 Appropriate study design and statistical analysis recommendations cannot be 

made for a particular study until there is a clear statement of the scientific aims of the 

study.  Microarray analysis permits the measurement of expression levels of thousands of 

genes simultaneously on each specimen, generating an “expression profile” for each 

specimen.  However, the generation of large amounts of data does not remove the need 

for a clear scientific focus and sound study design.  As described by others (1-3), the aims 

of most microarray studies fall into three general categories:  class comparison, class 
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discovery, and class prediction.  For the class comparison aim, the goal is to determine 

whether the average expression pattern in one group (class) of specimens differs from 

that in another group, and, if they differ, what genes appear to be responsible for the 

differences. In class discovery, there are no pre-specified classes, and the goal is to 

discover natural groupings of specimens or genes with the property that there is some 

homogeneity within groups but differences between groups.  The third aim of class 

prediction involves the development of a multivariate mathematical model that takes as 

input an expression profile for a specimen or gene and gives as output a prediction of the 

class to which the specimen or gene belongs.    

 In the next section, we discuss design issues to be considered for microarray 

animal experiments.  The design recommendations may differ depending on the scientific 

aims and array platform.  In this paper we refer to two widely used array platforms – 

dual-label spotted cDNA arrays and single-label Affymetrix-style oligonucleotide arrays.  

We feel that sound statistical design is critical to the validity of conclusions drawn from 

these studies, and animal models provide the opportunity for carefully designed and well-

controlled studies.  Due to its great importance, the reader will notice that we have 

devoted a large part of our discussion in this paper to study design.  Following the design 

discussion, analysis strategies appropriate for each type of study aim are discussed.  

Embedded in those discussions is advice regarding proper interpretation of the analysis 

results.  We conclude with summary remarks presented in the last section. 

 

STUDY DESIGN 
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Animal model experiments are particularly well suited to address class comparison-type 

questions such as whether there are differences in gene expression between different 

tissue types, between stages of tumor progression, or between tumors induced by 

different mechanisms.  They also provide the opportunity to assess activity of genes 

induced by an experimental intervention or to study the coordinated expression of 

multiple genes through time series experiments.  Factors one must consider in the design 

of such experiments include the number of animals or specimens needed per group (or 

per timepoint in a time series experiment), the number and type of technical replicates, 

the optimal sample pooling strategies (if pooling is needed at all), and, for dual-label 

arrays, how to pair specimens for co-hybridization to the arrays.   Detailed discussion of 

many of these elements is given in (3-6).  We highlight the main points of those 

discussions in this paper.  Since class prediction is not a frequent goal of animal model 

experiments, we will not provide a separate discussion of design issues for class 

prediction studies, although a number of the issues are the same as for class comparison 

studies (3).  Studies with class discovery as their goal are by their very nature more 

exploratory, and therefore, tend to have fewer controlled design factors.  However, we 

will make brief mention of a few design issues that remain relevant, such as technical 

replication and allocation of specimens to dual-label arrays.   

 

Types of Designs 

 There are a variety of designs that can be considered for class comparison studies.  

The simplest type of design is a single-factor design in which one compares among two 

or more groups corresponding to levels of the factor.  For example, one might wish to 
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compare the gene expression profiles of tumors induced by different carcinogenic agents.  

A time series experiment can also be viewed as a single-factor design with each timepoint 

corresponding to a group.  For example, a drug may be delivered to a large collection of 

animals with tumors, and different subsets of animals are sacrificed after different lengths 

of observation.  One could be interested in testing for expression differences between any 

two timepoints or in examining for trends in the expression trajectories across timepoints.   

For the design described, the arrays at different timepoints correspond to independent 

groups of animals.  There are situations in which arrays at the different timepoints would 

not be strictly independent; for example, in cell culture experiments, it is possible that 

RNA could be harvested on repeated occasions from each of several cultures.  A detailed 

discussion of the ramifications of such designs is beyond the scope of this paper.  

However, a key point is that it would be important when analyzing data generated by 

these types of designs to account for culture effects that might result in greater similarity 

across timepoints of samples originating from the same culture compared to samples 

originating from independent cultures.    

 More complicated multi-factorial designs can be used when there are several 

factors of interest, with each factor having multiple levels.  For example, an investigator 

might be interested in studying the anti-tumor effects (as reflected in expression profiles) 

of three experimental chemotherapy drugs (D1, D2, D3) on two strains of mice (S1, S2) 

whose tumors were induced by two different tumor-inducing agents (A1, A2).  This 

experiment has three factors:  strain (2 levels), tumor-inducing agent (2 levels), and drug 

(3 levels).  Multi-factorial designs allow not only examination of the effect of each factor 

individually, but also they allow examination of interactions between the factors.  
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Loosely speaking, an interaction is present when two or more factors together have a 

greater or lesser effect than would be predicted by the sum of their individual effects.  For 

example, suppose that strains S1 and S2 develop tumors reflective of their different 

normal background expression profiles, and that tumors induced by each agent show 

characteristic alterations in expression in a particular subset of genes, with the subset 

depending on the agent but not on the strain.  However, suppose that the alterations in 

expression resulting from treatment with the drugs are different depending on the strain.  

In the situation described, we would say that there is a “main effect” of tumor-inducing 

agent, but an interaction between strain and drug.  See figure 1 for a schematic 

representation of an example of a strain by drug interaction.   

