
1

Statistical Issues in the AnalysisStatistical Issues in the Analysis
of Gene Expressionof Gene Expression
Microarray DataMicroarray Data

Lisa M. McShane

Biometric Research Branch

U.S. National Cancer Institute



2

Outline

1) Introduction: Biology & Technology

2) Data Quality, Image Processing &
Normalization

3) Study Objectives & Design Considerations

4) Analysis Strategies Based on Study
Objectives



3

Outline

1) Introduction: Biology & Technology

2) Data Quality, Image Processing &
Normalization

3) Study Objectives & Design Considerations

4) Analysis Strategies Based on Study
Objectives



4

• All cells of a multi-cellular organism contain
essentially the same DNA

• Cells differ in function based on the spectra of
which genes are expressed and the level of
expression

• Proteins do the work of cells and gene expression
determines the intra-cellular concentration of
proteins

• mRNA is an intermediate product of gene
expression; a gene (DNA) is transcribed into a
mRNA molecule which is then translated into a
protein molecule
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cDNA

Reverse
transcription
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Gene Expression Microarrays

• Permit simultaneous evaluation of expression
levels of thousands of genes

• Main platforms
– cDNA arrays (glass slide, spotted)

• Schena et al., Science, 1995

– Oligo arrays (glass wafer – “chip”, photolithography)
• Lockhart et al., Nature Biotechnology, 1996
• Affymetrix website (http://www.affymetrix.com)

– Spotted oligo arrays (glass slide, spotted)
– Nylon filter arrays
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cDNA Array
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cDNA Microarray Image
(overlaid “red” and “green” images)
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[Affymetrix] Hybridization
Oligo Array
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Oligo Array:  Assay procedure

(Figure 1 from Lockhart et al., Nature Biotechnology, 1996)
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Image of a Scanned Affymetrix Gene Chip
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Oligo Arrays:  Perfect Match - Mismatch Probe Pairs

(Figure 2 from Schadt et al., Journal of Cellular Biochemistry, 2000)
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Oligo Arrays

• Single sample hybridized to each array

• Each gene represented by a “probe set”
– One probe type per array “cell”

– Typical probe is a 25-mer oligo

– 11-20 PM:MM pairs per probe set
(PM = perfect match, MM = mismatch)
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cDNA Arrays: Slide Quality

Fiber or scratch? Bubble

Edge effect Background haze
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cDNA Arrays:  Spot Quality

Poorly defined borders Large holes

Dust specsSaturated spot
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Oligo Arrays:  Quality problems due to debris

(Figure 1 from Schadt et al., Journal of Cellular Biochemistry, 2000)
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Image Processing

• Start with image consisting of millions of pixels

• Spot-background segmentation or grid alignment

• Signal calculation (summarize pixels within a spot
or cell, background adjust, …)

• Spot flagging criteria

• Spot or cell-level summaries
– cDNA:  red and green signals for each spot

• Red/green ratio (common for reference design)

– Oligo: single signal per cell
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Oligo Arrays:
Probe Set (Gene) Summaries

• AvDiffi = Σ(PMij-MMij)/ni for each probe set i
(original Affymetrix algorithm)

• MBEIi = θi estimated from
PMij- MMij = θi φj + εij  ⇒  weighted average difference
(Model-Based Expression Index, Li and Wong, PNAS, 2001)

• Other algorithms – e.g. address issues of negative
or outlier differences
– Corrected or global backgrounds, robust measures, etc.

