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Myth

• That microarray investigations are 
unstructured data-mining adventures 
without clear objectives



Truth

• Good microarray studies have clear 
objectives, but not generally gene specific 
mechanistic hypotheses

• Design and Analysis Methods Should Be 
Tailored to Study Objectives



Common Types of Objectives

• Class Comparison
– Identify genes differentially expressed among 

predefined classes. 

• Class Prediction
– Develop multi-gene predictor of class label for a 

sample using its gene expression profile

• Class Discovery
– Discover clusters among specimens or among genes



Do Expression Profiles Differ for 
Two Defined Classes of Arrays?

• Not a clustering problem
– Global similarity measures generally used for 

clustering arrays may not distinguish classes
– Feature selection should be performed in a 

manner that controls the false discovery rate
• Supervised methods
• Requires multiple biological samples from 

each class



Myth

• That comparing tissues or experimental 
conditions is based on looking for red or 
green spots on a single array

• That comparing tissues or experimental 
conditions is based on using Affymetrix 
MAS software to compare two arrays
– Many published statistical methods are limited 

to comparing rna transcript profiles from two 
samples 



Truth

• Comparing expression in two RNA samples 
tells you (at most) only about those two 
samples and may relate more to sample 
handling and assay artifacts than to biology. 
Robust knowledge requires multiple 
samples that reflect biological variability.



How many replicates are needed?



Levels of Replication

• Technical replicates
– RNA sample divided into multiple aliquots and re-

arrayed
• Biological replicates

– Multiple subjects 
– Replication of the tissue culture experiment



• Technical replicates do not hurt, but also do 
not help much. 

• Biological conclusions require independent 
biological replicates. The power of 
statistical methods for microarray data 
depends on the number of biological 
replicates.



Experimental Design
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Class Prediction
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Allocation of Specimens to
Dual Label Arrays for Simple 
Class Comparison Problems 

• Reference Design
• Balanced Block Design
• Loop Design 



Reference Design
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Ai = ith specimen from class A

Bi = ith specimen from class B
R = aliquot from reference pool



• The reference provides a relative measure 
of expression for a given gene in a given 
sample that is less variable than an absolute 
measure. 

• The relative measure of expression will be 
compared among biologically independent 
samples from different classes.





Balanced Block Design
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Balanced Block and Reference Designs With 5 Classes 

A,B,C,D,E

Array 1 2 3 4 5 6 7 8 9 10

Cy3 A C A E B D B C E D

Cy5 B A D A C B E D C E

Array 1 2 3 4 5 6 7 8 9 10

Cy3 R R R R R R R R R R

Cy5 A B C D E A B C D E



Loop Design
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Array 1 Array 2 Array 3 Array 4

Ai = aliquot from ith specimen from class A
Bi = aliquot from ith specimen from class B

(Requires two aliquots per specimen)



Relative Efficiency of Designs Evaluated 
Based on ANOVA for Logarithm of 

Background Adjusted Normalized Intensities

• Model Effects
– Gene
– Array by Gene (spot)
– Variety by Gene
– Sample within Variety by Gene



Gene-Variety Model

• r = Gg + AGag + VGvg + SGsg + 

• ~ N(0, g
2)

• Efficiency of design based on variance of 
estimators of VGig-VGjg

• To study efficiency, assume SGsg~N( g, g
2)



• Detailed comparisons of the effectiveness of 
designs: 
– Dobbin K, Simon R. Comparison of microarray designs 

for class comparison and class discovery. 
Bioinformatics 18:1462-9, 2002

– Dobbin K, Shih J, Simon R. Statistical design of 
reverse dye microarrays. Bioinformatics 19:803-10, 
2003

– Dobbin K, Simon R. Questions and answers on the 
design of dual-label microarrays for identifying 
differentially expressed genes, JNCI 95:1362-1369, 
2003



Myth

• Common reference designs for two-color 
arrays are inferior to “loop” designs.



Truth
• Common reference designs are very effective for many 

microarray studies. They are robust, permit comparisons 
among separate experiments, and permit many types of 
comparisons and analyses to be performed.

• Loop designs are non-robust, are very inefficient for class 
discovery (clustering) analyses, are not applicable to class 
prediction analyses and do not easily permit inter-
experiment comparisons. 

• For simple two class comparison problems, balanced block 
designs are very efficient and require many fewer arrays 
than common reference designs. They are not appropriate 
for class discovery or class prediction and are more 
difficult to apply to more complicated class comparison 
problems.



Relative efficiencies of balanced block to reference designs.  

Variance ratio of 4.

Number of ClassesRelative Efficiencies

2 3

Same number of 
arrays used

2.4 1.8

Same non-reference 
samples used

1.2 0.9

Limiting Factor



Myth

• For two color microarrays, each sample of 
interest should be labeled once with Cy3 
and once with Cy5 in dye-swap pairs of 
arrays.  



