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Abstract 

Many syndromes traditionally viewed as individual diseases are heterogeneous in 

molecular pathogenesis and treatment responsiveness. This often leads to the conduct of 

large clinical trials to identify small average treatment benefits for heterogeneous groups 

of patients. Drugs that demonstrate effectiveness in such trials may subsequently be used 

broadly, resulting in ineffective treatment of many patients. New genomic and proteomic 

technologies provide powerful tools for the selection of patients likely to benefit from a 

therapeutic without unacceptable adverse events. In spite of the large literature on 

developing predictive biomarkers, there is considerable confusion about the development 

and validation of biomarker based diagnostic classifiers for treatment selection. In this 

paper we attempt to clarify some of these issues and to provide guidance on the design of 

clinical trials for evaluating the clinical utility and robustness of pharmacogenomic 

classifiers. 
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1. Introduction 

 

Physicians need improved tools for selecting treatments for individual patients. For 

example, many cancer treatments benefit only a minority of the patients to whom they are 

administered (e.g. Bast and Hortobagyi, 2004; Johnson and Janne, 2005). Being able to 

predict which patients are most likely to benefit would not only save patients from 

unnecessary toxicity and inconvenience, but might facilitate their receiving drugs that are 

more likely to help them. In addition, the current over-treatment of patients results in 

major expense for individuals and society, an expense which may not be indefinitely 

sustainable.  

 

Much of the discussion about disease biomarkers is in the context of markers which 

measure some aspect of disease status, extent, or activity. Such biomarkers are often 

proposed for use in early detection of disease or as a surrogate endpoint for evaluating 

prevention or therapeutic interventions. The validation of such biomarkers is difficult for 

a variety of reasons, but particularly because the molecular pathogenesis of many 

diseases is incompletely understood and hence it is not possible to establish the biological 

relevance of a measure of disease status.  

 

A pharmacogenomic biomarker is any measurable quantity that can be used to select 

treatment; for example, the result of an immunohistochemical assay for a single protein, 

the abundance of a protein in serum, the abundance of messenger ribonucleic acid 

(mRNA) transcripts for a gene in a sample of disease tissue or the presence/absence 

status of a specified germline polymorphism or tumor mutation. A pharmacogenomic 

classifier is a mathematical function that translates the biomarker values to a set of 

prognostic categories. These categories generally correspond to levels of predicted 

clinical outcome. With the advent of gene expression profiling, it is increasingly common 

to define composite pharmacogenomic classifiers based on the levels of expression of 

dozens of genes. For a fully specified classifier, however, all of the parameters and cut-

points are specified for determining how to weight the different components and how to 

map the multivariate data into a defined set of categories.  A completely defined classifier 
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can be used to select patients and stratify patients for therapy in clinical trials that enable 

the clinical value of the classifier to be evaluated. Specifying only the genes involved 

does not enable one to structure prospective clinical validation experiments in which 

patients are assigned or stratified in prospectively well defined ways.   

 

In this paper we will address some key issues in the development and validation of 

pharmacogenomic classifiers. 

 

2. Developmental and validation studies 

 

It is important to distinguish the studies which develop pharmacogenomic classifiers 

from those which evaluate the clinical utility of such classifiers. The vast majority of 

published prognostic marker studies are developmental and are not adequate for 

establishing the clinical utility and robustness of a classifier(Simon and Altman, 1994). 

Developmental studies are often based on a convenience sample of patients for whom 

tissue is available but who are heterogeneous with regard to treatment and stage. The 

studies are generally performed in an exploratory manner with no specified eligibility 

criteria, no primary endpoint or hypotheses and no defined analysis plan. The analysis 

often includes numerous analyses of different endpoints and patient subsets. Often there 

are multiple candidate biomarkers to evaluate, multiple ways of measuring and 

combining the candidate biomarkers. Such an informal approach is appropriate in a 

developmental study so long as one recognizes that the same study cannot be used to 

evaluate the clinical value of the resulting biomarkers or classifiers. The developmental 

study is exploratory and directed to hypothesis formation. The purpose of developmental 

studies should be to develop completely specified classifiers and completely specified 

hypotheses that can be tested in subsequent validation studies.  

 

 

 

 

3. Development of Multi-component Classifiers 
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Four main components to developing a classifier are: (i) Feature selection; (ii) Selecting a 

prediction model; (iii) Fitting the prediction model to training data; and (iv) Estimating 

the prediction error that can be expected in future use of the model with independent data. 

 

3.1   Feature selection 

Feature selection is often important in developing an accurate classifier. It is well known 

from the theory of linear regression that including too many “noise variables” in the 

predictor reduces the accuracy of prediction. A noise variable is a variable that is not 

related to the thing being predicted. For microarray studies the number of noise variables 

may be orders of magnitude greater than the number of informative variables.  