 In multi-factorial designs one must also take special care to avoid confounding 

effects of different factors.  For example, it would be a faulty design to allocate only drug 

D1 to S1 mice and drugs D2 or D3 to S2 mice because one could then not separate the 

effects due to strain and drug.  Similar considerations apply to technical factors.  If the 

specimens studied in an array experiment were analyzed using arrays produced in two 

different print batches or different manufacturing lots, it would be unwise to assay all 

specimens from S1 mice using the first batch of arrays and to assay all specimens from 

S2 mice using the second batch of arrays.   

 As stated earlier, class discovery studies have no pre-specified classes, so the 

above discussion of single and multi-factor designs mostly does not apply.  However, 

care should be taken to avoid introducing artifactual “class” structure resulting from 

technical variations such as mid-stream changes in array print batches or manufacturing 
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lots, fluorescent dye lots, common reference pool (see discussion of common reference 

design for dual-label arrays below), or even laboratory technician.  

 

 Allocation of Samples to Dual-label Arrays 

Optimal allocation of samples to dual-label arrays has been a subject of considerable 

debate and has generated much confusion.  Here we briefly discuss allocation schemes in 

the context of class comparison studies, but we mention which of the designs discussed 

are suitable when class discovery is also an aim.  The reader is referred to Dobbin and 

Simon (7) for a more comprehensive discussion.  Yang and Speed (4) discuss some 

allocation schemes for multi-factorial or time-series experiments.   

 The purpose of the dual-labeling for printed glass slide arrays is to provide a 

means of standardization to account for variation in size and shape of spots across arrays 

and for possibly unequal distribution of sample across an individual array.  There are 

many ways in which samples can be paired for analysis on the arrays.  Below we describe 

three major types of sample allocation designs for dual-label arrays for studies involving 

group comparisons: the common reference design, the balanced block design, and the 

loop design (7-8).   We compare them on the basis of both practical considerations and 

statistical efficiency.   We use the word “efficiency” here in the following sense:  if the 

goal in a study is to estimate the mean difference in expression between different classes, 

then the more efficient design is the one that allows estimation of the difference with 

greatest precision (smallest variance).    

For the traditional common reference design, each study “test” sample is paired 

with an aliquot of RNA from a large reference pool, so the number of arrays required is 
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equal to the number of test samples.  See Figure 2a.  The reference pool serves as an 

internal standard.  The test samples are always labeled with one dye color, and the 

reference pool samples are always labeled with the other color dye.  Because the common 

reference pool is measured on every array in this design, this design has been criticized as 

wasteful of arrays, particularly given that the reference sample is often of no biological 

interest in its own right.  However, the advantages of the reference design are that it 

allows for easy and efficient comparisons of any number of groups and cluster analyses.  

Also, results from different studies using a common reference design with the same 

reference pool can theoretically be compared, assuming no other major technical 

differences exist between the studies.  

 An alternative allocation strategy is a balanced block design.  In the simplest case 

of a two group comparison, test samples from the two groups being compared are 

randomly paired, one from each group, for co-hybridization to each array.  Labeling of 

test samples with red versus green dye is alternated from one array to the next.  See figure 

2b.  Only one aliquot of each test sample is required, and the number of arrays required is 

half of the number required for the common reference design.  Disadvantages are that if 

the number of test samples in the two groups is not the same or if there is more than one 

two-group comparison of interest, complicated modifications of the design are needed.  

Also, if the investigator wishes to conduct some class discovery analyses such as cluster 

analysis (see Class Discovery section) in addition to the comparison of two pre-specified 

classes, this design is problematic because the pairing of different test samples on arrays 

introduces artificial correlations between the samples in each pair that could influence 

results of cluster analyses.  A variation on the balanced block design is a situation in 
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which tumor and normal tissue from the same animal is paired on an array, with each 

array corresponding to a different animal.  This design is a good choice if one views the 

normal tissue background as a nuisance and is interested in comparing expression in 

tumor relative to normal tissue.  This approach would avoid detection of expression 

differences between tumors that were solely due to differences in expression in the 

normal tissues from which the tumors arose.   

 The loop design requires two aliquots of each test sample that are labeled 

alternately with the red and green dyes and co-hybridized on arrays with two other test 

samples.  See figure 2c.  It requires the same number of arrays as the common reference 

design (equal to the number of distinct test samples).  For a fixed number of arrays, the 

loop design will be less efficient than the balanced block design for a two group class 

comparison study aim, but more efficient than the common reference design for 

comparison of only two classes.  However, as the number of classes being compared 

increases, the efficiency advantage of the loop design compared to the reference design is 

lost.  The loop design is very inefficient for cluster analyses (efficiency for cluster 

analyses refers to the accuracy with which clusters are defined).  Furthermore, if there are 

technical difficulties with some arrays rendering them unusable, the “loop” is broken and 

appropriate statistical analysis of the data becomes extremely difficult.  The loop design 

also has the important practical limitation that it can only be used if duplicate aliquots of 

each test sample are available – a major limitation in animal studies in which the 

specimens may be very small.  Our general recommendation is to avoid the loop design. 

 Model-based methods of analysis (9-11) must be used to analyze data derived 

from balanced block or loop designs.  Simpler analyses involving t-tests or F-test or their 
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non-parametric counterparts are possible when the common reference design is used (see 

Class Comparison section).   

 

 Replication 

A commonly asked question is whether it is necessary to perform replicate array assays.  

