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Gene Expression Microarrays

• Permit simultaneous evaluation of 
expression levels of thousands of genes

• Main platforms
– Spotted cDNA arrays (2-color)
– Affymetrix GeneChip (1-color)
– Spotted oligo arrays (2-color or 1-color)
– Nylon filter arrays
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Spotted cDNA Arrays
(and other 2-color spotted arrays)

• cDNA arrays: Schena et al., Science, 1995 
• Each gene represented usually by one spot 

(occasionally multiple)
• Two-color (two-channel) system

– Two colors represent the two samples 
competitively hybridized

– Each spot has “red” and “green” measurements 
associated with it
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cDNA Arrays
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cDNA Microarray Image
(overlaid “red” and “green” images)
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Affymetrix GeneChip Arrays
• Lockhart et al., Nature Biotechnology, 1996
• Affymetrix:  http://www.affymetrix.com
• Glass wafer (“chip”) – photolithography, 

oligonucleotides synthesized on chip
• Single sample hybridized to each array
• Each gene represented by a “probe set”

– One probe type per array “cell”
– Typical probe is a 25-mer oligo
– 11-20 PM:MM pairs per probe set

(PM = perfect match, MM = mismatch)
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Affymetrix:  Assay procedure

(Figure 1 from Lockhart et al., Nature Biotechnology, 1996)
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[Affymetrix] Hybridization
Oligo “GeneChip” Array
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Image of a Scanned
Affymetrix GeneChip
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Oligo Arrays:  Perfect Match - Mismatch Probe Pairs

(Figure 2 from Schadt et al., Journal of Cellular Biochemistry, 2000)
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cDNA/Spotted Arrays: Slide Quality

Fiber or scratch? Bubble

Edge effect Background haze
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Affymetrix Arrays:  Quality Problems
(Figure 1 from Schadt et al., Journal of Cellular Biochemistry, 2000)
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cDNA/2-color spotted arrays: 
Image Processing

(Yang et al., J. Computational and Graphical Statistics, 2002)

• Begin with image consisting of millions of pixels
• Segmentation (F vs B)
• Background correction & signal calculation
• Spot flagging criteria
• Gene(spot)-level summaries

– Signal ratio (Red/Green)
– 2 channel signals (Red, Green)
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Affymetrix Arrays: Image Processing
• .DAT image files → .CEL files
• Each probe cell: 10x10 pixels
• Grid alignment to probe cells
• Signals:

– Remove outer 36 pixels → 8x8 pixels
– The probe cell signal, PM or MM, is the 75th percentile of the 8x8 

pixel values
• Background correction: Average of the lowest 2% probe 

cell values is taken as the background value and subtracted
• Summarize over probe pairs to get gene expression indices

– Detection calls - present/absent
See Affymetrix documentation:

• Affymetrix website (http://www.affymetrix.com)
• Affymetrix Microarray Suite User Guide
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Affymetrix Arrays:  
Probe Set (Gene) Summaries

• AvDiffi = Σ(PMij-MMij)/ni for each probe set i
(OLD Affymetrix algorithm, MAS 4.0 and earlier)

• New Affymetrix algorithm to address negative 
signals (MAS 5.0)
– anti-log of  a robust average (Tukey biweight) of the

log(PMij-CTij), where
CT=MM, if MM < PM

= adjusted to be less than PM, if MM≥PM
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Affymetrix Arrays:  
Model-based Probe Set (Gene) Summaries

• Li and Wong (PNAS, 2000; Genome Biology, 
2001)
– MBEIi = θi estimated from PMij-MMij = θi φj+εij => 

weighted average difference
– MBEIi

* = θi
* estimated from PMij = νi + θi

* φj´ : probe 
set summaries are based on PM signals only.