• “New” Affymetrix algorithm
• Irizarry et al., 2002

(http://biosun01.biostat.jhsph.edu/~ririzarr/papers)

– PM only (Naef et al. referenced in Irizarry et al., 2002)
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Data Normalization
• Needed due to variations in

– Chip or slide properties, batch
– Hybridization and environmental conditions
– Amount of sample
– Scanner setting
– Unequal dye incorporation (cDNA arrays)

• Methods
– Simple global mean or median adjustments
– Complex (dependent on intensity, region, pin, ...)

cDNA - Yang et al. (http://oz.berkeley.edu/users/terry/zarray)
Oligo – Affymetrix doumentation, Li and Wong papers
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Design and Analysis Methods Should
Be Tailored to Study Objectives

• Class Comparison (supervised)
– For predetermined classes, establish whether gene

expression profiles differ, and identify genes
responsible for differences

• Class Discovery (unsupervised)
– Discover clusters among specimens or among genes

• Class Prediction (supervised)
– Prediction of phenotype using information from gene

expression profile
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Class Comparison Examples

• Establish that expression profiles differ
between two histologic types of cancer

• Identify genes whose expression level is
altered by exposure of cells to an
experimental drug
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Class Discovery Examples

• Discover previously unrecognized subtypes
of lymphoma

• Identify co-regulated genes
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Class Prediction Examples

• Predict from expression profiles which
patients are likely to experience severe
toxicity from a new drug versus who will
tolerate it well

• Predict which breast cancer patients will
relapse within two years of diagnosis versus
who will remain disease free
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Design Considerations
• Controls and replicates within array
• Level of replication (multiple array)

– Aliquots from single RNA batch
– RNA extractions
– Subjects

• Additional considerations for cDNA arrays
– Allocation of samples to (cDNA) array experiments

• Common reference design
• Kerr and Churchill, Biostatistics, 2001 (“loop design”)
• Dobbin and Simon, Bioinformatics, in press (comparisons)

– Reverse fluor experiments – gene specific dye biases
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Analysis Strategies for Class
Comparisons

• Model-based methods (ANOVA/mixed
models)

• Global tests

• Multiple testing procedures to identify
differentially expressed genes
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Mixed Model and ANOVA Methods
for cDNA Arrays

(based on red and green signals rather than ratios)

• Kerr et al., Journal of Computational
Biology, 2000

• Lee et al., PNAS, 2000

• Kerr and Churchill, Biostatistics, 2001

• Wolfinger et al., Journal of Computational
Biology, 2001
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Global Tests for Differences
Between Classes

• Choice of summary measure of difference
Examples:

- Sum of squared univariate t-statistics

- Number of genes univariately significant at 0.001
level

• Statistical testing by permutation test or
bootstrap
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Multiple testing procedures:
Identifying differentially expressed genes
while controlling for false discoveries*

• Expected Number of False Discoveries – E(FD)
• Expected Proportion of False Discoveries –

E(FDP) = False Discovery Rate (FDR)
• Actual Number of False Discoveries - FD
• Actual Proportion of False Discoveries - FDP

*False discovery = declare gene as differentially
expressed (reject test) when in truth it is not
differentially expressed
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Simple Procedures

• Control E(FD) ≤ u
– Conduct each of k tests at level u/k

• Control E(FDP) ≤ γ
– FDR procedure (Benjamini and Hochberg)

• Bonferroni control of familywise error (FWE) rate
at level α
– Conduct each of k tests at level α/k
– At least (1-α)100% confident that FD = 0
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Problems With Simple Procedures

• Bonferroni control of FWE is very
conservative and allowing no false
discoveries may be too restrictive when
testing so many genes

• Controlling expected number or proportion
of false discoveries may not provide
adequate control on actual number or
proportion
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Additional Procedures

• “SAM”  - Significance Analysis of Microarrays
– Tusher et al., PNAS, 2001
– Estimate FDR

• Empirical Bayes
– Efron et al., JASA, 2001
– Related to FDR

• Step-down permutation procedures
– Korn et al., 2001 (http://linus.nci.nih.gov/~brb)

– Control number or proportion of false discoveries with
stated confidence
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Class Discovery
• Cluster analysis algorithms (Gordon, 1999)

– Hierarchical
– K-means
– Self-Organizing Maps
– Maximum likelihood/mixture models
– Multitude of others

• Graphical displays
– Hierarchical clustering

• Dendrogram
• “Ordered” color image plot

– Multidimensional scaling plot
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Hierarchical Agglomerative
Clustering Algorithm

• Merge two closest observations into a cluster.
– How is distance between individual observations

measured?