 

The most commonly used approach to feature selection is to identify the genes that are 

differentially expressed among the classes when considered individually. For example, if 

there are two classes, one can compute a t-test or a Mann-Whitney test for each gene. The 

log-ratios or log-intensity measurements are generally used as the basis of the statistical 

significance tests. The genes that are differentially expressed at a specified significance 

level are selected for inclusion in the class predictor. The stringency of the significance 

level controls the number of genes that are included in the model. If one wants a class 

predictor based on a small number of genes, the threshold significance level is made very 

small. Some statisticians fail to distinguish between “class comparison” problems, where 

the objective is to identify differentially expressed genes, and “class prediction” 

problems, where the objective is to do accurate prediction. Class comparison analyses are 

often appropriate when the objective is understanding biological mechanisms; e.g. what 

genes get expressed or repressed during wound healing of the kidney. Class prediction 

analyses are often appropriate for medical problems when the objective is predicting 

response to a specific treatment. Criteria such as false discovery rate are relevant for class 

comparison problems because it is useful to know what proportion of the genes reported 

as differentially expressed among the conditions represent false positives. For class 

prediction problems, however, the relevant criteria is prediction accuracy. The parameters 

 4



used for selecting genes to be included in the predictor should merely be viewed as 

tuning parameters, even if they have the form of nominal significance level thresholds.   

 

A-priori it is not clear what degree of stringency is optimal for feature selection. Dudoit 

and Fridlyand (Dudoit and Fridlyand, 2003) recommended that the number of genes 

selected be in the range of 10-100 for most studies. Previous experience with CART 

classification indicated that being overly stringent and thereby excluding important 

variables can be more serious than being inadequately stringent and including some noise 

variables (Breiman, et al., 1984). If there are only a few important variables and they are 

so differentially expressed that they stand out from among the thousands of noise 

variables, then high stringency can lead to accurate classification. More often, however, 

there are a larger number of differentially expressed genes but they do not stand out from 

among the thousands of noise genes. In this case, a moderate level of stringency may lead 

to best performance. The parameter controlling stringency of feature selection can be 

optimized. It is important to recognize, however, that if the selection of the stringency 

parameter is data dependent, then it must be regarded as part of the model development 

algorithm for purposes of computing cross-validated estimates of prediction error (see 

below) (Varma and Simon, 2005).  

 

Several authors have developed methods to identify optimal sets of genes which together 

provide good discrimination of the classes (Bo and Jonassen, 2002, Deutsch, 2003, Kim, 

et al., 2002, Ooi and Tan, 2003). These algorithms are generally very computationally 

intensive. Unfortunately, it is not clear whether the increased computational effort of 

these methods is warranted. In some cases, the claims made do not appear to be based on 

properly cross-validated calculations; all of the data being used to select the genes and 

cross-validation used only for fitting the parameters of the model. Thorough studies 

comparing the performance of such methods to the simpler univariate methods are 

needed.  

 

Some investigators have used linear combinations of gene expression values as predictors 

(Khan, et al., 2001, West, et al., 2001). Principal components are the orthogonal linear 
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combinations of the genes showing the greatest variability among the cases. Using 

principal components as predictive features provides a vast reduction in the dimension of 

the expression data, but has two serious limitations. One is that the principal components 

are not necessarily good predictors. The measure of variability used in defining the 

principal components does not utilize the class membership information; it is total 

variability. Hence the genes whose expressions have substantial within-class variance but 

small differences in mean expression among classes may be included in the first few 

principal components. The second problem is that measuring the principal components 

requires measuring expression of all the genes. This makes it more difficult to translate 

the classifier to an alternative assay that does not provide a parallel read-out of all genes 

as was done in the OncoType Dx classifier (Paik et al. 2004). The method of gene 

shaving attempts to provide linear combinations with properties similar to the principal 

components that does not require measuring all of the genes (Hastie, et al., 2000). Partial 

least squares (Nguyen and Rocke, 2002) attempts to select linear combinations in a 

manner that utilizes class membership information. This may provide more accurate 

classifiers but does not reduce the number of genes whose expression needs to be 

measured. The method of supervised principal components (Bair and Tibshirani, 2004) 

utilizes principal components of genes selected for their univariate correlations with 

outcome. This has the advantage of reducing the number of genes whose expressions 

need to be measured in the future and also tends to avoid over-fitting the training set data.  

 

3.2 Prediction Model 

Many algorithms have been used effectively with DNA microarray data for class 

prediction. Dudoit et al. (Dudoit, et al., 2002, Dudoit and Fridlyand, 2003) compared a 

wide range of algorithms using publicly available data sets. The algorithms included 

nearest neighbor classification, linear and quadratic discriminant analysis, diagonal linear 

and quadratic discriminant analysis, support vector machines, classification trees, and 

random forest classifiers. Bagging and boosting the classifiers was also evaluated. For 

two-class problems, a linear discriminant is a function  
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∈

=∑                       (1) 

 

 

where xi denotes the log-ratio or log-signal for the i’th gene, wi is the weight given to that 

gene, and the summation is over the set F of features (genes) selected for inclusion in the 

class predictor. For a two-class problem, there is a threshold value d, and a sample with 

expression profile defined by a vector x of values is predicted to be in class 1 or class 2 

depending on whether ( )l x  as computed from equation (1) is less than or greater than d 

respectively.  