This discussion has to begin with an understanding of the different sources of variation in 

microarray experiments.  Except possibly in very preliminary pilot studies, the goal of a 

microarray experiment is to make inferences about biological populations.  The only way 

to make those inferences is to sample multiple individuals from each of the biological 

populations under study.   We will refer to these as biological replicates.  One might ask 

whether it is also advisable to obtain technical replicates.  Technical replicates include 

multiple aliquots of RNA from a single batch of RNA extracted from each test specimen, 

multiple RNA extractions from each test specimen, or reverse fluor (“dye swap”) 

replicates.  Dye swap replicates involve the co-hybridization of the same two RNA 

samples to two arrays, but with the dye labeling of the specimens reversed between the 

first array and the second.   

Technical replication can be useful for quality control purposes to assure that the 

microarray assays are working properly, and reverse fluor replicates for some arrays will 

be necessary if the investigator wishes to interpret individual ratios from a single array 

experiment.  Expression measurements from technical replicates, such as multiple 

aliquots from a single RNA batch or multiple RNA extractions from a specimen, can be 

averaged to increase precision of the expression measures or can be used as checks on 

clustering results (see Class Discovery section), but it is important to understand that no 
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amount of technical replication is a replacement for biological replication.  For example, 

even if one performs 100 technical replicates on a single biological sample from one 

population and 100 technical replicates on a single sample from another population, 

conclusions can only be drawn about the two biological samples that were studied, and 

not about the two populations from which they came.  Replication efforts are most 

profitably directed at biological replication.   

 Unless one wishes to interpret individual ratios, it is generally not necessary to 

perform dye-swap experiments for every array in class comparison studies.  Usually dye 

swaps of 5-10 arrays will suffice to estimate gene-specific dye biases for the entire 

experiment (12).  If there is no plan to interpret individual ratios and only analyses to 

compare classes will be conducted, no dye swap experiments are needed, because gene-

specific dye biases cancel out when expression levels are compared between groups.  If 

the goal of the study is class discovery, then the value of dye swap experiments will 

depend on the distance metric used in the cluster analyses (see Class Discovery section) 

and the size of the dye biases relative to the degree of separation expected between the 

classes one is trying to discover.      

 

Number of biological replicates 

For two-group class comparison studies using single-channel arrays or dual-label arrays 

with the common reference design, we describe a simple method (6, 13a) for determining 

the number of independent biological samples needed to detect a specified level of 

differential expression with a desired statistical power.  For multi-group or multi-factor 

designs or for dual-label array experiments using sample allocation schemes other than 
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the common reference design, the calculations are more complicated and beyond the 

scope of this paper (see references 12 and 14).   In the calculations that follow, it is 

assumed for dual-label arrays that the expression measurement for a gene is a log-ratio; 

for single-channel arrays, the expression measurement is assumed to be the log signal.   

 The sample size calculations presented here focus on detection of differential 

expression for a single gene between two independent classes.  The calculations will 

require specification of parameters that describe the anticipated variability of 

measurements for the gene within each class and a target minimum detectable average 

expression difference.  The variability is specified through σ, the standard deviation of 

expression level for the gene within each class; δ denotes the difference in average 

expression level between the two classes.  For example, with base 2 logarithms, δ = 1 

corresponds to a 2-fold average difference between the two classes.  In our experience 

with several animal model studies utilizing inbred strains of mice or rats, we have 

observed that within-class standard deviation σ is usually small, typically ranging from 

0.1 to 0.5.  For example, in the study conducted by Desai et al. (15), the median (across 

genes) within-class standard deviation was in the range 0.2-0.25 for their 8.7K arrays and 

in the range 0.3-0.5 for their 2.7K arrays.   

 It should be noted that σ can vary according to a number of factors, including the 

specific gene examined, the particular animal model under study, and the laboratory 

performing the microarray assays.  If the samples size estimate is based on standard 

deviations anticipated for genes with average levels of within-class variability, that 

sample size may not provide adequate power to detect differential expression for genes 

that tend to have very large within-class variability.  If an investigator does not have 

13 



readily available estimates of variability from related experiments conducted in his or her 

laboratory, a choice must be made to either accept estimates from other studies or to 

conduct a pilot study.  Our recommendation would be to consider a combination of the 

two options.  A limitation in estimating variability from a pilot study is that it generally 

requires fairly large sample sizes to obtain precise estimates of standard deviations.  

Given the imprecision expected in estimates obtained from a small pilot study, one would 

be well-advised to take the additional step of comparing such preliminary estimates with 

estimates available from other labs.  This also provides the added safeguard that if the 

estimates obtained in the pilot appear substantially larger than estimates reported for 

comparable situations in other labs, it might prompt one to investigate for technical 

problems that could be introducing large amounts of measurement error into the array 

measurements and to check for specimen quality problems.       

 Two types of error may occur in conducting a statistical hypothesis test. One is 

false discovery (false positive), and the other is false negative. Declaring a gene that is 

truly not differentially expressed between classes as significantly differentially expressed 

is referred to as a false discovery.  Conversely, mistakenly declaring a gene that is truly 

differentially expressed between classes as not significantly differentially expressed is 

referred to as a false negative.  False negatives are likely to occur when the number of 

independent specimens in each class is too small or variability within each class is large.  