• Irizarry et al. (Nucleic Acids Research, 2003; 
Biostatistics, 2003)
– RMAi = ei estimated from T(PMij) = ei + aj+εij, where 

T(PM) represents the PM intensities which have been 
background corrected, normalized and log-transformed
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cDNA/2-color spotted arrays:
Need for Normalization

• Unequal incorporation of labels 
– green better than red

• Unequal amounts of sample 

• Unequal PMT voltage
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Normalization Methods for 
cDNA/2-Color Spotted Arrays

• Model-based methods
– Normalization incorporated into model

• Ratio-based methods
– Median (or Mean) Centering Method
– Lowess Method
– Multitude of other methods

Chen et al., Journal of Biomedical Optics, 1997
Yang et al., Nucleic Acids Research, 2002

– Scaling factors, separately by printer pin, etc.
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Median (or Mean) Centering

MCF7 vs MCF10A, Expt. 3
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Lowess Normalization: M vs A plots
(Yang et al., Nucleic Acids Research, 2002)

M vs A with Lowess Smooth, Expt. 22

A=(log2(GREEN signal)+log2(RED signal))/2
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MCF7 vs MCF10A, Expt. 22
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Bad Arrays and Blind Normalizaton
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Normalization: Affymetrix Arrays

• Variations due to sample, chip, hybridization, 
scanning

• Probe set-level vs probe-level
• Scale factor, intensity dependent, quantile-based, 

model-based
• Normalize across all arrays or pairwise
• PM-MM vs PM only
• References:

– Li and Wong (PNAS, 2000; Genome Biology, 2001)
– Irizarry et al. (Nucleic Acids Research, 2003; 

Biostatistics, 2003)
– Bolstad et al. (Bioinformatics, 2003)
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Filtering Genes
• Prior to cluster analyses only?

• “Bad” gene measurements on too many arrays.

• Not differentially expressed across arrays.
– Gene variance < threshold

– Fold change

• Max/Min < 3 or 4

• (95th percentile/5th percentile) < 2 or 3

• Fold change relative to median
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Design and Analysis Methods Should 
Be Tailored to Study Objectives

• Class Comparison (supervised)
– For predetermined classes, establish whether 

gene expression profiles differ, and identify 
genes responsible for differences

• Class Discovery (unsupervised)
– Discover clusters among specimens or among 

genes
• Class Prediction (supervised)

– Prediction of phenotype using information from 
gene expression profile
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Class Comparison Examples

• Establish that expression profiles differ between 
two histologic types of cancer.

• Identify genes whose expression level is altered by 
exposure of cells to an experimental drug.
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Class Discovery Examples

• Discover previously unrecognized subtypes of 
lymphoma.

• Identify co-regulated genes
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Class Prediction Examples

• Predict from expression profiles which patients are 
likely to experience severe toxicity from a new 
drug versus who will tolerate it well.

• Predict which breast cancer patients will relapse 
within two years of diagnosis versus who will 
remain disease free.
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Design Considerations
• Sample selection
• Sample size planning
• Controls
• Sources of variability/levels of replication 
• Pooling
• For cDNA/2-color spotted arrays:

– Allocation of samples to (cDNA) array experiments
• Kerr and Churchill, Biostatistics, 2001
• Dobbin and Simon, Bioinformatics, 2002

– Reverse fluor experiments
• Dobbin, Shih and Simon, Bioinformatics, 2003
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Design Consideration Highlights
(Dobbin, Shih and Simon, in press JNCI - Q&As)

• Many types of “replicates”  – biological vs
technical replicates & implications for inference

• Reverse fluor “replicates” – might need fewer than 
you think and sometimes none at all

• Pooling
– Optimal pooling design (Kendziorski, Biostatistics, 

2003) depends on 
• Array vs biological sample cost
• Technical vs biological variability

– One pool, many aliquots – not smart
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Does it pay to replicate arrays?

• It is generally more efficient to assay specimens 
from additional subjects than it is to perform 
replicate arrays for the same subjects because 
one’s goal is usually to draw inferences to the 
population of subjects.

• Some replicates may be helpful as quality checks, 
but can be misleading if replication covers only 
some of the sources of variability.  Also, poor 
quality RNA often yields highly reproducible 
array results!