 

Several kinds of class predictors used in the literature have the form shown in (1). They 

differ with regard to how the weights are determined. The oldest form of linear 

discriminant is Fisher’s linear discriminant. The weights are selected so that the mean 

value of ( )l x in class 1 is maximally different from the mean value of  ( )l x  in class 2. The 

squared difference in means divided by the pooled estimate of the within-class variance 

of  ( )l x  was the specific measure used by Fisher. To compute these weights, one must 

estimate the correlation between all pairs of genes that were selected in the feature 

selection step. The study by Dudoit et al. indicated that Fisher linear discriminant 

analysis did not perform well unless the number of selected genes was small relative to 

the number of samples; otherwise there are too many correlations to estimate and the 

method tends to be un-stable and over-fit the data.  

 

Diagonal linear discriminant analysis is a special case of Fisher linear discriminant 

analysis in which the correlation among genes is ignored. By ignoring such correlations, 

one avoids having to estimate many parameters, and obtains a method which performs 

better when the number of samples is small. The weight for the i’th gene is proportional 

to the difference in sample means for the i’th gene divided by the pooled within-class 

variance estimate for the i’th gene (Simon, et al., 2003). Golub’s weighted voting method 

(Golub, et al., 1999) and the compound covariate predictor of Radmacher et al. 

(Radmacher, et al., 2002) are similar to diagonal linear discriminant analysis and tend to 
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perform very well when the number of samples is small. They compute the weights based 

on the univariate prediction strength of individual genes and ignore correlations among 

the genes. For the compound covariate classifier, the weight for the i’th gene is 

proportional to the pooled variance t statistic for comparing expression of the i’th gene 

between the two classes (Simon, et al., 2003).  

 

Linear kernel support vector machines use a predictor of the form of equation (1). The 

weights are determined by maximizing the distance from the closest expression vectors to 

the hyperplane separating the two classes., instead of a least-squares criterion as in linear 

discriminant analysis (Ramaswamy, et al., 2001). Linear kernel support vector machines 

are similar to ridge regression classifiers. Although there are more complex forms of 

support vector machines, they appear to be inferior to linear kernel SVM’s for class 

prediction with large numbers of genes (Ben-Dor, et al., 2000). When the number of 

genes is greater than the number of cases, if the data is not inconsistent, then it is always 

possible to find a linear function that perfectly separates the classes in the training data. 

Although this does not directly imply that nonlinear classifiers might not have smaller 

generalization error, it suggests that most datasets are not large enough to effectively 

utilize non-linear classifiers with many parameters.  

 

Khan et al. (Khan, et al., 2001) reported accurate class prediction among small, round 

blue cell tumors of childhood using an artificial neural network. The inputs to the ANN 

were the first ten principal components of the genes; that is, the l0 orthogonal linear 

combinations of the genes that accounted for most of the variability in gene expression 

among samples. Their neural network used a linear transfer function with no hidden layer 

and hence it was a linear perceptron classifier of the form of equation (1). Most true 

artificial neural networks have a hidden layer of nodes, use a non-linear transfer function 

and individual features as inputs. Such a “real” neural network may not perform as well 

as the principal component perceptron model of Khan et al. because of the number of 

parameters to be estimated would be too large for the available number of samples.  
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Nearest neighbor classification is based on a feature set F of genes selected to be 

informative for discriminating the classes and a distance function ( , )d x y which measures 

the distance between the expression profiles x and y of two samples. The distance 

function utilizes only the genes in the selected set of features F. Usually, Euclidean 

distance is the metric used. To classify a sample with expression profile y , compute 

( , )d x y  for each sample x in the training set. The predicted class of y  is the class of the 

sample in the training set which is closest to y with regard to the distance function. A 

variant of nearest neighbor classification is k-nearest neighbor classification. For example 

with 3-nearest neighbor classification, you find the three samples in the training set which 

are closest to the sample y . The class which is most represented among these three 

samples is the predicted class for y . For microarray data classification, k-nearest neighbor 

classification is generally used with k equal to one or three because the number of cases 

is usually limited.  

 

Nearest centroid classification is a variant of nearest neighbor classification. The centroid 

of the gene expression vectors for cases within a class is the vector containing the mean 

expression of each component gene for the cases in the class. With nearest centroid 

classification, a new case is classified into the class whose centroid in the training set it is 

closest to using the genes selected based on the training data. The method of shrunken 

centroids (Tibshirani, et al., 2002) is similar to nearest centroid classification but 

incorporates automatic gene selection by shrinking the class centroids towards the overall 

mean.  

  

In the studies of Dudoit et al. (Dudoit, et al., 2002, Dudoit and Fridlyand, 2003), the 

simplest methods, diagonal linear discriminant analysis and nearest neighbor 

classification, generally performed about as well as more complex methods. Ben-Dor et 

al. (Ben-Dor, et al., 2000) also compared several methods on several public datasets and 

found that nearest neighbor classification generally performed as well or better than more 

complex methods. 
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3.3 Estimates of predictive accuracy based on developmental studies 

 

Developmental studies are analogous to phase II clinical trials. They should include an 

indication of whether the genomic classifier is promising and worthy of phase III 

evaluation. There are special problems in evaluating whether classifiers based on high 

dimensional genomic or proteomic assays are promising however. The difficulty derives 

from the fact that the number of candidate features available for use in the classifier is 

much larger than the number of cases available for analysis. In such situations, it is 

always possible to find classifiers that accurately classify the data on which they were 

developed even if there is no relationship between expression of any of the genes and 

outcome (Radmacher, et al., 2002).  Consequently, even in developmental studies, some 

kind of validation on data not used for developing the model is necessary. This “internal 

validation” is usually accomplished either by splitting the data into two portions, one 

used for training the model and the other for testing the model, or some form of cross-

validation based on repeated model development and testing on random data partitions. 