We need to control the two error rates in sample size planning through the specification 

of significance level and power.  The significance level, denoted by α, is the probability 

of declaring that the expression level of a gene is different between classes when in fact 

there is no difference (δ = 0).  The false negative rate, denoted by β, is the probability of 
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declaring that the expression level between the two classes is not different when in fact 

the mean difference is not zero (δ ≠ 0). The statistical power is equal to 1-β, the 

probability of obtaining statistical significance when the true difference in mean 

expression level between the two classes is δ.  The specification of α and β determines 

the average number of false discoveries and false negatives.   Since gene expression 

levels for thousands of genes will be examined, the value set for α should be small.  If N 

genes are tested, then the expected number of false discoveries is N × α or less, where the 

maximum value N × α applies to the most extreme situation in which all N genes tested 

are truly non-differentially expressed.  If, on the other hand, m of the N genes are truly 

differentially expressed with mean difference at least δ, then the expected number of false 

negatives is m × β or less. Common choices for α and β in the analysis of microarray gene 

expression data are 0.001 and 0.05, respectively.  Thus if 10,000 non-differentially 

expressed genes are examined, the average number of false discoveries will be 10 or less.  

If 1% of the 10,000 examined genes are truly differentially expressed, then the average 

number of false negatives will be 5 or less.     

 The approximate formula for the total sample size required, based on the 

assumption that the mean expression measurement is approximately normally distributed 

among specimens of the same class, is  

))1(/()( 222
,22/,2 qqTTn nn −+= −− δσβα  

where Tn-2,p denotes the (1-p) percentile of the t distribution with  n-2 degrees of  freedom 

with p equal to α/2 or β, and q is the proportion of biological specimens allocated to the 

first class.  (The value n is the total sample size and should not be confused with the 

number of genes, N.)  An iterative computational procedure is used to solve the above 
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equation for the total sample size n.    For example, using α = 0.001, β = 0.05, σ= 0.25 

and δ= 1 in the above formula gives approximately 12 as a total sample size with 6 in 

each class.  Often the number of biological specimens is limited and one is interested in 

knowing the power that the statistical test would have for detecting a certain mean fold 

difference in gene expression between two classes. In this case, the formula for 

calculating power is given by 

])1()/([])1()/[( 2/,222/,22 αα σδσδ −−−− −−−+−−= nnnn TqnqPTqnqPPower  

where Pn-2 denotes the cumulative probability distribution for a t distribution with n-2 

degrees of freedom.  Table I lists number of independent specimens per class and power 

for detecting the difference in mean expression level between two classes at 0.001 

significance level for a range of σ and δ applicable to animal microarray experiments. It 

shows that a larger standard deviation requires a larger sample size to achieve the same 

power as achieved in the presence of a smaller standard deviation, and a larger sample 

size allows one to detect a smaller fold-difference. In addition, the bottom rows of the 

table show that when the number of specimens is fixed, power decreases with increasing 

within-class variability. 

 

Pooling of samples 

Pooling involves mixing together RNA from several biological specimens before labeling 

and hybridization.  Investigators may wish to pool samples because there is not enough 

RNA available from each individual sample to hybridize on an array or because they 

want to reduce the number of arrays for the purpose of saving cost.  However, a single 

pool for each class does not allow estimation of biological or technical variability 
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necessary for statistical inference.  Taking multiple aliquots from each pool and applying 

each aliquot to an array does not alleviate the problem, because variability from multiple 

aliquots only allows one to make inference to that pool which represents a finite subset of 

all specimens from that class.  In order to make a valid statistical inference, one needs to 

generate multiple independent pools from each class (6, 16). Each pool is constructed 

from a different set of biological specimens and represents a true replication in the 

population.  However there are still some disadvantages to this approach.  First, it does 

not allow one to understand the contribution of individual RNA samples to the observed 

expression measurements, thus complicating the identification of outlier or low quality 

samples. Second, there may be great power loss in comparing gene expression profiles 

between classes.   

 Comparisons of power between designs without pooling and designs with 

different pooling strategies depend on the ratio of biological variation to technical 

variation (16), total number of specimens and number of specimens per pool.  Biological 

variation represents variability among different specimens, and technical variation 

represents measurement error arising from array-to-array variability.  The overall 

variance in measured expression levels for a particular gene within each class is the sum 

of biological variance and technical variance; we will refer to this total variance as σ2.  

Kendziorski et. al (16) observed that the ratio of biological to technical variance in an 

RT-PCR experiment was in the range approximately 4 to 10 fold and suggested that 

microarray-based assays might have somewhat smaller variance ratios.  We estimated a 

variance ratio of approximately 3.7 when we examined one unpublished data set on 

human cell lines for which technical replicates had been performed.  Pooling is more 
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beneficial when the ratio is large, because the impact of pooling is to reduce the 

biological variability, and this results in increased precision of the expression measures 

(16).  Figure 3 plots power as a function of effect size defined by δ/σ with 2 independent 

specimens per pool, significance level set to 0.001, and with the ratio of biological 

variance to technical variance set to 4. For example, under the design with the total 

number of samples n = 12 and effect size = 4, without pooling (number of arrays = 12) 

there is approximately 95% power to declare gene expression differs between the two 

classes, whereas with pooling of specimens two at a time (number of arrays = 6) power 

drops to 30%.  Even if the total number of original specimens is increased to 16 (number 

of arrays = 8), the power is decreased to 79%.  In order to achieve at least 95% when 

pooling specimens by pairs, 20 specimens (number of arrays = 10) are required.  Power 

could also be calculated for designs with pool sizes other than 2, but we will not present 

those additional calculations here.  There is a moderate effect of the ratio of biological to 

technical variance on these power comparisons.  Consider the above selected design 

(effect size = 4, significance level = .001, 2 specimens per pool).  If the ratio is reduced to 

1 (i.e. technical variance is equal to biological variance), then pooling results in power  

22%, 67% and 93% when the original number of specimens is equal to 12 (6 arrays), 16 

(8 arrays), and 20 (10 arrays), respectively.  In conclusion, pooling can result in 

substantial loss of power for detecting genes differentially expressed between groups and 

generally should be avoided unless necessary due to insufficient amount of RNA 

available from individual samples.  If pooling is necessary for reasons of small RNA 

samples or preferred due to the high cost of arrays, then the number of individual samples 
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utilized in the experiment should be increased appropriately to compensate for the 

decrease in power caused by pooling samples.   