• Continue merging closest clusters/observations.
– How is distance between clusters measured?

• Average linkage

• Complete linkage

• Single linkage

• Many others
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Common Distance Metrics for
Hierarchical Clustering

• Euclidean distance
– Measures absolute

distance (square root of
sum of squared
differences)

• 1-Correlation
– Large values reflect lack

of linear association
(pattern dissimilarity)

Others:  Mahalanobis distance,
angular distance, etc.



39

Linkage Methods
• Average Linkage

– Merge clusters whose average distance between all
pairs of items (one item from each cluster) is minimized

– Particularly sensitive to distance metric

• Complete Linkage
– Merge clusters to minimize the maximum distance

within any resulting cluster
– Tends to produce compact clusters

• Single Linkage
– Merge clusters at minimum distance from one another
– Sensitive to noise and prone to “chaining”
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Clustering of Melanoma Tumors Using Average Linkage
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Dendrograms using 3 different
linkage methods,
distance = 1-correlation

(Data from Bittner et al.,
Nature, 2000)
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Interpretation of
Cluster Analysis Results

• Cluster analyses always produce cluster structure
– Are there any “real” clusters?
– Where to “cut” the dendrogram?
– Assessing individual clusters

• Different clustering algorithms may find different structure
using the same data.

• Which clusters do we believe?
– Reproducible between methods
– Reproducible within a method
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Global Test for Clustering
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Determining the “Optimal”
Number of Clusters

• Comparison of methods for estimating
number of clusters in small dimension cases
(Milligan and Cooper, Psychometrika, 1985)

• Gap Statistic (Tibshirani et al., JRSS B, 2002)

• Generally do NOT work well as global tests
(sometimes not even defined for 1 cluster)

• Performance on very high dimensional data
may not have been tested
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Assessing Individual Clusters:
 Data Perturbation Methods

• Most believable clusters are those that
persist given small perturbations of the data.
– Perturbations represent an anticipated level of

noise in gene expression measurements.
– Re-cluster perturbed data and compare to

original clustering
– References specific to microarrays

• McShane et al. (Bioinformatics, in press) –
Gaussian errors

• Kerr and Churchill (PNAS, 2001) – Bootstrap
residual errors
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Graphical Displays: Color Image Plot

Hierarchical
Clustering
of Lymphoma Data
 (Alizadeh et al.,
Nature, 2000)
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• High-dimensional (e.g. 5000-D) data points
are represented in a lower-dimensional space
(e.g. 3-D)

– Principal components (classical) or optimization
methods

– Depends only on pairwise distances (Euclidean,
1-correlation, . . .)  between points

– “Relationships” need not be well-separated
clusters

Graphical Displays:
Multidimensional Scaling (MDS)
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MDS: Breast Tumor and FNA Samples

(Assersohn et al., Clinical Cancer Research, 2002)

Color = Patient
Large circle = Tumor
Small circle = FNA
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Class Prediction Methods

Comparison of linear discriminant analysis, NN classifiers,
classification trees, bagging, and boosting: tumor classification
based on gene expression data (Dudoit, et al., JASA, 2002)

Weighted voting method: distinguished between subtypes of
human acute leukemia (Golub et al., Science, 1999)

Compound covariate prediction: distinguished between
mutation positive and negative breast cancers (Hedenfalk et al.,
NEJM, 2001)

Support vector machines: classified ovarian tissue as normal or
cancerous (Furey et al., Bioinformatics, 2000)

Neural Networks: distinguished among diagnostic subcategories
of small, round, blue cell tumors in children (Khan et al., Nature
Medicine, 2001)
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Pitfalls in Class Prediction for
Microarray Data

“Note that when classifying samples, we are confronted with a
problem that there are many more attributes (genes) than
objects (samples) that we are trying to classify. This makes it
always possible to find a perfect discriminator if we are not
careful in restricting the complexity of the permitted
classifiers. To avoid this problem we must look for very simple
classifiers, compromising between simplicity and classification
accuracy.” (Brazma & Vilo, FEBS Letters, 2000)

Validation! Validation! Validation!
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The Compound Covariate Predictor (CCP)
(Tukey, Controlled Clinical Trials, 1993)

• Select “differentially expressed” genes by two-
sample t-test with small α.

tj is the two-sample t-statistic for gene j.

xij is the log-ratio measure of sample i for
gene j.

