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Summary 

The goal of many gene-expression microarray profiling clinical studies is to develop a 

multivariate classifier to predict patient disease outcome from a gene expression profile 

measured on some biological specimen from the patient.  Often some preliminary 

validation of the predictive power of a profile-based classifier is carried out using the 

same data set that was used to derive the classifier.  Techniques such as cross-validation 

or bootstrapping can be used in this setting to assess predictive power, and if applied 

correctly, can result in a less biased estimate of predictive accuracy of a classifier.  

However, some investigators have attempted to apply standard statistical inference 

procedures to assess the statistical significance of associations between true and cross-

validated predicted outcomes.  We demonstrate in this paper that naïve application of 

standard statistical inference procedures to these measures of association can result in 

greatly inflated testing type I error rates and confidence intervals with poor coverage 

probabilities.  Our results suggest that some of the claims of exceptional prognostic 

classifier performance that have been reported in prominent biomedical journals in the 

past few years should be interpreted with great caution.  

 

Key words:  cross-validation, microarray, gene expression, classification, resampling, 

molecular profiling
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1. Introduction 

A frequent goal in gene expression microarray clinical studies is to develop a multivariate 

classifier of disease outcome [1-9].  In these studies, gene expression microarray assays 

are performed on tissue or other biological material from patients for whom clinical 

outcomes such as survival are known.  The results of the microarray assays are thousands 

of gene expression measures, comprising a “profile”, for each of the patient samples 

assayed.  Mathematical methods are applied to the expression profile data to develop a 

multivariate classifier to predict disease outcome.  For example, van’t Veer et al. [1] 

conducted gene expression microarray analyses on breast tumors and used the data from 

78 of the lymph node-negative tumors to build a 70-gene classifier of clinical outcome; 

they reported it had excellent ability to distinguish between breast cancer patients who 

did versus did not develop distant metastases within 5 years.  Beer et al. [3] developed a 

50-gene risk index using gene expression profiles from 86 primary lung adenocarcinomas 

and demonstrated that their risk index could separate patients into subgroups with distinct 

overall survival probabilities.    

 An important question is how one can reliably assess the performance of 

microarray-based classifiers.  For example, suppose that patient outcomes are classified 

as “good prognosis” (long survival) versus “poor prognosis” (short survival).  A common 

approach to assessing the performance of a multivariate classifier is to estimate its 

prediction accuracy, defined as the proportion of samples it correctly classifies.  Ideally, 

this assessment of the classifier would be carried out on a completely independent set of 

patient specimens, but rarely are there readily available sufficiently large numbers of 

specimens that are amenable to microarray analysis and accompanied by the necessary 
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clinical information.  The alternative is to estimate prediction accuracy using the same 

data from which the classifier was derived.  However, when re-using the same data, 

proper application of resampling methods such as cross-validation [10] or bootstrapping 

[11-12] is essential in order to avoid seriously overestimating the prediction accuracy.   

 As an alternative to, or in addition to, estimating the proportion of correct 

classifications, some authors have chosen to estimate the association of the true (known) 

classes with the classes predicted from the cross-validated classifier and to perform a test 

of the statistical significance of that association.  For example, this is an approach that 

was taken in the study by van’t Veer et al. [1] that has received much attention.  In the 

simplest case of a two-class prediction problem, this measure of association might take 

the form of an odds ratio calculated from a 2×2 table with one dimension of the table 

representing the true class (0 versus 1) and the other dimension representing the cross-

validated classifier-predicted class (0 versus 1).  A similar approach is to perform a 

logistic regression analysis considering the true class as the dependent binary variable 

and the cross-validated predicted class as an independent variable in the model, and then 

test the regression coefficient.  When the disease outcomes are survival times, sometimes 

they are dichotomized into “poor” and “good” prognosis groups to convert the problem 

into a standard classification problem, and then the methods described above could be 

used.  If one prefers to use the actual survival times rather than just “poor” and “good” 

outcome categories, survival analysis methods such as log rank tests or Cox proportional 

hazards regression could be employed to examine how well the cross-validated classifier 

can divide patients into two groups with well-separated survival curves.  For example, 

Beer et al. [3] took such an approach in part of their analyses.  A potential advantage of 
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the logistic and Cox regression approaches would be their flexibility to allow adjustment 

for other covariates.  For simplicity, we consider here only the case with no additional 

covariates.  