Dye Bias

• Average differences among dyes in label 
concentration, labeling efficiency, photon 
emission efficiency and photon detection 
are corrected by normalization procedures

• Gene specific dye bias may not be corrected 
by normalization 



Cell Line 
Name

Number of 
oligonucleotide
arrays (Number 
with reference 
green/Cy3)

Number of cDNA Arrays 
(Number with reference 
green/Cy3)

Description

MCF10a 4 (2) 4 (2) Human mammary 
epithelial cell line

LNCAP 4 (2) 4 (2) Human prostate cancer 
cell line

L428 9 (4) 7 (4) Hodgkins disease cell 
line

SUDHL 4 (2) 4 (2) Human lymphoma cell 
line

OCILY3 5 (3) 5 (3) Human lymphoma cell 
line

Jurkat 4 (2) 4 (2) Human T lymphocyte 
acute T cell leukemia cell 
line

Total 30 (15) 28 (15)



• Gene-specific dye bias
– 3681 genes with p<0.001 of 8604 evaluable 

genes

• Gene and sample specific dye bias
– 150 genes with p<0.001



cDNA experiment estimated sizes of the gene-specific dye bias for each of 
the 8,604 genes.  An effect of size 1 corresponds to a 2-fold change in 

expression
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cDNA agreement between models with and without gene-
specific dye effects included

All data: no dye effects

P-value < .001 P-value > .001

P-value < .001 4801 (56%) 559 (6%)

P-value > .001 81 (1%) 3163 (37%)

All data: dye 
effects



(a) Reference design comparing tumor tissue to normal tissue.  (b) A 
confounded design comparing tumor tissue to normal tissue.  (c) Balanced 

block design comparing tumor tissue to normal tissue.(a)

Array 1
Array 2 Array 3 Array 4 Array 5 Array 6

Cy3 Tumor Tumor Tumor Normal Normal Normal

Cy5 Reference Reference Reference Reference Reference Reference

(b)_

Array 1
Array 2 Array 3 Array 4 Array 5 Array 6

Cy3 Tumor Tumor Tumor Tumor Tumor Tumor

Cy5 Normal Normal Normal Normal Normal Normal

(c)

Array 1
Array 2 Array 3 Array 4 Array 5 Array 6

Cy3 Tumor Normal Tumor Normal Tumor Normal

Cy5 Normal Tumor Normal Tumor Normal Tumor



• Dye swap technical replicates of the same two rna
samples are rarely necessary. 

• Using a common reference design, dye swap arrays 
are not necessary for valid comparisons of classes 
since specimens labeled with different dyes are never 
compared.

• For two-label direct comparison designs for 
comparing two classes, it is more efficient to balance 
the dye-class assignments for independent biological 
specimens than to do dye swap technical replicates 



Balanced Block Design

A1
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B2 A3

B3

B4

A4
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B1GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B



Balanced Block Designs for Two 
Classes

• Half the arrays have a sample from class 1 labeled 
with Cy5 and a sample from class 2 labeled with 
Cy3; 

• The other half of the arrays have a sample from 
class 1 labeled with Cy3 and a sample from class 2 
labeled with Cy5. 

• Each sample appears on only one array. Dye 
swaps of the same rna samples are not necessary 
to remove dye bias and for a fixed number of 
arrays, dye swaps of the same rna samples are 
inefficient



Sample Size Planning

• GOAL: Identify genes differentially expressed in a comparison of two 
pre-defined classes of specimens on two-color arrays using reference 
design or single label arrays

• Compare classes separately by gene with adjustment for multiple 
comparisons

• Approximate expression levels (log ratio or log signal) as normally 
distributed

• Determine number of samples n/2 per class to give power 1-β for 
detecting mean difference δ at level α



Single Label Arrays
Comparing 2 equal size classes

( )
2

/2 2 24 /g

z z
n m mα β τ γ

δ
+⎡ ⎤

= +⎢ ⎥
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• m = number of technical reps per sample
• n = total number of arrays
• δ = mean difference between classes in log signal
• τ2 = biological variance within class
• γ2 = technical variance
• α = significance level e.g. 0.001
• 1-β = power
• z = normal percentiles (use t percentiles for better 

accuracy)



Dual Label Arrays With Reference Design
Comparing 2 equal size classes
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• m = number of technical reps per sample
• n = total number of arrays
• δ = mean difference between classes in log ratio
• τ2 = biological variance within class
• γ2 = technical variance
• α = significance level e.g. 0.001
• 1-β = power
• z = normal percentiles (use t percentiles for better 

accuracy)