This internal validation should not, however, be confused with the kind of external 

validation of the classifier utility in a setting simulating broad clinical application.  

 

The most straightforward method of estimating the prediction accuracy is the split-

sample method of partitioning the set of samples into a training set and a test set. 

Rosenwald et al. (Rosenwald, et al., 2002) used this approach successfully in their 

international study of prognostic prediction for large B cell lymphoma. They used two 

thirds of their samples as a training set. Multiple kinds of predictors were studied on the 

training set. When the collaborators of that study agreed on a single fully specified 

prediction model, they accessed the test set for the first time. On the test set there was no 

adjustment of the model or fitting of parameters. They merely used the samples in the test 

set to evaluate the predictions of the model that was completely specified using only the 

training data. In addition to estimating the overall error rate on the test set, one can also 

estimate other important operating characteristics of the test such as sensitivity, 

specificity, positive and negative predictive values.  
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The split-sample method is often used with so few samples in the test set, however, that 

the validation is almost meaningless. One can evaluate the adequacy of the size of the test 

set by computing the statistical significance of the classification error rate on the test set 

or by computing a confidence interval for the test set error rate. Since the test set is 

separate from the training set, the number of errors on the test set has a binomial 

distribution.  

 

Michiels et al. (Michiels, et al., 2005) suggested that multiple training-test partitions be 

used, rather than just one. The split sample approach is mostly useful, however, when one 

does not have a well defined algorithm for developing the classifier. When there is a 

single training set-test set partition, one can perform numerous unplanned analyses on the 

training set to develop a classifier and then test that classifier on the test set. With 

multiple training-test partitions however, that type of flexible approach to model 

development cannot be used. If one has an algorithm for classifier development, it is 

generally better to use one of the cross-validation or bootstrap resampling approaches to 

estimating error rate (see below) because the split sample approach does not provide as 

efficient a use of the available data (Molinaro, et al., 2005). 

   

Cross-validation is an alternative to the split sample method of estimating prediction 

accuracy (Radmacher, et al., 2002). Molinaro et al. describe and evaluate many variants 

of cross-validation and bootstrap re-sampling for classification problems where the 

number of candidate predictors vastly exceeds the number of cases (Molinaro, et al., 

2005). Molinaro et al. found that for high dimensional data with small sample sizes, 

leave-one-out cross-validation and 10-fold cross-validation performed very effectively. 

Split-sample validation often was quite biased in over-estimating the prediction error. 

Results for the .632+ bootstrap varied depending on the stability of the classifier and the 

signal strength of the data. Previous evaluations of resampling methods for estimating 

prediction error failed to include variable selection and with high dimensional data 

variable selection influenced performance significantly. The cross-validated prediction 
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error is an estimate of the prediction error associated with application of the algorithm for 

model building to the entire dataset.  

 

A commonly used invalid estimate is called the re-substitution estimate. You use all the 

samples to develop a model. Then you predict the class of each sample using that model.  

The predicted class labels are compared to the true class labels and the errors are totaled.  

It is well-known that the re-substitution estimate of error is biased for small data sets and 

the simulation of Simon et al.(Simon, et al., 2003) confirmed that, with an astounding 

98.2 % of the simulated data sets resulting in zero misclassifications even when no true 

underlying difference existed between the two groups. Simon et al.(Simon, et al., 2003) 

also showed that cross-validating the prediction rule after selection of differentially 

expressed genes from the full data set does little to correct the bias of the re-substitution 

estimator: 90.2 % of simulated data sets with no true relationship between expression 

data and class still result in zero misclassifications. When feature selection was also re-

done in each to cross-validated training set, appropriate estimates of mis-classification 

error were obtained; the median estimated misclassification rate was approximately 50%.   

 

The simulation results underscore the importance of cross-validating all steps of predictor 

construction in estimating the error rate. It can also be useful to compute the statistical 

significance of the cross-validated estimate of classification error. This determines the 

probability of obtaining a cross-validated classification error as small as actually 

achieved if there were no relationship between the expression data and class identifiers. A 

flexible method for computing this statistical significance was described by Radmacher et 

al. (Radmacher, et al., 2002). It involves randomly permuting the class identifiers among 

the patients and then re-calculating the cross-validated classification error for the 

permuted data. This is done a large number of times to generate the null distribution of 

the cross-validated prediction error. If the value of the cross-validated error obtained for 

the real data lies far enough in the tail of this null distribution, then the results are 

statistically significant. This method of computing statistical significance of cross-

validated error rate for a wide variety of classifier functions is implemented in the BRB-
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ArrayTools software (Simon and Lam, 2005). Statistical significance, however, does not 

imply that the prediction accuracy is sufficient for the test to have clinical utility.  

