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Abstract 
New genomic and proteomic technologies provide measurements 
of thousands of features for each case. This provides a context for 
enhanced discovery and false discovery. Most statistical and 
machine learning procedures were not developed for the p>>n 
setting and the literature of DNA microarray studies contains 
many examples of mis-use of analytic and computational methods 
such a cross-validation. This paper highlights some of key aspects 
of p>>n problems for identifying informative features and 
developing accurate classifiers.  
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1. Introduction 
New technologies for the analysis of biological samples provide 
information on a genomic scale. For example, DNA microarrays 
can provide an estimate of the level of abundance of messenger 
RNA transcripts for all genes of the organism. Technologies for 
estimating the abundance of thousands of proteins and the copy 
number of all genes are becoming available. Biologists are 
utilizing these new technologies for a wide variety of objectives. 
Contrary to popular belief, effective utilization of these 
technologies depends on having clear objectives, effective 
experimental designs and appropriate analysis plans. With 
genomic or proteomic technologies, the objectives are not gene or 
protein specific mechanistic hypotheses, as is often the case in 
other biological investigations. Nevertheless, clear objectives are 
important and effective investigations rarely represent 
unstructured searching for interesting patterns in a data archive. 
 
Three frequently occurring kinds of objectives in DNA 
microarray investigations have been called class comparison, 
class prediction and class discovery [18].  Class comparison 
involves identifying differentially expressed in cells from 
different types of tissue, different kinds of patients, or in cells 
exposed to different experimental conditions. The characteristic 
feature of class comparison is that the classes to be compared are 
defined independently of the expression data.  
 
Class prediction is similar to class comparison in that the classes 
are defined independently of the expression data. The emphasis in 
class prediction problems, however, is in developing a multi-gene 

classifier that can be applied to expression profiles of samples 
whose class is unknown to predict the class of the new samples. 
For example, a class comparison problem may involve identifying 
the genes that are differentially expressed between patients who 
respond to a specified treatment and those who don’t respond. 
Developing a classification function that can be used to predict 
whether a new patient will respond to that therapy based on the 
gene expression profile of his or her tumor, is class prediction. 
Class prediction is particularly useful in medical problems of 
therapy selection or diagnostic classification or prognostic 
prediction. 
 
Class discovery is quite different from class comparison or class 
prediction. In class discovery there is no classification defined 
independently of the expression profiles. The objective is to 
discover subsets (clusters) of the cases revealed by gene 
expression profiles and to identify the genes that distinguish the 
clusters. For example, Bittner et al. [4] examined expression 
profiles of patients with advanced malignant melanoma. The 
focus of the study was on attempting to identify a new taxonomy 
of advanced melanoma based on gene expression. No useful 
clinical classification existed. Class discovery also includes 
studies whose objective is to discover classes of co-regulated 
genes.    
 
Although class comparison and class discovery problems are not 
unique to the genomics setting, most methods used for such 
problems were not developed for the context where the number of 
candidate features (p) is orders of magnitude greater than the 
number of cases (n). This is the case for genomic and proteomic 
studies. The number of features can number in the tens of 
thousands but the number of cases rarely exceeds a few hundred 
and often is less than one hundred. In this article I shall review 
some analytic methods that have been found useful for p>>n class 
prediction problems, and will touch on some problems that 
frequently occur when the p>>n issues are not adequately 
addressed.  
 
Four main components to developing a class predictor are: (i) 
Feature selection; (ii) Selecting a prediction model; (iii) Fitting 
the prediction model to training data; and (iv) Estimating the 
prediction error that can be expected in future use of the model 
with independent data. 
 
2.   Feature selection 
Feature selection is often key to developing an accurate class 
predictor. Often in microarray studies, as long as feature selection 
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is performed reasonably, accurate predition is achieved with even 
the simplest of predictive models. It is well known from the 
theory of linear regression that including too many “noise 
variables” in the predictor reduces the accuracy of prediction. A 
noise variable is a variable that is not related to the thing being 
predicted. Feature selection is particularly important in microarray 
studies because the number of noise variables may be orders of 
magnitude greater than the number of relevant variables. The 
influence of the genes that actually distinguish the classes may be 
lost among the noise of the more numerous noise genes unless we 
select the informative genes to be utilized by the class predictor. 
 