37

Sample Size Planning
• No comprehensive method for planning sample 

size exists for gene expression profiling studies.

In lieu of such a method…
• Plan sample size based on comparisons of two 

classes involving a single gene.
– Specify size of difference to detect (2-fold, 3-fold, etc.)
– Estimates of within-group variance

• Small for cell lines or genetically identical animals
• Large for human tumors

– Set error rates accounting for number of genes 
examined
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Sample Size Planning
Choosing α and β

Let K = # of genes on array
M= # of genes truly differentially expressed at

specified fold difference 
Expected number of false positives:

EFP ≤ K×α (α = significance level)
Expected number of false negatives for θ-fold genes:

EFNθ = M×β (1-β = power)
Popular choices for α and β:

α = 0.001 β = 0.05 or 0.10
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Class Comparison:
Allocation of Specimens to
cDNA Array Experiments

• Reference Design
• Loop Design 

– Kerr and Churchill, Biostatistics, 2001
• Block Design
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Reference Design

A1
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R RGREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B
R = aliquot from reference pool
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Loop Design

A1
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B1 A2
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B2
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RED

B1GREEN

Array 1 Array 2 Array 3 Array 4

Ai = aliquot from ith specimen from class A
Bi = aliquot from ith specimen from class B

(Requires two aliquots per specimen)
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Block Design
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Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B
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Comparison of Designs
(Dobbin and Simon, Bioinformatics, 2002)

• For class discovery, a Reference design is 
preferable because of large gains in cluster 
performance.

• For class comparisons . . . 
– With a fixed number of arrays, Block design is more 

efficient than Loop or Reference design, but Block 
design precludes clustering.

– With a fixed number of specimens, Reference design is 
more efficient than Loop or Block design when inter-
sample variance is “large” relative to intra-sample 
variation.
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Class Comparison Analysis
• Goal

– Global tests
– Multiple testing  - identify differentially expressed 

genes 

• Methods
– Non-model-based

• Log ratios
• T-tests, F-tests, nonparametric tests, resampling methods
• Usually reference design

– Model-based
• Individual channel data (ANOVA models)
• Bayesian
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Model-based ANOVA Methods 
for cDNA Arrays  

• Kerr et al., Journal of Computational 
Biology, 2000

• Lee et al., PNAS, 2000
• Kerr and Churchill, Biostatistics, 2001
• Wolfinger et al., Journal of Computational 

Biology, 2001
• Dobbin & Simon, Bioinformatics, 2002
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Global Tests for Differences 
Between Classes

• Choice of summary measure of difference
Examples:

- Sum of squared univariate t-statistics
- Number of genes univariately significant at 0.001 

level

• Statistical testing by permutation test
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Multiple Testing Procedures
Identification of differentially expressed genes while 
controlling for false discoveries (genes declared to be 
differentially expressed that in truth are not).

• Actual Number of False Discoveries: FD
• Expected Number of False Discoveries: E(FD)

• Actual Proportion of False Discoveries: FDP
• Expected Proportion of False Discoveries: 

E(FDP) = False Discovery Rate (FDR)
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Simple Procedures

• Control expected number of false 
discoveries
– E(FD) ≤ u
– Conduct each of k tests at level u/k

• Bonferroni control of familywise error 
(FWE) rate at level α
– Conduct each of k tests at level α/k
– At least (1-α)100% confident that FD = 0 
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Problems With Simple Procedures
• Bonferroni control of FWE is very 

conservative

• Controlling expected number or proportion 
of false discoveries may not provide 
adequate control on actual number or 
proportion
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Additional Procedures
• Review by Dudoit et al. (Statistical Science, 2003)
• “SAM”  - Significance Analysis of Microarrays

– Tusher et al., PNAS, 2001 and relatives
– Estimate “FDR-like” quantities
– Algorithm is a moving target – user beware