Sum is over all differentially expressed
genes.

• Threshold of classification: midpoint of the CCP
means for the two classes.

∑=
j

ijji xtCCP
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Non-Cross-Validated Prediction

Cross-Validated Prediction (Leave-One-Out Method)

1. Prediction rule is built using full data set.
2. Rule is applied to each specimen for class

prediction.

1. Full data set is divided into training and
test sets (test set contains 1 specimen).

2. Prediction rule is built using the training
set.

3. Rule is applied to the specimen in the
test set for class prediction.

4. Process is repeated until each specimen
has appeared once in the test set.



52

Prediction on Simulated Null Data

Generation of Gene Expression Profiles

• 20 specimens (Pi is the expression profile for specimen i)

• Log-ratio measurements on 6000 genes

• Pi ~ MVN(0, I6000)

• Can we distinguish between the first 10 specimens (Class 1)
and the last 10 (Class 2)? (class distinction is totally artificial
since all 20 profiles were generated from the same distribution)

Prediction Method

• Compound covariate prediction

• Compound covariate built from the log-ratios of the 10 most
differentially expressed genes.
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Number of misclassifications
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Gene-Expression Profiles in
Hereditary Breast Cancer

( Hedenfalk et al., NEJM, 2001)

• Breast tumors studied:
7 BRCA1+ tumors
8 BRCA2+ tumors
7 sporadic tumors

• Log-ratios measurements of
3226 genes for each tumor
after initial data filtering

cDNA Microarrays
Parallel Gene Expression Analysis 

RESEARCH QUESTION
Can we distinguish BRCA1+ from BRCA1– cancers and
BRCA2+ from BRCA2– cancers based solely on their gene
expression profiles?
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Classification of hereditary breast cancers with the compound covariate predictor

Class labels

Number of
differentially

expressed genes
m = number of

misclassifications

Proportion of random
permutations with m or
fewer misclassifications

BRCA1+ vs. BRCA1− 9 1 (0 BRCA1+, 1 BRCA1−) 0.004
BRCA2+ vs. BRCA2− 11 4 (3 BRCA2+, 1 BRCA2−) 0.043

Results of leave-one-out cross-validation
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Validation of Predictor on
Independent Data

• Potential pitfalls of estimated prediction accuracy
from leave-one-out cross-validation on a single
data set
– High variance of LOO CV error rate for small samples

– Peculiarities of the training set may influence the
prediction rule

• Independent data set for validation
– Should be fairly large (e.g., as big as training set)

– Similar proportions of specimens for the classes as exist
in the population
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Summary Remarks
• Data quality assessment and pre-processing are important.

• Different study objectives will require different statistical
analysis approaches.

• Different analysis methods may produce different results.
Thoughtful application of multiple analysis methods may be
required.

• Chances for spurious findings are enormous, and validation of
any findings on larger independent collections of specimens will
be essential.

• Analysis tools are not an adequate substitute for collaboration
with professional data analysts.
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• NCI: http://linus.nci.nih.gov/~brb
– Tech reports, talk slides

– BRB-ArrayTools software

• Berkeley: http://www.stat.berkeley.edu/users/terry/zarray/Html/index.html

• Harvard: http://www.dchip.org

• Hopkins: http://biosun01.biostat.jhsph.edu/~ririzarr/Raffy/

• Jackson Labs: http://www.jax.org/research/churchill/

• Stanford:
– http://genome-www5.stanford.edu/MicroArray/SMD/restech.html

– http://www-stat.stanford.edu/~tibs/  (R. Tibshirani)

Helpful Websites
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