 The questions we explore in this paper are whether standard statistical inference 

procedures applied to measures of association between true and cross-validated predicted 

classes are valid and whether inferences judging the significance of survival differences 

between predicted groups are valid.  While it is true that properly performed cross-

validation or bootstrapping will lead to less biased estimates of prediction accuracy or 

association, several researchers have assumed in error that standard inference procedures 

performed on cross-validated measures of association are valid.  As we will demonstrate 

through a series of selected simulation studies, these naïve inference procedures for 

testing the significance of measures of association can suffer from severely inflated type I 

errors and poor confidence interval coverage.  Furthermore, our simulations will clearly 

demonstrate the difficulty in interpreting measures of association such as the odds ratio 

for purposes of gauging performance of a classifier. 

 

2. Methods 

2.1 Class prediction method 

 Many methods have been used to construct multivariate predictors of class 

membership using microarray data, including linear and quadratic discriminant analysis, 

logistic regression, decision trees, support vector machines, and numerous others.  For 

example, see Dudoit at el. [13] and Simon et al. [14].  The data required to construct 

these classifiers includes class membership designations for each of a number of subjects 
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(e.g., patients) along with a set of measured characteristics for each subject, for example a 

gene expression profile.  The purpose of developing a classifier is to allow the 

classification of a new subject for whom measured characteristics are known but class 

membership is unknown.  Simple classification methods such as diagonal linear 

discriminant analysis have been shown to work well for microarray data [13], where a 

very large number of measured characteristics compared to the number of subjects is 

available.  For purposes of our simulation studies, we use diagonal linear discriminant 

analysis, but we expect the results would be similar if we were to use other class 

prediction methods. 

 In brief, diagonal linear discriminant analysis is performed as follows.  Suppose 

we have a collection of n subjects.  Some of these subjects are known to belong to class 1 

(e.g., poor prognosis), and the rest belong to class 2 (e.g., good prognosis).  Let = 

measurement of the j

ijx

th characteristic (e.g., gene expression value) on the ith subject where 

these measurements collectively form the gene expression profile for subject i. Apply a 

feature selection step to reduce the number of candidate predictor variables to a limited 

set of G genes that are the most informative about the class distinction.  For subject i we 

denote the set of selected features by ),,,( 21 iGiii xxx K=x .  For example, feature 

selection might be accomplished using univariate two-sample t-tests to test, for each 

gene, if its mean expression level differs between the two prognosis classes.  Let ( )1
jx  and 

( )2
jx  denote the mean expression of gene j in class 1 and 2, respectively.   The value   

denotes the pooled estimate of the within class variance for gene j.  The diagonal linear 

discriminant rule assigns a new sample, represented by a vector x

2
js

* of expression 

measurements, to class 1 if  
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and otherwise the new sample is assigned to class 2. In this formula, denotes the 

expression for gene j in the new sample to be classified. 

*
jx

 

2.2 Cross-validation 

The entire linear discriminant analysis procedure, including the feature selection step, is 

subjected to cross-validation in order to obtain cross-validated class predictions.  K-fold 

cross-validated class predictions are obtained by dividing the data into K parts.  One of 

the K parts is set aside (test set) and a prediction rule is built on the remaining data 

(training set). The procedure is repeated until all specimens are included in a test set 

exactly once and their class membership is predicted using the prediction rule developed 

on the training set that excludes that test set.  A special case of K-fold cross-validation is 

leave-one-out (LOO) cross-validation in which there are n test sets, each consisting of a 

single subject. Leave-one-out cross validation has been described as a logical choice for 

relatively small sample sizes [15] and has been frequently used in microarray studies.  At 

the completion of the cross-validated classification process, each subject has an 

associated true class membership and a cross-validated predicted class membership.  