 

STATISTICAL ANALYSIS 

The analysis of microarray data is a multi-step process.  First, there must be an analysis 

of the data quality, followed by calculation of gene-level summary statistics that have 

been suitably corrected and normalized to remove noise due to experimental artifacts and 

to correct for systematic array and dye effects.  Following this, the main analyses can be 

conducted to address the study aims.   

  

 Quality Screening 

For either single-sample or dual-label arrays, there must be either visual or automated 

screening of arrays to detect experimental artifacts.  For single-sample Affymetrix-style 

arrays, these artifacts may result, for example, from manufacturing defects in the chip or 

debris in the hybridization chamber.  Dual-label glass slide arrays are prone to problems 

such as dust specs, scratches, fibers, bubbles, or excessive fluorescence of a slide itself, 

due to problems with the coating or washing of the slide.  Array elements flagged as poor 

quality during image analysis or associated with low signals and large variability should 

be excluded from analysis.  Entire arrays or regions of arrays should be excluded if too 

many spots have been flagged, if the range of signals is narrow, or if the signals are 

uniformly low.    
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 Calculation of Gene-level Expression Measures and Normalization for Dual-label 

cDNA Arrays 

For dual-label cDNA arrays using reference design, preliminary gene expression 

measures are calculated for each gene as the signal in the test sample divided by the 

signal in the reference channel at the feature location corresponding to that gene.   Signal 

is usually defined as foreground intensity for the gene’s feature minus background 

intensity (many methods are available for defining background signal).  The distribution 

of these signal ratios will frequently be centered away from 1.0 due to different physical 

properties of the dyes, different uptake of the two dyes, error in measuring sample 

amounts, and adjustments of the photomultiplier tube when scanning the slides.  The 

reader is referred to Yang et al. (17) for a discussion of various normalization procedures 

to correct for these biases.  The normalization procedures range from application of a 

single global correction factor to all ratios to correction factors that are dependent on 

signal intensity, slide region, or print tip.  The final normalized log ratios are the 

measures of gene expression that are used in subsequent analyses.   

 

Normalization and Probe Set Summary Calculation for Affymetrix Arrays 

In order to control for array-to-array technical variability arising from variation in amount 

of sample, chip manufacture, and hybridization and scanning conditions, normalization is 

also required for Affymetrix arrays.  In this array platform, each gene is interrogated with 

a probe set consisting of 11-20 oligonucleotide pairs.  Every pair is comprised of a 

perfect match (PM) 25-mer oligonucleotide and a mismatch (MM) oligonucleotide.   
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Each PM is typically a 25-mer oligonucleotide with sequence exactly complementary to 

some nucleotide sequence of length 25 from an exon in the gene of interest.  The MM 

member of each pair is a 25-mer oligonucleotide with sequence that differs from the PM 

sequence by a single nucleotide in the center position.  Normalization is performed at 

either gene (probe set) level or at probe level, and probe set summaries are calculated 

either before or after normalization. Specifically, Affymetrix Microarray Suite, Version 

5.0 (18) calculates probe set summaries based on robust weighted averages of PM and 

MM pair differences using unnormalized probe-level data, and then the resulting gene-

level summaries are normalized.  Others (19-22) have proposed model-based methods for 

calculating probe-set summaries and normalizing data.  A major difference between 

model-based methods and the Affymetrix approach is that the model-based approaches 

account for probe effects which are estimated using data across multiple arrays, whereas 

the Affymetrix algorithm does not account for probe effects.  In addition, model-based 

methods normalize probe-level data before calculating model-based probe set summaries, 

or they incorporate probe-level normalization into their model fitting procedures. 

Generally, summary measures produced by model-based methods have a substantial 

advantage in that they tend to stabilize variability at low signals.  Similar to 

normalization for dual-label cDNA arrays, normalization can be done globally, or the 

magnitude of correction may vary depending upon the signal range.  The reader is 

referred to Bolstad et al (23) for a detailed account of various normalization methods for 

Affymetrix array data.  Software implementing the above preprocessing methods for 

Affymetrix data is available as part of the R package Affy of the Bioconductor software 

project http://www.bioconductor.org.  These final normalized gene summary measures 
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(or their log transforms which we prefer) are then used in subsequent analyses to address 

the study aims.    

 

 Analysis Strategies for Addressing Study Aims 

Appropriate analysis methods for the class discovery aim are often termed unsupervised 

methods because they do not require pre-specified class information, whereas, the best 

analysis strategies for the class comparison and class prediction aims are supervised 

methods that make use of available class information (1, 24).  In the discussions that 

follow, it is assumed that the expression measures being analyzed are normalized log 

ratios (from a common reference design) in the case of dual-label cDNA arrays or 

normalized gene summary measures for Affymetrix arrays.  We do not discuss analysis 

strategies based on model-based methods that are applied to individual channel data. 