The most commonly used approach to feature selection is to 
identify the genes that are differentially expressed among the 
classes when considered individually. For example, if there are 
two classes, one can compute a t-test or a Mann-Whitney test for 
each gene. The log-ratios or log-signals are generally used as the 
basis of the statistical significance tests. The genes that are 
differentially expressed at a specified significance level are 
selected for inclusion in the class predictor. The stringency of the 
significance level controls the number of genes that are included 
in the model. If one wants a class predictor based on a small 
number of genes, the threshold significance level is made very 
small.  
 
Several authors have developed methods to identify optimal sets 
of genes which together provide good discrimination of the 
classes [5], [13], [6], [12]. These algorithms are generally very 
computationally intensive. Unfortunately, it is not clear whether 
the increased computational effort of these methods is warranted. 
In some cases, the claims made do not appear to be based on 
properly cross-validated calculations; all of the data being used to 
select the genes and cross-validation used only for fitting the 
parameters of the model. Thorough studies comparing the 
performance of such methods to the simpler univariate methods 
are needed.  
 
Some investigators have used linear combinations of gene 
expression values as predictors [24] [11]. Principal components 
are the orthogonal linear combinations of the genes showing the 
greatest variability among the cases. The principal components 
are sometimes referred to as singular values [1]. Using principal 
components as predictive features provides a vast reduction in the 
dimension of the expression data, but has two serious limitations. 
One is that the principal components are not necessarily good 
predictors. The second problem is that measuring the principal 
components requires measuring expression of all the genes. The 
method of gene shaving attempts to provide linear combinations 
with properties similar to the principal components that does not 
require measuring all of the genes [10].  
.  
 
3. Prediction Model 
Many algorithms have been used effectively with DNA 
microarray data for class prediction. Dudoit et al. [7] compared 
several algorithms using publicly available data sets. The 
algorithms compared included nearest neighbor classification and 
several variants of linear discriminant analysis and classification 
trees. A linear discriminant is a function  
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where xi denotes the log-ratio or log-signal for the i’th gene, wi is 
the weight given to that gene, and the summation is over the set F 
of features (genes) selected for inclusion in the class predictor. 
For a two-class problem, there is a threshold value d, and a 
sample with expression profile defined by a vector x of values is 
predicted to be in class 1 or class 2 depending on whether ( )l x  as 
computed from equation (1) is less than or greater than d 
respectively.  
 
Several kinds of class predictors used in the literature have the 
form shown in (2). They differ with regard to how the weights are 
determined. The oldest form of linear discriminant is Fisher’s 
linear discriminant [16]. The weights are selected so that the mean 
value of ( )l x in class 1 is maximally different from the mean 
value of  ( )l x  in class 2. The squared difference in means divided 
by the pooled estimate of the within-class variance of  ( )l x  was 
the specific measure used by Fisher. To compute these weights, 
one must estimate the correlation between all pairs of genes that 
were selected in the feature selection step. The study by Dudoit et 
al. indicated that Fisher linear discriminant analysis did not 
perform well unless the number of selected genes was small 
relative to the number of samples; otherwise there are too many 
correlations to estimate and the method tends to be un-stable and 
over-fit the data.  
 
Diagonal linear discriminant analysis is a special case of Fisher 
linear discriminant analysis in which the correlation among genes 
is ignored [7]. By ignoring such correlations, one avoids having to 
estimate many parameters, and obtains a method which performs 
better when the number of samples is small. Golub’s weighted 
voting method [9] and the compound covariate predictor of 
Radmacher et al.[14] are similar to diagonal linear discriminant 
analysis and tend to perform very well when the number of 
samples is small. They compute the weights based on the 
univariate prediction strength of individual genes and ignore 
correlations among the genes.  
 
Support vector machines are popular in the machine learning 
literature. Linear kernel support vector machines use a predictor 
of the form of equation (2). The weights are determined by 
optimizing an error rate criterion, however, instead of a least-
squares criterion as in linear discriminant analysis [15]. Although 
there are more complex forms of support vector machines, they 
appear to be inferior to linear kernel SVM’s for class prediction 
with large numbers of genes [3].  
 
Khan et al.[11] reported accurate class prediction among small, 
round blue cell tumors of childhood using an artificial neural 
network. The inputs to the ANN were the first ten principal 
components of the genes; that is, the l0 orthogonal linear 
combinations of the genes that accounted for most of the 
variability in gene expression among samples. Their neural 
network used a linear transfer function with no hidden layer and 
hence it was a linear perceptron classifier of the form of equation 
(2). Most true artificial neural networks have a hidden layer of 
nodes, use a non-linear transfer functions and individual features 



as inputs. Such a “real” neural network may not perform as well 
as the principal component perceptron model of Khan et al. 
because of the number of parameters to be estimated would be too 
large for the available number of samples.  
 
