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Common Types of Objectives

• Class Comparison
– Identify genes/proteins differentially expressed 

among predefined classes such as diagnostic or 
prognostic groups. 

• Class Prediction
– Develop multi-feature predictor of class for a 

sample
• Class Discovery

– Discover clusters among specimens or among 
features



Statistical Methods Appropriate for Class 
Comparison Differ from Those Appropriate 

for Class Prediction

• Demonstrating statistical significance of prognostic 
factors is not the same as demonstrating predictive 
accuracy.

• Demonstrating goodness of fit of a model to the data 
used to develop it is not a  demonstration of predictive 
accuracy.

• Most statistical methods were developed for inference, 
not prediction.

• Most statistical methods for were not developed for p>>n 
settings



Components of Class Prediction

• Feature selection
– Which genes or proteins will be included in 

the model
• Select model type 

– E.g. DLDA, Nearest-Neighbor, …
• Fitting parameters (regression coefficients) 

for model 



Feature Selection
• Key component of supervised analysis
• Usually features are selected that are univariately

differentially expressed among the classes at a nominal 
significance level α (e.g. 0.01) 
– The α level is selected to control the number of features in the 

model, not to control the false discovery rate
– The accuracy of the significance test used for feature selection is 

not of major importance as identifying differentially expressed 
genes is not the ultimate objective

– For survival prediction, the features with significant univariate
Cox PH regression coefficients



Feature Selection

• Small subset of features which together 
give most accurate predictions 
– Step-up regression
– Greedy pairs
– Combinatorial optimization algorithms

• Genetic algorithms

• Some published complex methods for 
selecting combinations of features do not 
appear to have been properly evaluated



Linear Classifiers for Two 
Classes
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Linear Classifiers for Two Classes

• Fisher linear discriminant analysis (weights 
based on assumed multivariate normal 
distribution of expression vector in each class 
with common covariance matrix)

• Diagonal linear discriminant analysis (DLDA) 
assumes features are uncorrelated
– Naïve Bayes estimator

• Compound covariate predictor and Golub’s
weighted voting method are variants of DLDA 



Linear Classifiers for Two Classes

• Compound covariate predictor

Instead of for DLDA
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Linear Classifiers for Two Classes

• Support vector machines with inner 
product kernel are linear classifiers with 
weights determined to minimize errors

• Perceptrons with principal components as 
input are linear classifiers with no well 
defined criterion for defining weights



Advantages of Simple Linear 
Classifiers

• Do not over-fit data
– Incorporate influence of multiple features 

without attempting to select the best small 
subset of variables

– Do not attempt to model the multivariate 
interactions among the predictors and 
outcome



When p>>n

• For the linear model, many weight vectors 
w can always be found that give zero 
classification errors for the training data.

• Why consider more complex models?
• The number of parameters for this simple 

model is generally too large relative to the 
number of specimens to achieve accurate 
prediction for future samples if we select a 
single model by minimizing training errors



Myth

• That complex classification algorithms 
such as neural networks perform better 
than simpler methods for class prediction.



• Artificial intelligence sells to naïve journal 
reviewers and readers. 

• Comparative studies indicate that simpler 
methods that avoid overfitting work better 
for p>>n problems. 



• Fitting complex functions to training data 
results in unstable classifiers unless there 
is a huge training dataset

• For unstable classifiers, the test sample 
error rate is generally much less than the 
generalization error rate 



Model Stability Can Be Improved 
By

• Restriction to models with fewer parameters
– Complexity depends on number of parameters per candidate 

feature, not per selected feature
• Reducing number of candidate features

– Principal components
– Cluster averages

• Not minimizing training error
– Equivalent to including penalty for complexity

• Aggregating models
• Use fitting criterion incorporating robustness to changes 

in data



• With unstable classifiers, we obtain both 
large bias and large variance in estimating 
the true classifier function
– Large bias because there are many classifiers 

with zero training set errors that are far from 
the true classifier function

– Large variance because the selected 
classifier varies substantially with small 
variations in the data



Evaluating a Classifier

• Fit of a model to the same data used to 
develop it is no evidence of prediction 
accuracy for independent data.



Split-Sample Evaluation

• Training-set
– Used to select features, select model type, determine 

parameters and cut-off thresholds
• Test-set

– Withheld until a single model is fully specified using 
the training-set.

– Fully specified model is applied to the expression 
profiles in the test-set to predict class labels. 