 

 

Even if a classifier is developed for a set of patients sufficiently homogeneous and 

uniformly treated to be therapeutically relevant, it may be important to evaluate whether 

the classifier predicts more accurately than do standard prognostic factors or adds 

predictive accuracy to that provided by standard prognostic factors. For example, 

Rosenwald et al. (Rosenwald, et al., 2002) developed a classifier of outcome for patients 

with advanced diffuse large B cell lymphoma receiving CHOP chemotherapy. The 

International Prognostic Index (IPI) is easily measured and prognostically important for 

such patients, however, and so it was important for Rosenwald et al. to address whether 

their classifier provided added value. The most effective way of addressing whether a 

classifier adds predictive accuracy to a standard classification system is to examine 

outcome for the new system within the levels of the standard system.  

 

3.4 Sample size planning for developmental studies 

 

Sample size planning for development of classifiers when the number of candidate 

predictors (p) is much larger than the number of cases (n) has not been adequately 

developed. Most classical methods of sample size planning for developing classifiers 

require non-singularity of the sample covariance matrix of the covariates and are not 

applicable to the p>>n setting. Although many classifiers for microarray studies retain 

fewer than n covariates, proper sample size planning method should account for 

variability in the selection of covariates, not just for variability in the weights placed on 

the selected covariates.  

 

Mukherjee et al. (Mukherjee, et al., 2003) developed a sample size planning method for 

microarray classifier development based on learning curve estimation methods, but it 

requires extensive previous data from a study that attempted to distinguish the same 

classes using the same expression profiles. Fu et al. (Fu, et al., 2005) developed a 
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sequential method for determining when additional samples are no longer based on 

sequential classifier development after each additional sample is taken.  

 

Most sample size planning methods developed for microarray studies have been for the 

related objective of identifying genes that are differentially expressed among pre-defined 

classes. This has been termed class comparison, and it is a component of the class 

prediction problem considered here.  Dobbin and Simon (Dobbin and Simon, 2005) 

showed that the following approximation can be used for estimating the total number of 

samples needed for determining whether a given gene is differentially expressed between 

two equally represented classes: 

 

( ) ( )
22

2, / 2 2,4 /n nn t tα β δ σ− −= + .               (2) 

 

 

The quantities and 2, / 2nt α− 2,nt β−  denote percentiles of the t distribution with n-2 degrees 

of freedom, α is the nominal threshold significance level for declaring a gene 

differentially expressed based on a gene-by-gene analysis, 1-β is the power for 

identifying a gene differentially expressed when the class means differ by δ in logarithm 

of expression and σ is the within class standard deviation of log expression for the gene. 

Since n occurs on both sides of the equation in (2), the expression must be solved 

iteratively. For sufficiently large n, the t percentiles can be replaced by normal 

percentiles. 

 

The probability of incorrect classification based on a single gene whose log expression is 

normally distributed with common standard deviation σ is ( / 2 )δ σΦ where δ is the 

difference in mean log expression between the two classes and Φ denotes the standard 

normal distribution function. Consequently, the discrimination power of an individual 

gene is determined by the δ/σ value for that gene. A gene with a δ/σ value of 2 provides  

about an 84% probability of correct classification when used alone. Genes with smaller 
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δ/σ effect sizes are less valuable for classification of individual patients, even if the 

research study is large enough to identify them as differentially expressed among the 

classes.  

 

In the case where all differentially expressed genes are regarded as differentially 

expressed by the same amount δ, Dobbin and Simon (Dobbin and Simon, 2005) 

demonstrated the approximate relationship  

 
1

11
1

FDR β π
α π

−
⎧ −⎛ ⎞⎛ ⎞≈ +⎨ ⎬⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎩ ⎭

⎫
             (3) 

 

 

Where FDR denotes the false discovery rate and π denotes the proportion of the genes 

that are differentially expressed. The false discovery rate is the proportion of the genes 

claimed differentially expressed which are false positive findings. Although it is 

unrealistic to expect that all genes that are differentially expressed have the same mean 

difference between classes, analysis of (3) is of interest for appreciating the relationships 

among the parameters. The false discovery rate depends strongly on π/α. If π is large, 

then a larger value of α will suffice to keep the FDR small. In microarray studies, π is 

typically in the range of 0.005 to 0.05, with smaller values being more common. With 

π≥0.005 and β=0.05, a value of α=0.001 is sufficient to limit the FDR to be no greater 

than 0.17.  Using expression (2) with α=0.001, β=0.05, and δ/σ = 2 gives n=29.1 total 

cases, or 15 cases for each class. The sample size increases substantially if genes with an 

effect size of less than 2 are of interest, but as noted above, such genes are of less value 

for classification of individual patients.  

 

Dobbin and Simon (Dobbin and Simon, 2005) also show that for finding genes whose 

expressions are correlated with a time-to-event variable, an approximation for the number 

of events required is approximately:  
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where γ denotes the standard deviation of log expression over the set of samples and h 

denotes the hazard ratio associated with a one-unit change in log intensity. Using 

expression profiles to predict risk groups for a time-to-event endpoint may require much 

larger sample sizes that for class prediction, particularly when the event rate is small.  