 

Class Comparison 

The goal in comparing specimens from different pre-specified classes is to establish 

whether gene expression profiles differ between classes, and if they do, identify genes 

that are differentially expressed between classes.  One usually identifies genes that are 

differentially expressed between known classes of specimens using univariate analyses 

on each gene, such as t-tests for two classes or F-tests for more than two classes.  The F-

test is used to determine whether there is some difference among the classes. When an F-

test is rejected, one may be interested in assessing which classes have different 

expression levels with various post-hoc comparisons (25a).  For example, classes may 

represent different transgenic mouse models, and one could assess pairwise differences.  
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Both the t-test and F-test assume that the mean of the expression measurement in each 

class is normally distributed, which may not hold, particularly when the number of 

specimens or animals per group is small.  In this case, one could use the non-parametric 

counterparts of the t-test and F-test, namely the Wilcoxcon test (26a) and Kruskal-Wallis 

test (26b) or permutation tests.  Another example is the study of gene expression in a 

mammary cancer progression model in mice.  Here, breast tissues might be taken from 

mice at different time points following tumor initiation.  In this case, one might be 

interested not only in whether there is a difference in gene expression between stages of 

mammary cancer but also in the trajectory of gene expression change over time.  One 

could examine for trends in these trajectories using regression methods (25a-b).   

As described in the section discussing the number of biological replicates needed, 

it is important to take into account the problem of multiple testing in order to control for 

false discoveries.  Several multiple testing procedures are available to identify 

differentially expressed genes between classes, and they differ by controlling for different 

aspects of false discoveries. A simple procedure is to control the average number of false 

discoveries to be no more than some number u by conducting each of the N (number of 

genes) univariate tests at significance level u/N.  The procedure of Tusher et al. (27), 

called SAM, aims to control the expected proportion of false discoveries. Efron et al. (28) 

describes an empirical Bayes procedure that controls the expected proportion of false 

discoveries.  A potential drawback to these approaches is that although they control the 

expected number or expected proportion of false discoveries, the actual number of false 

discoveries may be quite different from the expected number. Alternatively, a 

multivariate permutation approach such as the one proposed by Korn et al. (29) can be 
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used to control for the number or proportion of false positives. Their procedure, 

generalizing the step-down permutation procedures of Westfall and Young (30) to control 

the familywise error rate, controls number or proportion of false discoveries with stated 

confidence.  The procedure of Korn et al. (29) is available in BRB-ArrayTools software 

(http://linus.nci.nih.gov/BRB-ArrayTools).   

 Analysis of class comparison studies is particularly challenging when the number 

of independent specimens available in each class is small (between 2 and 5).  In this case, 

the variance estimate for each gene is not very accurate and the power of statistical tests 

is low.  Several statistical approaches based on borrowing strength from the data of other 

genes have been developed.  One approach is to assume that the variances are the same 

for all genes and estimate the common variance by pooling within-class variances over 

all genes. However, the assumption of a common variance is often not realistic.  Other 

statistical approaches take an intermediate approach with respect to the variances of the 

genes.  Basically, they assume that different genes have different variances, but that these 

variances represent random quantities generated from a common distribution.  It is this 

additional distributional assumption on the variances that allows one to borrow strength 

from information of other genes. The statistical approaches vary depending on the 

additional distributional assumptions on other parameters, including the empirical Bayes 

approach of Efron et al. (28), Bayesian approaches of Baldi and Long (31) and Broet et 

al. (32) and the Frequentist approach of Wright and Simon (33). In general, these 

statistical approaches to detect differentially expressed genes will be most useful when 

the within-class variability of gene expression tends to be small and the spread of the 

gene-specific variances is not too large; these criteria are often satisfied for specimens of 
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inbred stains of mice or a cell line within the same class. The approach developed by 

Wright and Simon is available in BRB-ArrayTools (http://linus.nci.nih.gov/BRB-

ArrayTools).   

 If one is interested in establishing that there is an overall difference in average 

expression profile between classes without specifically identifying genes responsible for 

those differences, global permutation tests can be used.  To conduct a permutation test, 

one first chooses a summary measure of difference between classes. Examples of 

summary measures include number of genes univariately significant at 0.001 level and 

sum of squared univariate t-statistics.  Then one calculates the summary measure statistic 

many times, each time randomly permuting the class labels.  The statistical evidence is 

assessed by the permutation p-value which is the proportion of permutations with the 

same or larger value of the summary measure as the one observed in the original data.  

Obtaining a p-value of less than 0.01 or 0.05 is sufficient to establish that the expression 

profiles between classes are different. The global test described above is available in 

BRB-ArrayTools software (http://linus.nci.nih.gov/BRB-ArrayTools). 

 

 Class Discovery 

When class discovery is the goal of the microarray investigation, unsupervised 

analysis strategies such as clustering methods can be used.  Methods to find cluster 

structure in data include hierarchical clustering, self-organizing maps, k-means clustering, 

likelihood-based methods, and Bayesian methods.  In this paper, we will briefly discuss 

hierarchical clustering, k-means clustering, and self-organizing maps along with some 

graphical display techniques.  We refer the reader to the review article of Jain et al. (34) 
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for discussion of other clustering algorithms.  Sometimes expression data are pre-

processed prior to clustering to remove genes that vary little across the arrays or to center 

the expression data within each gene.  For more discussion of these pre-processing steps, 

see Simon et al. (13b).   