 

2.3 Cross-validated measures of association 

One measure of the association between the cross-validated classifier-predicted class 

(CV-class) and the true class is the odds ratio formed from a 2×2 table such as the one 

displayed in Table 1.  
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(Insert Table 1 about here.) 

 

The usual estimate of the log odds ratio is the logarithm of the cross-product ratio, 

log(ad/bc).  Ignoring for the moment the fact that the CV-class designations are data-

derived, a typical test of no association (odds ratio equals one or log odds ratio equals 

zero) would be based on the statistic which, 

under standard conditions, is assumed to have an approximate standard normal 

distribution under the null hypothesis that the odds ratio is equal to 1. A 95% confidence 

interval is given by .  Calculations 

similar to these were performed in the papers by van’t Veer et al. [1] and van de Vijver et 

al. [2].   

2/1)/1/1/1/1/())/()log(( dcbabcadz +++=

2/1)/1/1/1/1(96.1))/()log(( dcbabcad +++×±

 If survival times in addition to “poor” versus “good” prognosis designations are 

available for all subjects, survival analysis methods can be used.  The performance of the 

classifier can be assessed by comparing survival curves between the groups of patients 

classified as poor versus good prognosis groups.  This can be accomplished by 

performing a log rank test to compare the two predicted classes or by conducting a Cox 

proportional hazards regression analysis using the known survival times as the dependent 

variable and the cross-validated predicted class indicator as the independent variable in 

the regression equation.  Ignoring the fact that the CV-class designations are data-

derived, a typical test of the statistical significance of the regression coefficient in Cox 

proportional hazards regression would be based, for example, on likelihood methods.  In 

our simulations, we use the likelihood-based inference for the regression coefficient (log 
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hazard ratio) as implemented by the coxph function of the survival library in the R 

statistical package (http://www.r-project.org).   

 

2.4 Data Simulation 

To simulate data under the null case, gene expression profiles for each patient were 

generated independently of the patients’ survival times.  Expression measurements for 

each of 10,000 genes were generated independently from the standard normal 

distribution.  All survival times were generated independently from an exponential 

distribution with parameter lambda = −log(0.5)/10.  This parameter was chosen to 

produce an overall survival curve with probability of survival equal to 50% at 10 years.   

 Under the alternative case, survival times were generated to depend on gene 

expression profiles.  For each patient, 9900 genes were generated independently from a 

standard normal distribution, while the remaining 100 genes were generated 

independently from a normal distribution with mean µ1 and variance 1 for half of the 

patients and from a normal distribution with mean µ2 and variance 1 for the other half.  

The expression measures for these 100 genes were averaged for each patient to produce 

scores s1, s2, . . ., sn.  These scores were then used as the mean parameter (on the log-

scale) of the log normal distribution with variance 1, from which survival times were 

simulated.  Similarly to the null case, paired values of µ1 and µ2 were chosen so that on 

average half of the subjects would have a survival time longer than 10 years.  

 The classifier building procedure was simulated as follows for both the null and 

alternative cases.  Patients were divided into poor and good prognosis groups on the basis 

of their observed survival times.  Subjects with observed survival time shorter than 10 
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years were assigned to poor prognosis class; others were assigned to the good prognosis 

class.  Survival times greater than 20 years were censored at 20 years. These assigned 

outcome classes represented the “true” prognostic classes.  On average, specimens were 

equally distributed among the two classes due to the choice of parameters of the 

distributions used to generate survival times.  Univariate two-sample pooled variance t-

statistics comparing the good versus poor prognosis groups were computed for each gene, 

and the 100 genes with largest absolute t-statistics were selected as the “informative 