• Bayesian
– Efron et al., JASA, 2001; Stanford Tech Rep, 2001
– Manduchi et al., Bioinformatics 2000
– Newton et al., J Comp Biology 2001

• Step-down permutation procedures
– Westfall and Young, 1993 Wiley (FWE)
– Korn et al., JSPI, in press (FD and FDP control)
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Class Discovery
• Cluster analysis algorithms (Gordon, 1999)

– Hierarchical
– K-means
– Self-Organizing Maps
– Maximum likelihood/mixture models
– Multitude of others

• Graphical displays
– Hierarchical clustering

• Dendrogram
• “Ordered” color image plot

– Multidimensional scaling plot
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Hierarchical Agglomerative
Clustering Algorithm

• Cluster genes with respect to expression across 
specimens

• Cluster specimens with respect to gene expression 
profiles
– Filter genes that show little variation across specimens
– Median or mean center genes
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Hierarchical Agglomerative
Clustering Algorithm

• Merge two closest observations into a cluster.
– How is distance between individual observations 

measured?

• Continue merging closest clusters/observations.
– How is distance between clusters measured? 

• Average linkage
• Complete linkage
• Single linkage
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Common Distance Metrics for
Hierarchical Clustering

• Euclidean distance
– Measures absolute distance 

(square root of sum of 
squared differences) 

• 1-Correlation
– Large values reflect lack of 

linear association (pattern 
dissimilarity)
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Linkage Methods
• Average Linkage

– Merge clusters whose average distance between all 
pairs of items (one item from each cluster) is minimized

– Particularly sensitive to distance metric

• Complete Linkage
– Merge clusters to minimize the maximum distance 

within any resulting cluster
– Tends to produce compact clusters

• Single Linkage 
– Merge clusters at minimum distance from one another
– Prone to “chaining” and sensitive to noise
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Graphical Displays:
Ordered Color Image Plot

Hierarchical Clustering
of Lymphoma Data
(Alizadeh et al., Nature, 2000)
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Interpretation of
Cluster Analysis Results

• Cluster analyses always produce cluster structure
– Where to “cut” the dendrogram?
– Which clusters do we believe?

• Circular reasoning 
– Clustering using only genes found significantly 

different between two classes
– “Validating” clusters by testing for differences between 

subgroups observed to segregate in cluster analysis 
• Different clustering algorithms may find different 

structure using the same data
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Assessing Clustering Results
• Data perturbation methods

– McShane et al., Bioinformatics, 2002 –
Gaussian errors (global test + cluster-specific 
assessment)

– Kerr and Churchill, PNAS, 2001 – Bootstrap residual 
errors

• Estimating the number of clusters
– GAP statistic (Tibshirani et al., JRSS B, 2002) – DOES 

NOT WORK!
– Yueng et al. (Bioinformatics, 2001) – jackknife 

method, estimate # of genes clusters
– Dudoit et al. (Genome Biology, 2002) – prediction-

based resampling
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Class Prediction Methods
Comparison of linear discriminant analysis, NN classifiers, 
classification trees, bagging, and boosting (Dudoit, et al., 
JASA, 2002)

Weighted voting method (Golub et al., Science, 1999)

Compound covariate prediction (Hedenfalk et al., NEJM, 
2001; Radmacher et al., J. Comp. Biology, 2002)

Support vector machines (Furey et al., Bioinformatics, 2000)

Neural Networks (Khan et al., Nature Medicine, 2001)

Nearest Shrunken Centroids (Tibshirani et al., Statistical 
Science, 2003)
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The Compound Covariate Predictor (CCP)
(Tukey, Controlled Clinical Trials, 1993)

• Select “differentially expressed” genes by two-
sample t-test with small α.

CCPi = t1 xi1 + t2 xi2 + . . . + td xid

tj is the two-sample t-statistic for gene j.
xij is the log expression measure for gene 

j in sample i.
Sum is over all d differentially expressed 

genes.