α=0.001 β=0.05 δ=1 
τ2+2γ2=0.25, τ2/γ2=4

m technical reps n arrays 
required

samples 
required

1 25 25

2 42 21

3 60 20

4 76 19



Comparing 2 equal size classes
No technical reps (m=1)

n = 4σ2(zα/2 + zβ)2/δ2

where δ = mean log-ratio or log signal difference        
between classes

σ = within class standard deviation of log-
ratio or log signal

• Choose  α small, e.g.  α = .001
• Use percentiles of t distribution for improved accuracy



Total Number of Samples for 
Two Class Comparison

α β δ σ Total
Samples

0.001 0.05 1
(2-fold)

0.5 
human 
tissue

26

0.25
transgenic

mice

12
(t approximation)



• π = proportion of genes on array that are 
differentially expressed between classes

• N = number of genes on the array
• FD = expected number of false discoveries
• TD = expected number of true discoveries
• FDR = FD/(FD+TD)



• FD = α(1-π)N 
• TD = (1-β) πN
• FDR = α(1-π)N/{α(1-π)N + (1-β) πN}
• = 1/{1 + (1-β)π/α(1-π)}



Controlling Expected False 
Discovery Rate

π α β FDR

0.01 0.001 0.10 9.9%

0.005 35.5%

0.05 0.001 2.1%

0.005 9.5%



Can I reduce the number of 
arrays by pooling specimens?

• Pooling all specimens is inadvisable 
because conclusions are limited to the 
specific RNA pool, not to the populations 
since there is no estimate of variation 
among pools

• With multiple biologically independent 
pools, some reduction in number of arrays 
may be possible



Dual Label Arrays With Reference Design
Pools of k Biological Samples
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Number of arrays and samples required for various pooling levels.  An independent pool is 
constructed for each array, so that no sample is represented on more than one array. 

α=0.001, β=0.05, δ=1, τ2=0.384, γ2=0.054, m=14/ 22 =gg στ 25.2 22 =+ gg στ

Number of samples 
pooled on each array

Number of arrays 
required

Number of samples 
required

1 48 48

2 30 60

3 23 69

4 20 80



Dual Label Arrays With Balanced Block 
Design For 2 classes
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• n = total number of arrays
• δ = mean log ratio (class 1 / class 2)
• η2 = biological variance of log-ratio
• γ2 = technical variance of log intensity
• α = significance level e.g. 0.001
• 1-β = power
• z = normal percentiles (use t percentiles for 

better accuracy)



Number of Events Needed to Detect 
Gene Specific Effects on Survival

• σ = standard deviation in log2 ratios for each gene
• = hazard ratio (>1) corresponding to 2-fold 

change in gene expression

2
1 / 2 1

2log
z zα β

σ δ
− −+⎡ ⎤

⎢ ⎥
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Number of Events Required to Detect 
Gene Specific Effects on Survival 

=0.001, =0.05

Hazard Ratio Events Required

2 0.5 26

1.5 0.5 76



Avoid Confounding

• Avoid confounding tissue handling and 
microarray assay procedures with the 
classes to be distinguished
– Date assay performed
– Print set



Some Other Design Issues

• Selection of common reference
• Selection of sampling times for time series 

experiments
• Dye assignments for multi-factor 

experiments
• Design of class prediction studies

– Split sample or cross validation
– Sample size



• Design & Analysis of DNA Microarray 
Investigations, RM Simon, EL Korn, LM 
McShane, MD Radmacher, GW Wright, Y 
Zhao, Springer, 2003



BRB ArrayTools:
An integrated Package for the 
Analysis of DNA Microarray 

Data 

http://linus.nci.nih.gov/brb



BRB-ArrayTools

• Integrated software package using Excel-based 
user interface but state-of-the art analysis 
methods programmed in R, Java & Fortran

• Publicly available for non-commercial use

http://linus.nci.nih.gov/brb



Selected Features of BRB-ArrayTools
• Multivariate permutation tests for class comparison to control false discovery proportion 

with any specified confidence level
• SAM
• Find Gene Ontology groups and signaling pathways that are differentially expressed
• Survival analysis
• Analysis of variance
• Class prediction models (7) with prediction error estimated by LOOCV, k-fold CV or 

.632 bootstrap, and permutation analysis of cross-validated error rate
– DLDA, SVM, CCP, Nearest Neighbor, Nearest Centroid, Shrunken Centroids, Random Forests

• Clustering tools for class discovery with reproducibility statistics on clusters
– Built in access to Eisen’s Cluster and Treeview

• Visualization tools including rotating 3D principal components plot exportable to 
Powerpoint with rotation controls

• Import of Affy CEL files and apply RMA probe processing and quantile normalization 
• Extensible via R plug-in feature
• Links genes to annotations in genomic databases
• Tutorials and datasets
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