features” to be used in building the classifier.  Fisher's diagonal linear discriminant 

analysis was used to build the multivariate prediction rule using the 100 informative 

genes to classify the specimens into the two prognosis groups. This entire classifier 

building process was embedded in a cross-validation loop.  For each training set, 

informative genes were re-selected, the classifier was re-calculated, and the classifier was 

used to make predictions on the test set.  Note that the 100 gene sets selected as the 

informative features in the training data sets were not guaranteed to be the genes that, 

under the alternative case, were truly generated from two different distributions for the 

good and poor prognosis groups.  At the end of each simulated cross-validation, there 

were true and cross-validated predicted prognosis classes assigned to each patient.   

 All simulations were repeated 10,000 times.  For the null cases, situations with 

25, 50, 100 and 500 subjects were considered, and leave-one-out, 10-fold and 5-fold 

cross-validation were all examined.  For simulations under alternative cases, the number 

of subjects was always 100, and only leave-one-out cross-validation was considered.  

While we would not usually advocate building classifiers using sample sizes as small as 

25 or 50, we include them in our simulations because they cover the range of sample 
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sizes that have been used in published studies that developed microarray-based 

classifiers.  Also, we note that there were some iterations of the simulations for the small 

sample size cases in which odds ratios or Cox regression coefficients could not be 

calculated (e.g., empty cells in the 2×2 table), and we treated these as missing in the 

simulation result summaries.   

 Under the null case, gene expression profiles are generated from the same 

distribution for all patients, and class membership is defined independently from gene 

expression profiles; therefore, there should be no significant association between true and 

CV-class membership (log odds ratio = 0), and the regression coefficient of the CV-class 

indicator variable in the Cox regression should not be statistically significantly different 

from zero.  For the null cases, our simulation studies examine for potential bias in the 

estimates and problems with the level of tests of hypotheses of no association.   

 Under the alternative case, we expect there will be some association between the 

CV-class and true class and survival.  Therefore, we would expect a non-zero log odds 

ratio and a non-zero regression coefficient for the cross-validated predicted class 

indicator in the Cox regression.  Due to the complexity of the classifier derivation, the 

true values of the log odds ratio and regression coefficient are not easily calculated and 

must be empirically determined by simulation.   The true quantities were obtained 

through an “inner” simulation loop, where at each “outer loop” of the primary simulation 

we simulated 100 data sets of 100 subjects each from the same population from which the 

original sample, on which the classifier was developed, was drawn. The classifier derived 

on the full original data set was applied to each new (“inner loop”) data set.  For each of 

the 100 “inner loop” data sets, predicted (from full original sample classifier) class 
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memberships were obtained and log-odds ratios and Cox regression parameters were 

estimated. These estimates were then averaged over the 100 inner loop data sets to 

empirically determine the true log odds ratio and Cox regression coefficient.  These true 

quantities were compared to the cross-validated estimates obtained in the outer loop in 

order to estimate bias and confidence interval coverage for the log odds ratio and Cox 

regression coefficient.  For confidence interval coverage, the coverage percentage was 

broken into components, recording how often the true value falls completely below the 

lower confidence bound (overestimation) and how often the true value falls completely 

above the upper confidence bound (underestimation).   

 

3. Results 

3.1 Null case  

Table 2 presents simulation results for the log odds ratio estimates calculated under a null 

situation using various cross-validation methods.  For leave-one-out cross-validation, the 

mean estimated log odds ratio approached the correct value of zero as the sample size 

increased but was strongly biased for small sample sizes.  The estimated median log odds 

ratio estimates suggested a trend of slightly more departure from the true value of zero 

for 5-fold and 10-fold cross-validation compared to leave-one-out (LOO) cross-

validation, but there were no statistically significant differences in bias based on the mean 

log odds ratio estimates.  All of these cross-validation methods yielded log odds ratio 