• Threshold of classification: midpoint of the CCP 
means for the two classes.
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Pitfalls in Class Prediction for 
Microarray Data

(Radmacher et al., J Comp Biology, 2002; 
Simon et al., JNCI, 2003)

• Highly complex models prone to overfitting to 
data 

• Internal validation performed improperly
– Must include re-selection of features (genes)
– Cross-validated predictions are not independent (can’t 

treat cross-validated error rate as a binomial proportion)
• Lack of appropriate and sufficiently large 

independent (external) “validation” sets
– Free of hidden biases
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Assessing Prediction Accuracy
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Non-Cross-Validated Prediction

1. Prediction rule is built using full data set.
2. Rule is applied to each specimen for class 

prediction. 

training set

test set
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Cross-Validated Prediction (Leave-One-Out Method)
1. Full data set is divided into training and 

test sets (test set contains 1 specimen).
2. Prediction rule is built using the training 

set.
3. Rule is applied to the specimen in the 

test set for class prediction. 
4. Process is repeated until each specimen 

has appeared once in the test set.
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Prediction on Simulated Null Data

Generation of Gene Expression Profiles
• 20 specimens (Pi is the expression profile for specimen i)
• Log-ratio measurements on 6000 genes
• Pi ~ MVN(0, I6000)
• Can we distinguish between the first 10 specimens (Class 1) 
and the last 10 (Class 2)? (class distinction is totally artificial 
since all 20 profiles were generated from the same distribution)

Prediction Method
• Compound covariate prediction
• Compound covariate built from the log-ratios of the 10 most 
differentially expressed genes.
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Gene-Expression Profiles in 
Hereditary Breast Cancer

( Hedenfalk et al., NEJM, 2001)

• Breast tumors studied:
7 BRCA1+ tumors
8 BRCA2+ tumors
7 sporadic tumors

• Log-ratios measurements of 
3226 genes for each tumor 
after initial data filtering

cDNA Microarrays
Parallel Gene Expression Analysis

RESEARCH QUESTION
Can we distinguish BRCA1+ from BRCA1– cancers and BRCA2+ from 
BRCA2– cancers based solely on their gene expression profiles?
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Hereditary Breast Cancers:
Class Prediction Example

Classification of hereditary breast cancers with the compound covariate predictor

Class labels

Number of
differentially

expressed genes
m = number of

misclassifications

Proportion of random
permutations with m or
fewer misclassifications

BRCA1+ vs. BRCA1− 9 1 (0 BRCA1+, 1 BRCA1−) 0.004
BRCA2+ vs. BRCA2− 11 4 (3 BRCA2+, 1 BRCA2−) 0.043

1 2

1Using full data set and significance level α = .0001
2Using leave-one-out cross-validation.
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Summary Remarks
• Data quality assessment and pre-processing are important.

• Different study objectives will require different statistical analysis 
approaches.

• Different analysis methods may produce different results.  
Thoughtful application of multiple analysis methods may be 
required.

• Chances for spurious findings are enormous, and validation of any 
findings on larger independent collections of specimens will be 
essential.

• Analysis tools can’t compensate for poorly designed experiments.

• Fancy analysis tools don’t necessarily outperform simple ones.

• Even the best analysis tools, if applied inappropriately, can 
produce incorrect or misleading results.
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Helpful Websites
• NCI: http://linus.nci.nih.gov/~brb

– Tech reports, talk slides
– BRB-ArrayTools software

• Berkeley: http://www.stat.berkeley.edu/users/terry/zarray/Html/index.html

• Harvard: http://www.dchip.org

• Hopkins: http://biosun01.biostat.jhsph.edu/~ririzarr/Raffy/

• Jackson Labs: http://www.jax.org/staff/churchill/labsite/

• Stanford:
– http://genome-www5.stanford.edu/MicroArray/SMD/restech.html
– http://www-stat.stanford.edu/~tibs/ (R. Tibshirani)

• Bioconductor: http://www.bioconductor.org/
– R-based, open source pre-processing and analysis tools
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