In the study of Dudoit et al. [7], the simplest methods, diagonal 
linear discriminant analysis and nearest neighbor classification, 
performed as well or better than the more complex methods. 
Nearest neighbor classification is based on a feature set F of genes 
selected to be informative for discriminating the classes and a 
distance function ( , )d x y which measures the distance between 
the expression profiles x and y of two samples. The distance 
function utilizes only the genes in the selected set of features F. 
To classify a sample with expression profile y , compute ( , )d x y  
for each sample x in the training set. The predicted class of y  is 
the class of the sample in the training set which is closest to 
y with regard to the distance function. A variant of nearest 

neighbor classification is k-nearest neighbor classification. For 
example with 3-nearest neighbor classification, you find the three 
samples in the training set which are closest to the sample y . The 
class which is most represented among these three samples is the 
predicted class for y . 
  
Dudoit et al. also studied some more complex methods such as 
classification trees and aggregated classification trees. These 
methods did not appear to perform better than diagonal linear 
discriminant analysis or nearest neighbor classification. Ben-Dor 
et al. [3] also compared several methods on several public datasets 
and found that nearest neighbor classification generally performed 
as well or better than more complex methods. 
 
4. Fitting Predictive Model to Training Data 
Most kinds of predictors have parameters that must be assigned 
values before the predictor is fully specified. These parameters are 
in many ways equivalent to the regression coefficients of linear 
and non-linear regression models.  
 
After selecting the kind of class predictor to be used, the predictor 
is fitted to a set of data. The number of parameters that must be 
specified is often proportional to the number of genes selected for 
inclusion in the model. For some kinds of predictors there is a cut-
point that must be specified for translating a quantitative 
predictive index into a predicted class label (eg 0 or 1) for binary 
class prediction problems. Completely specifying the predictor 
means specifying all of these aspects of the predictor, the type of 
predictor, the genes included and the values of all parameters. 
 
5. Estimating Prediction Accuracy 
It is important to estimate the accuracy of class prediction for 
future samples for which the class is unknown? Knowing that 
there are highly statistically significant genes that are 
differentially expressed between the classes is not enough. We 
want to know how accurately we can predict which class a new 
sample is in. For a future sample, we will apply a fully specified 
predictor developed using the data available today. If we are to 
emulate the future predictive setting in developing our estimate of 
predictive accuracy, we must set aside some of our samples and 
make them completely inaccessible until we have a fully specified 

predictor that has been developed from scratch without utilizing 
those set aside samples.  
 
To properly estimate the accuracy of a predictor for future 
samples, the current set of samples must be partitioned into a 
training set and a separate test set. The test set emulates the set of 
future samples for which class labels are to be predicted. 
Consequently the test samples cannot be used in any way for the 
development of the prediction model. This means that the test 
samples cannot be used for estimating the parameters of the 
model and they cannot be used for selecting the genes to be used 
in the model. This later point is often overlooked.  
 
The most straightforward method of estimating the accuracy of 
future prediction is the split-sample method of partitioning the set 
of samples into a training set and a test set as described in the 
previous paragraph. Rosenwald et al. [17] used this approach 
successfully in their international study of prognostic prediction 
for large cell lymphoma. They used two thirds of their samples as 
a training set. Multiple kinds of predictors were studied on the 
training set. When the collaborators of that study agreed on a 
single fully specified predictive model, they accessed the test set 
for the first time. On the test set there was no adjustment of the 
model or fitting of parameters. They merely used the samples in 
the test set to evaluate the predictions of the model that was 
completely specified using only the training data. 
 
Cross-validation is an alternative to the split sample method of 
estimating prediction accuracy. There are several forms of cross-
validation. One commonly used variant, leave-one-out cross-
validation (LOOCV),  starts like split-sample cross validation in 
forming a training set of samples and a test set. With LOOCV, 
however, the test set consists of only a single sample; the rest of 
the samples are placed in the training set. The sample in the test 
set is placed aside and not utilized at all in the development of the 
class prediction model. Using only the training set, the 
informative genes are selected and the parameters of the model 
are fit to the data. Let us call M1 the model developed with sample 
1 in the test set. When this model is fully developed, it is used to 
predict the class of sample 1. This prediction is made using the 
expression profile of sample 1, but obviously without using 
knowledge of the true class of sample 1. Symbolically, if 

1x denotes the complete expression profile of sample 1, then we 
apply model M1 to 1x to obtain a predicted class . This 
predicted class is compared to the true class label c

1̂c
1 of sample 1. 