estimates with SDs substantially larger than the theoretical SD of (16/n)1/2 that would 

apply to the situation in which all observations were independent and the predictions for 

the n subjects were random “coin flips”.  Additionally, we note that the use of 10-fold or 
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5-fold cross-validation resulted in considerably smaller estimated SD of the log odds ratio 

estimate for sample size of 100.  This may be related to the claim in the context of 

prediction error estimation that LOO cross-validation often results in estimates with large 

variance [11].  However, it is interesting to note that the degree of inflation of the SD 

under LOO cross-validation (as a multiplier of the theoretical SD under independence) 

may be less for smaller sample sizes.   

 

(Insert Table 2 about here.) 

 

 Most dramatic and disturbing were the findings regarding the level of the tests of 

significance of the log odds ratio.  Table 3 shows that the observed rejection rates for the 

z-test for no association greatly exceeded their nominal values.  For example, if one were 

to use leave-one-out cross-validation for a study of 100 subjects, a nominal 5% two-sided 

z-test would reject the null hypothesis an estimated 41% of the time (23% lower 

rejection, 18% upper rejection).  The 18% upper rejection rate is probably of greatest 

concern, as these might represent classifiers likely to be falsely reported as promising, 

whereas classifiers exhibiting negative association with truth are unlikely to ever be 

published.  The problem with leave-one-out cross-validation is exacerbated with a larger 

sample size.  For a study of 500 subjects, the estimated rejection rate increased to nearly 

55%.  In part, this may be explained by greater inflation of the variance of the cross-

validated odds ratio estimate resulting from the proportion of overlapping observations ( 

(n-2)/(n-1) ) between any two leave-one-out training sets increasing with sample size (n).  

Although the performance of the test is not quite as bad when 5-fold or 10-fold cross-
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validation is used, the rejection rates for a study with sample size 100 still exceed the 

nominal values by an unacceptably large margin.  Similar results (not shown) were 

observed for estimates and tests using the logistic regression-based estimate of log odds 

ratio.   

 

(Insert Table 3 about here.) 

 

Table 4 presents simulation results for the log hazard ratio (Cox regression coefficient) 

estimates calculated under the null situation using various cross-validation methods.  The 

results show trends analogous to those presented earlier for the log odds ratio.  For leave-

one-out cross-validation, the mean estimated regression coefficient approached the 

correct value of zero as the sample size increased.  The estimated median regression 

coefficient estimates suggested a trend of slightly more departure from the true value of 

zero for 5-fold and 10-fold cross-validation compared to leave-one-out (LOO) cross-

validation, but there were no statistically significant differences in bias based on the mean 

regression coefficient estimates.  The use of 10-fold or 5-fold cross-validation resulted in 

substantially smaller estimated SD of the regression coefficient estimate.  All of these 

cross-validation methods yielded coefficient estimates with SDs substantially larger than 

the theoretical regression coefficient SD of (4/(expected number of events))1/2 that would 

apply to the situation in which all observations were independent and the predictions for 

the n subjects were random “coin flips”.  (The expected number of events under the 

simulation parameters considered is 0.75n.) 
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(Insert Table 4 about here.) 

 

 Similar to the case of testing the significance of the log odds ratio, our simulation 

results presented in Table 5 show that the level of the likelihood ratio test for the Cox 

regression coefficient was greatly inflated.   

 

(Insert Table 5 about here.) 

 

3.2 Alternative case 

Table 6 presents results demonstrating properties of the odds ratio estimates, including 

confidence interval coverage, under alternative cases in which there was a positive 

association between gene expression profiles and survival outcomes.  The degree of 

separation of survival curves between the good and poor prognosis groups is controlled 

by the two means used to generate the gene expression data which, in turn, influence the 

means of the lognormal distributions generating the survival times.  As the difference in 

means decreases, the true log odds ratio between the true and predicted classes decreases 

toward zero.   

 

(Insert Table 6 about here.) 