 

 

4. Design of validation studies 

 

Although there is a large literature on prognostic markers, few such factors are used in 

clinical practice. To a large extent this is due to a lack of adequate validation studies 

which demonstrate the therapeutic relevance and robustness of pre-specified biomarker 

classifiers. Prognostic markers are unlikely to be used unless they are therapeutically 

relevant. Most developmental studies, unless they are based on patients treated in a single 

clinical trial, are not based on a cohort medically coherent enough to establish therapeutic 

relevance. Developmental studies also rarely establish the robustness of the classifier and 

of the underlying assays under conditions that simulate those likely to be found in real 

world patient management.  

 

The objective of external validation is to determine whether use of a completely specified 

diagnostic classifier for therapeutic decision making in a defined clinical context results 

in patient benefit. Patient benefit may represent better efficacy, reduced incidence of 

adverse events, better convenience or lower costs. The objective is not to repeat the 

developmental study and see if the same genes are prognostic or if the same classifier is 

obtained.  

 

Biomarkers are used for very different purposes and validation should relate to fitness for 

a defined purpose. It is not productive to require validation in some more absolute 

biological sense for diseases whose molecular pathogenesis is not fully understood. We 
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focus here on the design of validation studies to establish clinical benefit in assisting with 

treatment selection. For example, the Oncotype-Dx risk score was developed to measure 

prognosis for node negative, estrogen receptor (ER) positive patients with primary breast 

cancer receiving Tamoxifen therapy after surgical resection of the primary lesion (Paik, 

et al., 2004). The validation issue is whether use of this risk score results in clinical 

benefit. The components of expression signature classifiers need not be valid biomarkers 

in the sense of the Food and Drug Administration (FDA, 2005). Those criteria require 

that the role of the biomarker be mechanistically understood and accepted as markers of 

disease activity. Such criteria are relevant for biomarkers used as surrogate endpoints but 

not for the components of expression signatures used for tailoring treatments. It is, of 

course, desirable to understand the mechanistic relationship of the components of an 

expression signature, but the classifier can be validated without such understanding.  

 

An independent validation study could be a prospective clinical trial in which patients are 

randomized to treatment assignment without use of the classifier versus treatment 

assignment with the aid of the classifier. This design requires that the classifier be 

determined only in half of the patients. Often, however, this design will be inefficient and 

require a huge sample size because many or most of the patients will receive the same 

treatment either way they are randomized. For example, consider women with lymph 

node negative, ER positive breast cancers. About one third of such patients might be 

expected to be classified as low risk for recurrence based on the Oncotype-DX expression 

signature based risk score (Paik, et al., 2004). If one wants to test the strategy of 

withholding cytotoxic chemotherapy (systemic treatment with Tamoxifen alone) from the 

subset of patients classified as low risk, it would be inefficient to randomize all of the 

node negative ER positive patients. If one randomizes all the patients and only performs 

the assay on the half randomized to have classifier based therapy, then the two 

randomization groups must be compared overall, although two thirds of the patients 

receive the same treatment in both arms. Designs related to that shown in Figure 1 have 

been discussed by Sargent et al. (Sargent, et al., 2005).    
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A more efficient alternative is to perform the assay up front for all patients, and then 

randomize only those classified as low risk. Those patients would be randomized to either 

receive Tamoxifen alone or Tamoxifen plus cytotoxic chemotherapy. Randomizing only 

the patients classified as low risk is much more efficient than randomizing all of the 

patients.  

 

One might argue that treatment determination using a genomic classifier for women with 

stage I ER positive breast cancer should not be compared to the strategy of giving all 

such women Tamoxifen plus chemotherapy, because there are practice guidelines 

available based on tumor size and age that withhold chemotherapy from some patients. 

Nevertheless, it would still be very inefficient to randomize women to genomic classifier 

determined therapy or non-genomic practice guidelines determined therapy in which the 

genomic classifier is measured only on the women randomized to its use. Most of the 

women will probably receive the same treatment whichever arm they are randomized to. 

It is much more efficient to perform the assay for measuring the genomic classifier, and 

then randomize only the women for whom the two treatment strategies differ as indicated 

in Figure 2.  With such a design the magnitude of the difference between randomization 

groups is not diluted by patients receiving the same treatment in each arm, but it may still 

require many patients to be screened in order to obtain enough patients to randomize 

whose treatment strategies differ.  

 

The null hypothesis for the design of Figure 2 is that the marker based treatment selection 

strategy is equivalent to the standard care treatment selection strategy. In the breast 

cancer example described above, the marker based treatment selection strategy called for 

withholding systemic therapy other than Tamoxifen for patients predicted to be at low 

risk of recurrence based on the classifier. The standard of care treatment might 

incorporate decision making based on established predictive markers. For example, the 

standard of care might be include treatment with Herceptin for patients whose tumors 

expressed the Her2/neu receptor. Or the standard of care strategy might involve 

withholding systemic therapy other than Tamoxifen if the tumor size is below a specified 

threshold. The design of Figure 2 requires that the standard of care treatment and the 
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classifier based treatment for each eligible patient be determined before randomization 

and only those patients for whom the two treatments differ are randomized.  

 

Phase III clinical trials generally attempt to utilize an intervention in a manner that it 

might be used if adopted in broad clinical practice. For evaluating a diagnostic classifier, 

a multi-center clinical trial provides the challenges of distributed tissue handling and real 

time assay performance that would be met in general use. The assays might be performed 

in multiple laboratories and cannot be batched in time with a single set of reagents as 

might be done in a retrospective study. Consequently, the prospective clinical trial is the 

gold standard for external validation of a genomic classifier.  