– Number of errors is counted
– Ideally test set data is from different centers than the 

training data and assayed at a different time



Split-Sample Evaluation

• Used for Rosenwald et al. study of 
prognosis in DLBL lymphoma.
– 200 cases training-set
– 100 cases test-set



Leave-one-out Cross Validation

• Omit sample 1
– Develop multivariate classifier from scratch on 

training set with sample 1 omitted
– Predict class for sample 1 and record whether 

prediction is correct



Leave-one-out Cross Validation

• Repeat analysis for training sets with each single 
sample omitted one at a time

• e = number of misclassifications determined by 
cross-validation

• Subdivide e for estimation of sensitivity and 
specificity



Myth

• Cross-validation of a model can occur 
after selecting the features to be used in 
the model



• Cross validation is only valid if the test set is not used in 
any way in the development of the model. Using the 
complete set of samples to select genes violates this 
assumption and invalidates cross-validation.

• With proper cross-validation, the model must be 
developed from scratch for each leave-one-out training 
set. This means that feature selection must be repeated 
for each leave-one-out training set. 

• The cross-validated estimate of misclassification error is 
an estimate of the prediction error for model fit using 
specified algorithm to full dataset

• If you use cross-validation estimates of prediction error 
for a set of algorithms and select the algorithm with the 
smallest cv error estimate, you do not have a valid 
estimate of the prediction error for the selected model



Partial Cross-Validation of Random 
Data

• Generate data for p features and n cases 
identically distributed in two classes
– No model should predict more accurately than the flip 

of a fair coin
• Using all the data select k<<p features that 

appear most differentially expressed between 
the two classes

• Cross validate the estimation of model 
parameters using the same k features for all 
LOOCV training sets

• The cross-validated estimate of prediction error 
will be 0 over 99% of the time.



Prediction on Simulated Null Data

Generation of Gene Expression Profiles
• 14 specimens (Pi is the expression profile for specimen i)
• Log-ratio measurements on 6000 genes
• Pi ~ MVN(0, I6000)
• Can we distinguish between the first 7 specimens (Class 1) and the last 7 

(Class 2)?

Prediction Method
• Compound covariate prediction (discussed later)
• Compound covariate built from the log-ratios of the 10 most differentially 

expressed genes.



Number of misclassifications
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Permutation Distribution of Cross-
validated Misclassification Rate of a 

Multivariate Classifier
• Randomly permute class labels and repeat 

the entire cross-validation
• Re-do for all (or 1000) random 

permutations of class labels
• Permutation p value is fraction of random 

permutations that gave as few 
misclassifications as e in the real data



Gene-Expression Profiles in 
Hereditary Breast Cancer 

cDNA Microarrays
Parallel Gene Expression Analysis • Breast tumors studied:

7 BRCA1+ tumors
8 BRCA2+ tumors
7 sporadic tumors

• Log-ratios measurements of 
3226 genes for each tumor 
after initial data filtering

Can we distinguish BRCA1+ from BRCA1– cancers and BRCA2+ from 
BRCA2– cancers based solely on their gene expression profiles?



BRCA1

 
αg 

 
# of 

significant 
genes 

 
# of misclassified 

samples (m) 
 

% of random 
permutations with 

m or fewer 
misclassifications 

10-2 182 3  0.4 
10-3 53 2  1.0 
10-4 9 1  0.2 

 



BRCA2

αg # of significant
genes

m = # of misclassified elements
(misclassified samples)

% of random
permutations with m

or fewer
misclassifications

10-2 212 4 (s11900, s14486, s14572, s14324) 0.8
10-3 49 3 (s11900, s14486, s14324) 2.2
10-4 11 4 (s11900, s14486, s14616, s14324) 6.6



Classification of BRCA2 Germline
Mutations

Classification Method LOOCV Prediction 
Error 

Compound Covariate Predictor 14%

Fisher LDA 36%

Diagonal LDA 14%

1-Nearest Neighbor 9%

3-Nearest Neighbor 23%

Support Vector Machine
(linear kernel)

18%

Classification Tree 45%



Invalid Criticisms of Cross-
Validation

• “You can always find a set of features that 
will provide perfect prediction for the 
training and test sets.”
– For complex models, there may be many sets 

of features that provide zero training errors. 
– A modeling strategy that either selects among 

those sets or aggregates among those 
models, will have a generalization error which 
will be validly estimated by cross-validation.



Sources of Bias in Estimation of 
Error Rates

• Confounding by sample handling or assay 
effects
– Cases collected and assayed at different times than 

controls
• Failure to incorporate important sources of 

future variability
– Assay drift

• Change in distribution of unmodeled variables
– In split sample validation, split samples by institution



BRB-ArrayTools

• Integrated software package using Excel-based 
user interface but state-of-the art analysis 
methods programmed in R, Java & Fortran

• Publicly available for non-commercial uses 
from BRB website:

• Amy Peng & R Simon

http://linus.nci.nih.gov/brb
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