 

The results presented in table 6 show that for extremely large odds ratios, the confidence 

interval coverage is not too far from the intended coverage probability.  However, for 

moderate or smaller odds ratios, confidence interval coverage can be quite poor.  In any 
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case, it is noteworthy that the SDs of the estimated log odds ratios are very large relative 

to the magnitude of the log odds ratios for a sample of size 100 which is typical of the 

size of many gene expression microarray profiling studies.  This implies that even if the 

confidence intervals had correct coverage probabilities, the large variance of the 

estimators may result in confidence intervals too wide to be helpful.  In addition, it is 

clear that the odds ratio can provide a misleading impression of the performance of the 

predictor.  For example, an odds ratio as large 17 (third case presented in Table 6) would 

appear extremely impressive in the context of an epidemiologic study, but we see from 

Table 6 that the corresponding classifier misclassification rate was a rather unsatisfying 

20%.   

 

4. Discussion 

Cross-validation has been widely used to adjust for bias in estimates of prediction 

accuracy of classifiers built from gene expression microarray profiling data when 

independent data sets have not been available for testing the classifier.  It performs well 

for this purpose, although estimators may have large variance.  Some authors of gene 

expression microarray papers published in prominent biomedical medical journals have 

attempted to take cross-validation one step further.  Specifically, some authors have made 

claims about the strength of a classifier by testing the statistical significance of 

association between the true and cross-validated predicted prognostic classes.  For 

example, in Table 2 of the paper by van de Vijver et al. [2], some of the odds ratio 

estimates presented are based on cross-validation, and confidence intervals and highly 

significant p-values are reported.  Our results in the present paper suggest that several of 
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these confidence intervals and p-values cannot be trusted.  Particularly, we are concerned 

that in the null case (classifier is completely uninformative), application of standard 

inference procedures to test for significance of the association when cross-validation has 

been used to determine predictions carries with it a very high likelihood of obtaining false 

positive statistical significance.  Our results also show that even if there is some modest 

predictive value in the data-derived classifier, confidence intervals for the true association 

between predicted and true prognostic class may be very wide and not have the reported 

coverage properties.  The problems arise from the fact that the data pairs (CV-class, True-

class) are not independent across subjects, and their dependency derives from re-use of 

the true classes in the cross-validation process.  This type of dependency violates the 

assumptions of the standard statistical procedures for performing tests and constructing 

confidence intervals for the measures of association.  Finally, our results emphasized a 

point made by others [16, 17] that measures of association such as an odds ratio are 

generally poor gauges of classifier performance.   

 The next question is whether there are satisfactory remedies for these problems.  

The most important point is to recognize that the prime interest is to evaluate the 

classifier’s predictive accuracy and to determine if the accuracy is better than expected by 

chance.  Radmacher et al. [15] provide a valid method of testing whether the classifier 

accuracy is better than expected by chance.  They propose a permutation test on the 

cross-validated misclassification rate.  This test is performed directly on the cross-

validated prediction accuracy estimate and therefore avoids use of difficult to interpret 

measures of association such as the odds ratio.  The permutation approach involves 

considering many possible permutations of assignments of clinical outcomes to profiles, 
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calculating for each permuted data set the cross-validated prediction accuracy.  The 

proportion of permutations for which the cross-validated accuracy calculated on the 

original data set is better (larger) is a valid p-value for testing the null hypothesis that the 

predictor performance is no better than chance.   