If they disagree, then the prediction is in error. Then a new 
training set – test set partition is created. This time sample 2 is 
placed in the test set and all of the other samples, including 
sample 1, are placed in the training set. A new model is 
constructed from scratch using the samples in the new training set. 
Call this model M2 . Model M2 will generally not contain the 
same genes as model M1. Although the same algorithm for gene 
selection and parameter estimation is used, since model M2 is 
constructed from scratch on the new training set, it will in general 
not contain exactly the same gene set as M1. After creating M2, it 
is applied to the expression profile 2x  of the sample in the new 
test set to obtain a predicted class . If this predicted class does 
not agree with the true class label c

2ĉ
2 of the second sample, then 

the prediction is in error.  
 



The process described in the previous paragraph is repeated n 
times where n is the number of biologically independent samples. 
Each time it is applied, a different sample is used to form the 
single-sample test set. During the n steps, n different models are 
created and each one is used to predict the class of the omitted 
sample. The prediction errors are totaled and that is the leave-one-
out cross-validated estimate of the prediction error. With two 
classes, one can use a similar approach to obtain cross-validated 
estimates of the sensitivity, specificity, and ROC curve [21]. 
 
If we use all of the data to select genes and construct a model, 
there is no independent data left to validly estimate prediction 
error. A commonly used invalid estimate is called the re-
substitution estimate [19]. You use all the samples to develop a 
model M. Then you predict the class of each sample i using it’s 
expression profile ix ; ( )îc M x= i . The predicted class labels are 
compared to the true class labels and the errors are totaled.  
 
Simon et al. [19] performed a simulation to examine the bias in 
estimated error rates for class prediction. In a simulated data set, 
twenty expression profiles of 6000 genes were randomly 
generated from the same distribution. Ten profiles were arbitrarily 
assigned to “Class 1” and the other ten to “Class 2”, creating an 
artificial separation of the profiles into two classes. Since no true 
underlying difference exists between the two classes class 
prediction will perform no better than a random guess for future 
biologically independent samples. Hence, the estimated error rates 
for simulated data sets should be centered around 0.5 (i.e, ten 
misclassifications out of twenty).  

 
Figure 1 shows the observed number of misclassifications 
resulting from each level of cross-validation for 2000 simulated 
data sets. It is well-known that the re-substitution estimate of error 
is biased for small data sets and the simulation confirms this, with 
98.2 % of the simulated data sets resulting in zero 
misclassifications even though no true underlying difference 
exists between the two groups. Moreover, the maximum number 
of misclassified profiles using the re-substitution method was only 
one.  
 
Two types of leave-one-out cross-validation were studied. In one 
approach the features to be used in the class predictor were 
selected using all of the data before starting the cross-validation 
process. This is partial cross-validation. With proper cross-
validation, the gene selection is re-done for each leave-one-out 
training set.  

 
Figure 1 shows that partial cross-validation is about as bad as no 
cross-validation. Cross-validating the prediction rule after 
selection of differentially expressed genes from the full data set 
does little to correct the bias of the re-substitution estimator: 
90.2% of simulated data sets still result in zero misclassifications. 
It is not until gene selection is also subjected to cross-validation 
that we observe results in line with our expectation: the median 
number of misclassified profiles jumps to eleven, although the 
range is large (0 to 20).  

 
The simulation results underscore the importance of cross-
validating all steps of predictor construction in estimating the 
error rate. A study of breast cancer also illustrates the point: van ′t 
Veer et al. [23] predicted clinical outcome of patients with 
axillary node-negative breast cancer (metastatic disease within 5 

years versus disease-free at 5 years) from gene expression 
profiles, first using the re-substitution method and then using a 
fully cross-validated approach. The investigators controlled the 
number of misclassified recurrent cases (i.e., the sensitivity of the 
test) in both situations, so here we focus attention on the 
difference in estimated error rates for the disease-free cases. The 
improperly cross-validated method and the properly cross-
validation result in estimated error rates of 27% (12 out of 44) and 
41% (18 out of 44), respectively. The improperly cross-validated 
method results in a seriously biased under-estimate of the error 
rate.  While van ′t Veer et al. report both estimates of the error 
rate, the properly cross-validated estimate was reported only in 
the supplemental results section on the website and the invalid 
estimate received more attention. Another example of this 
occurred in a study where classification trees were built from gene 
expression data to classify specimens as normal colon or colon 
cancer [25]. The authors used a procedure that only cross-
validated steps that occurred after selection of genes for inclusion 
in the predictor from the full data set. As our simulation shows, 
not subjecting gene selection to cross-validation can result in a 
large bias. Other examples are described by Ambroise and 
McLachlan [2].  
 