A description of hierarchical clustering methods applied to microarray data was 

given by Eisen et al. (35).  We describe it here in the context of clustering specimens, but 

it can also be used to cluster genes.  Hierarchical clustering of specimens starts by 

defining a distance between the profiles of each pair of specimens. The algorithm 

proceeds by merging the two closest (most similar) specimens first, and then successively 

merging specimens or groups of specimens in order of greatest similarity. Two distance 

metrics commonly used in clustering gene expression profiles are Euclidean distance and 

one minus the Pearson correlation coefficient. Euclidean distance measures, in absolute 

terms, the closeness of two profiles, whereas correlation measures the similarity of 

patterns in the sense of how closely the values in one profile can be approximated by a 

linear function (scalar multiple or shift) of the values in the other profile.  Euclidean 

distance has the property that when clustering specimens, a constant shift in all 

expression measurements for any given gene (for example due to gene-specific dye bias) 

will subtract out in the distance calculation.  While the distance metric defines distance 

between two individual specimens, additional specifications are required to define 

distance between two clusters.  This specification refers to the linkage method.  Average 

linkage specifies merging clusters whose average distance between all pairs of items (one 

item from each cluster) is minimized.  Complete linkage specifies merging clusters to 
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minimize the maximum distance within any resulting cluster.  Single linkage merges 

clusters at minimum distance from one another.   

Hierarchical clustering results can be depicted by a tree structure called a 

dendrogram. Figure 4a shows a dendrogram representing a clustering of cDNA 

microarray data obtained in an experiment comparing mouse models of cancer (15).  The 

distance metric used was one minus Pearson correlation, and average linkage was used.  

These data were generated using a 2.7K mouse oncochip spotted cDNA array.  Mammary 

tumor RNA sample from each of 36 mice was analyzed on a different array, co-

hybridizing with samples obtained from a common reference pool of normal mouse 

mammary tissue RNA.  Normalized log2 ratios were calculated as described in Desai et 

al. (15).  Genes not having at least two measurements in each of the mouse model 

subgroups were excluded from the analyses.  Of the remaining genes, only those for 

which the ratio of the 95th percentile of ratios to the 5th percentile of the ratios exceeded 3 

were used.  This left 1137 genes for the analyses.  At the bottom of the tree, each 

specimen occupies its own cluster.  At the top of the tree, all specimens have been 

merged into a single cluster. Mergers between two specimens, or between two clusters of 

specimens, are represented by horizontal lines connecting them in the dendrogram.  The 

height of each horizontal line represents the distance between the two groups it merges.  

A number of differences in the smaller clusters are observed when different linkage 

methods are used (see figures 4b and 4c).  Overall, the conclusion is that there is some 

evidence for clustering according to animal model class because there were many within-

class merges at distance of 0.2 or less (correlation 0.8 or more), and between-class 
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merges tended to occur at higher distances.  However, the gene expression-based clusters 

do not completely duplicate the known mouse model classes.   

A color image plot is another popular display for hierarchical clustering results.  It 

is a rectangular array of boxes, with the color of each box representing the expression 

level of one gene on one array.  Shades of red are usually used to represent degrees of 

increasing expression, and shades of green are used to represent decreasing expression.  

Each column of boxes represents an array, and each row corresponds to a gene.  The 

columns are ordered according to the array ordering in the dendrogram of clustered 

specimens.  The rows are ordered according to the clustering of genes.  The end result is 

a color image with patches of red and green color indicating combinations of genes and 

specimens that exhibit high or low expression.  See figure 5 at (link to website) for an 

image plot of the mouse model data.  Further examples are given in Eisen et al. (35).   

The classical K-means algorithm and self-organizing maps (SOMs) are both 

partitional clustering methods that have been applied to microarray data (36,37).  

Partitional methods try to find a single partition of the items being clustered, whereas 

hierarchical methods look for a nested series of partitions.   The K-means algorithm, as 

described by MacQueen (38), begins with either an initial partition of the objects into Κ 

subgroups or an initial specification of Κ cluster centroids, and the algorithm iteratively 

reallocates objects and updates centroids.  SOMs can be viewed as a generalization of K-

means in which the algorithm favors the choice of clusters whose centers can be arranged 

on a two-dimensional grid of nodes with distances roughly representing distances 

between centroids.  SOMs can be particularly useful for clustering expression profiles of 

genes obtained in time course experiments (37).  However, both k-means and SOMs are 
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known to be sensitive to choices of parameters such as initial cluster centroids, grid 

configurations, and learning rates.    

It is important to understand when evaluating cluster analysis results that 

clustering algorithms will always produce clusters even if the clusters formed only 

represent noise in the data.  For this reason, some assessment of cluster reproducibility is 

advisable.  McShane et al. (39) and references therein, describe methods for global tests 

of clustering and for assessment of reproducibility of particular clusters.  A simple means 

of partially assessing clustering results is to include a few technical replicate arrays for 

some specimens and see if the replicates cluster together.  This would provide evidence 

that the cluster analyses are finding at least some real clusters.   

 

 Class Prediction 

Class prediction has been an infrequent aim of animal model microarray studies.  

While for human tumor studies there has been interest in developing diagnostic and 

prognostic gene expression-based predictors, most animal experiments are not geared 

toward developing clinical tools, but rather toward understanding tumor biology.  

Application of class prediction methods in animal models might more likely be directed 

at predicting functional classes of genes than predicting classes of specimens.  Our 

treatment of class prediction methods in this paper will be very brief.   