 If it is desired to assess predictor performance when adjusted for other covariates, 

the permutation method of Radmacher et al. [15] cannot be directly applied.  Tibshirani 

and Efron [18] discuss the idea of “pre-validation” in logistic regression models in which 

one of the variables in the model is a predicted class indicator obtained through cross-

validation and additional covariates can be incorporated into the regression model.  They 

point out a problem with the degrees of freedom in the test of the regression coefficient 

for the predicted class indicator that is related to the problems with type I error rate and 

confidence interval coverage we observed.  We have elaborated on their findings to show 

how seriously type I error rates and confidence interval non-coverage rates can be 

inflated; we demonstrated the roles that sample size and method of cross-validation play, 

and we presented results for Cox regression.  The dependency problem we described in 

the previous paragraph is essentially the phenomenon they describe as “information 

leak”.  They explore a bootstrap method to approximately correct the degrees of freedom 

for testing regression coefficients. This seems like a promising approach, but would 

require further investigation to determine how successfully the bootstrap-estimated 

degrees of freedom can correct for problems in testing levels and confidence interval 

coverage.  Troendle et al. [19] demonstrated that bootstrap procedures may not perform 

well in moderate to small samples of very high dimensional data.  In addition, we would 

be remiss if we did not point out that even if one were able to appropriately correct the 

18 



 

problems with the inference procedures, the variances of the measures of association 

obtained through resampling of typical size gene expression microarray data sets would 

still be very large.  Also, it would be desirable to base the procedure on a more 

interpretable alternative to the logistic regression coefficient such as gain in predictive 

accuracy above predictive accuracy afforded by standard covariates.   

 In summary, our results provide further evidence that concerns recently expressed 

[20, 21] about the reproducibility and validity of microarray-based prognostic classifiers 

are warranted.  Our findings support the notion that more and larger independent data sets 

on which to develop and validate these classifiers are needed if microarray-based or other 

molecular classifiers based on high-dimensional biologic data are ever to be important 

clinical tools.   
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Table 1.  2×2 table for estimation of odds ratio. 
 
     True-class 
    Class 1  Class 2 
  Class 1  a  b 
CV-class 
  Class 2  c  d 
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Table 2.  Null case results for estimated odds ratio relating true and cross-validated predicted outcome class for studies with varied 
numbers of subjects and using different cross-validation methods. 
 
Cross-validation 
method 

Number of 
study subjects (n)

Mean log odds
ratio estimate 

Median log odds
ratio estimate  

Estimated SD of 
log odds ratio estimate

Theoretical SDa of 
log odds ratio estimate
under independence 

LOO     500 -0.008  0.014 0.5979 0.1789 
LOO      100 -0.108 -0.083 1.0363 0.4000
LOO      50 -0.237 -0.198 1.3406 0.5657
LOO      25 -0.446 -0.470 1.5274 0.8000

10-fold      100 -0.104 -0.096 0.6540 0.4000
5-fold      100 -0.105 -0.101 0.5601 0.4000
 
aTheoretical SD of log odds ratio estimate under the simulated settings in the case of independent observations is given by the formula 
(16/n)1/2.
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Table 3.  Null case results for probability of rejection of two-sided z-test for odds ratio relating true and cross-validated predicted 
outcome class for studies with varied numbers of subjects and using different cross-validation methods. 
 
Cross-
validation 
method 

Number 
of study 
subjects 
(n) 

Estimated 
rejection rates 
(in %) for 
nominal 1% 
two-sided test 
(nominal 0.5% 
per tail)  

Estimated 
rejection rates 
(in %) for 
nominal 5% 
two-sided test 
(nominal 2.5% 
per tail) 

Estimated 
rejection rates 
(in %) for 
nominal 10% 
two-sided test 
(nominal 5% 
per tail) 

     lower upper lower upper lower upper
LOO  500 21.9 21.3 27.2 27.6 30.2 30.9 
LOO        100 15.6 11.2 23.5 17.9 27.1 21.2
LOO      50 10.4 6.2 19.2 11.6 24.5 15.9
LOO        25 5.6 1.6 14.0 5.8 21.6 9.6

10-fold        100 5.4 3.1 13.0 7.8 17.8 10.9
5-fold        100 3.1 1.5 8.9 4.9 13.4 7.6
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Table 4.  Null case results for estimated Cox regression coefficient relating cross-validated predicted outcome class to survival for 
studies with varied numbers of subjects and using different cross-validation methods. 
 