 

Validation based on a new prospective clinical trial will require a long follow-up time for 

low risk patients. In such circumstances it can be useful to conduct a prospectively 

planned validation using patients treated in a previously conducted prospective multi-

center clinical trial if archived tumor specimens are available for the vast majority of 

patients. The validation study should be prospectively planned with at least as much 

detail and rigor as for prospective accrual of new patients. Although assaying procedures 

probably cannot be distributed over time in the same way as for newly accrued patients, 

assay reproducibility studies should be conducted to demonstrate that the assay has been 

standardized and quality controlled sufficiently so that such sources of variation are 

negligible. A written protocol should be developed to ensure that the study is 

prospectively planned to evaluate the clinical benefit of a completely specified genomic 

classifier for a defined therapeutic decision in a defined population in a hypothesis testing 

manner as it would for a prospective clinical trial.  

 

The study of Paik et al.(Paik, et al., 2004) of the OncoType Dx classifier for women with 

node negative ER positive breast cancer is an example of careful prospective planning of 

an independent validation study using archived specimens. Their study was based on the 

observation that although randomizing only the patients classified as low risk is more 

efficient than randomizing all of the patients, it still would require many patients. It is a 

therapeutic equivalence trial in the sense that finding no difference in outcome changes 
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clinical practice; consequently it is important to be able to detect small differences. Since 

the expected recurrence rate is so low, it would take many patients to detect a difference 

between the treatment arms. But if the recurrence rate is as low as predicted by the 

classifier, then the benefit of chemotherapy is necessarily extremely small. Consequently, 

an alternative design for external validation is a single arm study in which the patients 

classified as low risk are treated with Tamoxifen alone. If, with long follow-up, these 

patients have a very low recurrence rate, then the classifier is considered validated for 

providing clinical benefit because it enabled the identification of patients whose 

prognosis was so good on Tamoxifen monotherapy that they could be spared the toxicity, 

inconvenience and expense of chemotherapy. This was the approach used by Paik et al. 

for validation of the OncoType Dx classifier for patients with node negative, estrogen 

receptor positive breast cancer (Paik, et al., 2004). The genes that appeared prognostic 

were initially identified based on published microarray studies. A classifier based on 

measuring expression of those genes using a different assay that could be performed on 

the formalin fixed parafin embedded diagnostic biopsy was developed using the archived 

tissue from studies of the National Surgical Adjuvant Breast and Bowel Project (NSABP) 

cooperative cancer group. The completely pre-specified classifier was then tested on 668 

patients from NSABP B-14 who received tamoxifen alone as systemic therapy. Fifty one 

percent of the assayed patients fell in the low risk group. They had a distant recurrence 

rate at 10 years of 6.8 percent (95% confidence interval 4.0 to 9.6). Much higher rates of 

distant recurrence were seen in the intermediate and high risk groups of the classifier 

(14.3% and 30.5% respectively).  

 

5. Development of genomic classifiers for experimental drugs 

 

In proposing the introduction of a classifier for improving the utilization of existing 

therapy, the emphasis should be on validation of the clinical benefit of using the classifier 

compared to not using it. Classifiers may also be developed, however, to restrict the type 

of patient/disease in which a new experimental therapy will be evaluated. This is usually 

only the case for classifiers based on the known molecular target of the drug when the 

biology is very clear. In this case, the focus would be on evaluating the drug in classifier 
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positive patients and not validating the classifier itself. Simon and Maitournam (Simon 

and Maitournam, 2004) demonstrated that use of a genomic classifier for focusing a 

clinical trial in this manner can result in a dramatic reduction in required sample size, 

depending on the sensitivity and specificity of the classifier for identifying such patients. 

Not only can such targeting provide a huge improvement in efficiency in phase III 

development, it also provides an increased therapeutic ratio of benefit to toxicity and 

results in a greater proportion of treated patients who benefit.  

 

Simon and Maitournam consider use of the Targeted Design shown in Figure 3. During 

pre-clinical and phase I/II clinical development one identifies a fully specified classifier 

of which patients have a high probability of responding to the experimental drug. That 

classifier is then used to select patients for phase III trial. This is a form of enrichment 

design. Table 1 shows the number of events required for 80% statistical power in the 

design of Figure 3 for comparing exponential survival times if the treatment results in a 

halving of the hazard in the patients selected for study using the classifier. The number of 

events is compared to the number of events required in a standard clinical trial if the 

classifier is not used to select patients for randomization. The table assumes that the 

treatment is not effective for the classifier negative patients. More extensive results on 

relative efficiency of the targeted and untargeted designs are described by Simon and 

Maitournam (Maitournam and Simon, 2005, Simon and Maitournam, 2004). 