Class predictors are mathematical functions that take as their input a vector of 

measurements on an object, e.g. expression profiles of specimens or genes, and then 

output a predicted class membership.  Numerous methods for building class predictors 

have been applied to microarray data, including but not limited to Fisher linear 
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discriminant analysis (40) and its variants weighted voting method (1) and compound 

covariate prediction (41-42), regression trees (43), neural networks (44), support vector 

machines (45-46), and nearest centroid and relatives (47).  We refer the interested reader 

to Dudoit et al. (48), and references therein for description and comparison of several of 

these methods.  Interestingly, Dudoit et al.’s (48) findings were that simpler class 

prediction methods, such a diagonal linear discriminant analysis and nearest neighbor 

methods, performed better than more complicated methods on the microarray data sets 

they considered.  Radmacher et al. (42) and Simon et al. (24) discuss considerations in 

the proper building and validation of class predictors to avoid overfitting (fitting to noise 

in the data) and to obtain unbiased assessments of a predictor’s accuracy. 

 

DISCUSSION 

In this review we have highlighted what we feel are the most important issues in the 

design and analysis of animal model microarray studies.  Our intent was not to provide an 

encyclopedic account of all published design and analysis methods that have been 

proposed for microarray studies.  We decided what to include on the basis of our 

combined many years of experience in consulting and collaborating with investigators at 

our institution on the design and analysis of both human and animal studies.  From those 

experiences we have gained a sense for what design and analysis strategies for 

microarray studies are practical and useful without necessarily being complex.  For 

readers interested in more comprehensive discussions of many of the topics covered in 

this paper at a level accessible to scientists with limited statistical background, we 

recommend the books by Simon et al. (13) and Knudsen (49).   
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Table I.  Power and Sample Size for Planning Animal Model Microarray Studies 

σ (SD of log 
expression level 
for the gene 
within each 
class)   

δ (true difference 
in mean log 
expression level 
between the two 
classes) 

Fold-
difference 
(2δ) 

Number of 
independent 
specimens 
(or animals) 
per class 

Power 
(%) 

0.1 1 2 4 95 
0.2 1 2 5 95 

0.25 1 2 6 95 
0.3 1 2 8 95 
0.4 1 2 11 95 
0.5 1 2 15 95 
0.1 1.32 2.5 3 95 
0.2 1.32 2.5 4 95 

0.25 1.32 2.5 5 95 
0.3 1.32 2.5 6 95 
0.4 1.32 2.5 8 95 
0.5 1.32 2.5 10 95 
0.1 1 2 5 > 99 
0.2 1 2 5 97 

0.25 1 2 5 82 
0.3 1 2 5 60 
0.4 1 2 5 28 
0.5 1 2 5 14 
0.1 1.32 2.5 5 > 99 
0.2 1.32 2.5 5 > 99 

0.25 1.32 2.5 5 98 
0.3 1.32 2.5 5 90 
0.4 1.32 2.5 5 59 
0.5 1.32 2.5 5 34 
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FIGURE LEGENDS 

 

Figure 1.  Schematic representation of an interaction between two factors of a three-way 

factorial experiment.  The effect of tumor-inducing agent for a given gene is represented 

by the vertical distance between each pair of parallel lines.  The parallel lines on the right 

are shifted upwards relative to the parallel lines on the left, representing strain effects.  

The interaction between strain and drug is represented by the fact that all three drugs 

result in equivalent gene expression for strain 1, but for strain 2 gene expression is the 

same for drugs 1 and 2 and then increases for drug 3.   

 

Figure 2.  Schematic of allocation schemes for pairing samples on dual-label cDNA 

microarrays for studies involving a two-group comparison:  a) Common Reference 

Design, b) Balanced Block Design, c) Loop Design 

 

Figure 3.  Power to detect a range of effect sizes (δ/σ) when combining 2 independent 

specimens per pool, where σ = SD of log2 expression measurements for the gene within 

each group, and δ = true difference in mean log2 expression level between the two 

groups.  For all calculated values represented on the curves, significance level is set to 

0.001, and the ratio of biological variance to technical variance is set to 4.  The number of 

independent biological samples per group is n/2.   

 

Figure 4.  Dendrogram representing hierarchical cluster analysis of normalized log2 

expression ratios for 1137 genes showing high variability across mammary tumor RNA 
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specimens from 36 mice representative of 6 different mouse models of cancer.  The type 

of array used was a 2.7K mouse oncochip spotted cDNA microarray. The distance metric 

used was one minus the Pearson correlation.  Linkage methods used were a) average 

linkage, b) complete linkage, and c) single linkage.  Data are from Desai et al. (15). 

 

Figure 5.  Image plot representing hierarchical cluster analysis of normalized log2 

expression ratios for 1137 genes showing high variability across mammary tumor RNA 

specimens from 36 mice representative of 6 different mouse models of cancer.  The type 

of array used was a 2.7K mouse oncochip spotted cDNA microarray.  The distance metric 

used was one minus the Pearson correlation, and average linkage was used.  Each row in 

the image plot represents a single gene and each column represents a tumor specimen. 

Red and green bars indicate over-expressed and under-expressed genes in breast tumor 

compared to the pool of normal mouse mammary RNA, respectively. Black bars indicate 

genes with approximately equivalent expression levels, and gray bars indicate missing or 

filter-excluded data.  The dendrogram displayed at the top is identical to the one in figure 

4a.  Data are from Desai et al. (15). 
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