Another common bias in reported cross-validated error rates 
arises from the consideration of multiple prediction models. 
Often, the predictive algorithm has one or more tuning parameters 
associated with it. For example, the PAM algorithm has a 
parameter that controls the degree of shrinkage of the class 
specific centroids [22]. Suppose one computes a proper cross-
validated estimate of the error rate ( )e λ  for a range of values of 

the tuning parameter λ . Although ( )e λ  may be an unbiased 

estimator of the true value ( )e λ ,  ( ){ }min e λ  (minimization with 

regard to λ ) is not an unbiased estimator of  ( ){ }min e λ .  
Consequently, optimization of tuning parameters should be 
performed within each step of the cross-validation.  
 
Radmacher et al. [14] discuss a paradigm for proper cross-
validation of class predictors. They propose that the statistical 
significance of the cross-validated error rate be reported. The 
usual methods for determining statistical significance of an error 
rate are not valid with cross-validated error estimates. Because the 
leave-one-out training sets are not independent (they are almost 
completely overlapping), the number of cross-validated errors 
does not have a binomial distribution. Radmacher et al. [14] 
provide an algorithm for estimating the statistical significance of 
the cross-validated error estimate. They consider all possible (or a 
large number of random) permutations of the class labels that 
preserve the numbers of samples in each class. For each 
permutation of the class labels, the entire cross-validation 
procedure is repeated. They thus generate the permutation 
distribution of the cross-validated prediction error. The proportion 
of the permutations that give as small a cross-validated error rate 
as that obtained for the true data is taken as the statistical 
significance level for the cross-validated error rate.  
 
There is considerable confusion about the proper use of cross-
validation. You cannot cross-validate a model. The model to be 
used in the future will generally be the one fit to the entire set of 
data. The cross validation procedure does not utilize that model. It 
utilizes the model building algorithm, including the feature-



Class prediction problems in p>>n settings are increasingly 
important in medical applications of genomics, but provide 
serious challenges to the statistical and computational scientist. 
Conventional wisdom and routine practices for p<n prediction 
problems tend to give poor results in the p>>n setting. Guidelines 
commonly used to guide modeling, such as use of VP dimension 
are not useful for p>>n problems because they are measures of the 
complexity of the selected model, not of the space from which 
that model was selected.  

selection algorithm, to attempt to provide an unbiased estimate of 
the error rate of the complete data model. This point seems to be 
sometimes misunderstood by computer scientists and statisticians.  
 
Cross-validation is a limited form of validation. Leave-one-out 
cross validation is known to provide an estimate of the error rate 
having large variance and other forms of cross-validation and 
bootstrap re-sampling provide smaller variance estimates [8]. 
Cross-validation does not provide as stringent a test of a model as 
would testing a model on a truly independent set of data from a 
different institution.  

 
Complex algorithms often perform more poorly than simpler 
algorithms for p>>n problems. Although the simpler models may 
not be sufficiently rich to describe the true relationship between 
predictors and outcome, there is not sufficient data to fit models 
that are more flexible.  With orders of magnitude more candidate 
features than cases, huge training sets are needed to effectively 
utilize complex models.   

 
Some criticisms of cross-validation, however, seem invalid. Cross 
validation does provide an essentially unbiased estimate of the 
error rate of classification that would be obtained for samples 
from the same distribution as in the training set, in spite of some 
assertions to the contrary [20]. Some individuals point out that 
with tens of thousands of features, there will almost surely be a 
feature set that perfectly predicts both the training set and every 
split sample test set. Although this is true, it is not a valid 
criticism of cross-validation. A proper cross validation must apply 
the feature selection and model building algorithm to each leave 
one out training set and to select a single model for classifying the 
left out sample. The fact that there is a model that predicts 
perfectly, does not imply that some well defined algorithm will 
find it for each leave one out training set. Algorithms that overfit 
the data will generally not have a low cross-validated error 
estimate if the cross-validation is performed properly. 

 
Sample re-use methods such as cross-validation and bootstrap are 
frequently used improperly for p>>n problems, not only by 
experimental scientists, but also by statistical and computational 
scientists. Such methods, when used properly, are very valuable in 
p>>n problems.  
 
 
 
 
 
  

6. Summary  
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Figure 1. The effect of various levels of cross-validation on the estimated error rate for predicting with random data [19] 
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