 

 

Developing a genomic classifier of which patients are likely to benefit for targeting phase 

III trials may require larger phase II studies. This depends on the type of drug being 

developed. For example, if the drug is an inhibitor of a kinase mutated in cancer, then 

there is a natural diagnostic and no genome-wide screening is needed. For many 

molecularly targeted drugs, however, the appropriate assay for selecting patients is not 

known and development of a classifier based on comparing expression profiles for phase 

II responders versus phase II non-responders may be the best approach. In such instances, 

one may not have sufficient confidence in the genomic classifier developed in phase II to 

use it for excluding patients in phase III trials as in Figure 3. It may be better in this case 
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to accept all conventionally eligible patients, and use the classifier in the pre-defined 

analysis plan.  

 

Figure 4 shows the Marker by Treatment Interaction Design discussed by Sargent et 

al.(Sargent, et al., 2005) and by Pusztai and Hess(Pusztai and Hess, 2004). Both marker 

positive and marker negative patients are randomized to the experimental treatment or 

control. The analysis plan either calls for separate evaluation of the treatment difference 

in the two marker strata or for testing the hypothesis that the treatment effect is the same 

in both marker strata. When this design is used for development of an experimental drug, 

an appropriate analysis plan might be to utilize a preliminary test of interaction; if the 

interaction is not significant at a pre-specified level, then the experimental treatment is 

compared to the control overall. If the interaction is significant, then the treatment is 

compared to the control within the two strata determined by the marker. The sample size 

planning for such a trial and determination of the appropriate significance level for the 

preliminary interaction test require further study.     

 

Freidlin and Simon (Freidlin and Simon, 2005) proposed an alternative analysis plan for 

the design of Figure 4. They suggested that the overall null hypothesis for all randomized 

patients is tested at the 0.04 significance level. A portion, e.g. 0.01, of the usual 5 percent 

false positive rate is reserved for testing the new treatment in the subset predicted by the 

classifier to be responsive. The analysis starts with a test of the overall null hypothesis, 

without a preliminary test of interaction. If the overall null hypothesis is rejected, then 

one concludes that the treatment is effective for the randomized population as a whole 

and that the classifier is not needed. If the overall null hypothesis is not rejected at the 

0.04 level, then a single subset analysis is conducted; comparing the experimental 

treatment to the control in the subset of patients predicted by the classifier as being most 

likely to be responsive to the new treatment. If the null hypothesis is rejected, then the 

treatment is considered effective for the classifier determined subset. This analysis 

strategy provides sponsors an incentive for developing genomic classifiers for targeting 

therapy in a manner that does not unduly deprive them of the possibility of broad labeling 

indications when justified by the data. Although this analysis strategy does not ensure 
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that the statistical significance of an overall treatment effect is not driven by treatment 

benefit for the classifier positive subset, the design provides data for evaluating treatment 

effect in classifier negative patients. 

 

6. Conclusions 

 

Physicians need improved tools for selecting treatments for individual patients. The 

genomic technologies available today are sufficient to develop such tools. There is not 

broad understanding of the steps needed to translate research findings of correlations 

between gene expression and prognosis into robust diagnostics validated to be of clinical 

utility. This paper has attempted to identify some of the major steps needed for such 

translation. 
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Figure Captions 

 

Figure 1. Randomized clinical trial for evaluating whether use of a biomarker based 

classifier for treatment selection results in improved clinical outcome. All patients with 

conventional diagnosis are randomized between biomarker based treatment (M-rx) or 

standard of care based treatment (SOC-rx). This design is often very inefficient. 

 

Figure 2. Improved clinical trial design for evaluating whether use of a biomarker based 

classifier for treatment selection results in improved clinical outcome. The biomarker 

classifier based treatment (M-rx) and standard of care based treatment (SOC-rx) are  

determined before randomization and patients for whom the two treatment strategies 

agree are not randomized. This design is often much more efficient than that shown in 

Figure 1. 

 

Figure 3. Targeted clinical trial design for evaluating a new experimental therapy. A 

biomarker classifier is developed for identifying those patients most likely to respond to 

the new treatment (E). Only those patients are randomized to E versus the control 

treatment. The patients predicted less likely to respond (marker negative) are off study. 

The targeted design is most useful in cases where the biomarker classifier has a strong 

biological rationale for identifying responsive patients and where it may not be ethically 

advisable to expose marker negative patients to the new treatment. 

 

Figure 4. Stratified analysis design for evaluating a new experimental treatment (E) 

relative to a control (C). The status of a biomarker based classifier of the likelihood of 

responding to E is utilized in a prospectively specified analysis plan. The biomarker 

classifier is not just used for stratifying the randomization. Alternative analysis plans are 

described in the text.  
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Treatment Hazard Ratio 

for Marker Positive 

Patients 

Number of Events for 

Targeted Design 

Number of Events for Traditional 

Design 

  Percent of Patients Marker Positive 

  20% 33% 50% 

0.5 74 2040 720 316 

0.67 200 5200 1878 820 

 

Table 1: Second column contains the approximate number of events required for 80% 

power with 5% two-sided log-rank test for comparing arms of  targeted design 

shown in Figure 3. Only marker positive patients are randomized. Treatment 

hazard ratio for marker positive patients is shown in first column. Time-to-event 

distributions are exponential and all patients are followed to failure. Last three 

columns show the approximate number of events required for comparing the arms 

of a traditional design in which unclassified marker positive and marker negative 

patients are randomized. Treatment hazard ratio for marker negative patients is 

assumed to be 1. 
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