Cross-validation 
method 

Number of 
study subjects (n)

Mean regression 
coefficient estimate

Median regression 
coefficient estimate  

Estimated SD of 
regression 
coefficient estimate

Theoretical SDa of 
regression coefficient 
estimate under independence

LOO    500 0.004 -0.004 0.2828 0.1033 
LOO      100 0.047 0.042 0.4173 0.2309
LOO      50 0.138 0.116 1.1381 0.3266
LOO      25 0.753 0.385 3.9019 0.4619

10-fold      100 0.044 0.048 0.3292 0.2309
5-fold      100 0.045 0.048 0.2930 0.2309
 
aTheoretical SD of regression coefficient estimate under the simulated settings in the case of independent observations is given by the 
formula (4/(0.75n))1/2.
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Table 5.  Null case results for probability of rejection of likelihood ratio test for regression coefficient relating cross-validated 
predicted outcome class to survival for studies with varied numbers of subjects and using different cross-validation methods. 
 
Cross-
validation 
method 

Number 
of study 
subjects 
(n) 

Estimated 
rejection rates 
(in %) for 
nominal 1% 
two-sided test 
(nominal 0.5% 
per taila)  

Estimated 
rejection rates 
(in %) for 
nominal 5% 
two-sided test 
(nominal 2.5% 
per taila) 

Estimated 
rejection rates 
(in %) for 
nominal 10% 
two-sided test 
(nominal 5% 
per taila) 

     lower upper lower upper lower upper
LOO  500 16.1 17.3 22.9 22.9 27.3 26.6 
LOO        100 7.9 11.5 14.3 19.0 17.9 23.4
LOO        50 4.8 9.6 9.6 17.2 13.0 22.1
LOO        25 2.0 8.9 4.9 18.2 7.2 24.5

10-fold        100 2.2 3.7 5.8 9.5 9.0 14.0
5-fold        100 1.2 2.2 3.8 6.9 6.7 11.5
   
aFor the likelihood ratio test, we loosely use the terms “lower tail” and “upper tail” to denote cases in which the estimated regression 
coefficient is negative versus positive, respectively. 
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Table 6.  Properties of odds ratio estimates and associated confidence intervals under situations with various degrees of association 
between true and predicted outcomes for sample size of 100 when leave-one-out cross-validation is used.   
 

Estimated rates (in %) 
of nominal 95% CI 
non-coverage 
(nominal 2.5% per tail) 

Parameters 
used in data 
generation 
(µ1, µ2)a  

Trueb 
log odds 
ratio 
(odds 
ratio) 

Mean 
log 
odds 
ratio 
estima
te  

Media
n log 
odds 
ratio 
estima
te 

Mean rate 
of mis-
classif-
ications 
(in %) 

SD of 
log odds 
ratio 
estimate 

CI < true 
(under-
estimate) 

CI > true 
(over- 
estimate) 

(3.58, 1.02) 4.559 
(95.488) 

4.571    4.435 10.1 0.757 4.8 0.6 

(3.34, 1.27) 3.574 
(35.659) 

3.585      3.509 15.1 0.615 3.8 1.3

(3.14, 1.46) 2.840 
(17.116) 

2.843      2.782 20.1 0.532 3.7 1.5

(2.98, 1.63) 2.167 
(8.732) 

2.164      2.210 25.9 0.640 5.4 2.1

(2.83, 1.78) 1.094 
(2.986) 

1.069      1.161 37.1 0.985 15.5 6.9

(2.69, 1.62) 0.270 
(1.310) 

0.168      0.182 47.05 1.026 22.6 17.2
 

(2.30, 2.30)  0.001 
(1.000) 

-0.119      -0.091 50.1 1.039 23.6 17.6

 
 
aSee Section 2.4 for description of data generation methods and definitions of µ1 and µ2.   
 
bTrue values determined empirically as described in Section 2.4.   
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