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Summary 
 

DNA microarrays are a potentially powerful technology for improving diagnostic 
classification, treatment selection, and prognostic assessment. There are, however, many 
potential pitfalls in the use of microarrays that result in false leads and erroneous 
conclusions. Effective use of this technology requires new levels of inter-disciplinary 
collaboration with statistical and computational scientists. This paper provides a review 
of the key features to be observed in developing diagnostic and prognostic classification 
systems based on gene expression profiling. It also attempts to outline some of the steps 
needed to develop initial microarray research findings into classification systems suitable 
for broad clinical application.    
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1. Introduction 
 
DNA microarray experiments require planning. Planning is driven by experimental 
objectives. Good DNA microarray experiments have clear objectives. Microarray studies 
are usually not based on gene specific mechanistic hypotheses, but clear objectives 
ensure that they are focused investigations with a high likelihood of successfully 
answering important biomedical questions. One type of objective commonly encountered 
in DNA microarray experiments is identification of genes differentially expressed among 
pre-defined phenotypic classes of samples. We will refer to this as the class comparison 
objective. Class prediction is a related, but distinct, objective that is often relevant for 
medical studies. Class prediction involves development of a classification function that 
can accurately predict the biologic group, diagnostic category or prognostic stage of a 
patient based on an expression profile of tissue from that patient. With class comparison 
or class prediction, the phenotype classes are defined in advance independently of the 
gene expression data.  
 

There are many published examples of class prediction. Hedenfalk et al. developed a 
predictor of whether a breast tumor came from an individual with a germline BRCA1 or 
BRCA2 mutation based on the gene expression profile of the tumor [1]. Golub et al. 
developed a predictor of whether an acute leukemia was of lymphoblastic or myloblastic 
type [2]. Wang et al. developed a predictor of whether a melanoma would respond to IL2 
based treatment based on the gene expression profile [3].  
 
There is a related class of prognostic prediction problems where the objective is to predict 
patient outcome based on the gene expression data e.g. Shipp et al. [4] and Rosenwald et 
al. [5]. This is similar to class prediction, although outcome may be measured 
continuously. Many of the methodologic issues pertinent to class prediction are also 
important for prognostic prediction. For simplicity of exposition, however, I will focus 
attention on the problem of class prediction for most of the paper and make some 
additional comments at the end about prognostic prediction. 
 
Class discovery involves finding groupings of the samples that are relatively 
homogeneous with regard to gene expression, or finding grouping of the genes that 
appear to be co-expressed. In class discovery the classes are not pre-defined. An example 
of class discovery was the study by Bittner et al. examining expression profiles for 
advanced melanomas [6]. Alizadeh et al. [7] also performed class discovery in examining 
the expression profiles of patients with diffuse large B cell lymphoma. Often the purpose 
of class discovery is to discover clues to heterogeneity of disease pathogenesis. 
 
 
DNA microarray technology is sufficiently mature to support the development of 
powerful diagnostic and prognostic classification. Because it is a genome-wide 
technology, it is tremendously powerful. Many laboratories are not well prepared to use 
the technology effectively, however, as it requires sophistication in study planning and 
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data analysis beyond most previous single gene/protein assays.  Our objective here is to 
highlight important aspects of the process of developing and evaluating gene expression 
based class predictors in order to facilitate the effective use of DNA microarray 
technology for clinical applications. Most of the methods recommended in this paper are 
available in the BRB-ArrayTools software developed by Simon and Peng-Lam [8] and 
available for non-commercial purposes without charge from the National Cancer 
Institute. We also discuss clinical translation of microarray based classification methods.  
 
 
2. Inappropriateness Of Cluster Analysis For Class Prediction 
Cluster analysis is widely used for all types of studies although it is often not effective for 
class comparison or class prediction. Cluster analysis refers to an extensive set of 
methods of partitioning samples into groups based on the pair-wise distances of their 
expression profiles. Cluster analysis is considered an unsupervised method because 
phenotype class information is not utilized. Cluster analysis is generally based on global 
gene expression. The pair-wise distance measures between expression-profiles are 
generally computed with regard to all genes represented on the array, or all genes which 
are well measured with sufficiently high signals. Since the genes that distinguish the 
particular classes of interest may be few in number relative to the full set of genes, the 
pair-wise distances used in cluster analysis may not reflect the influence of these relevant 
genes. Consequently, the clusters obtained may not be closely related to the phenotype 
classes of interest. Cluster analysis does not provide statistically valid quantitative 
information about which genes are differentially expressed between the classes. 
Investigators often use simple average fold change measures or visual inspection of a 
cluster-image display to provide information about differentially expressed genes, but 
these approaches do not account for variability in expression across samples nor do they 
account for multiple comparison issues. One of the most common errors in the analysis of 
DNA microarray data is use of cluster analysis and simple fold change statistics for 
problems of class comparison and prediction. 
 
 
3. Components of Class Prediction 
Most class predictors do not use all of the genes. One step in developing a class predictor 
is determining which genes to include in the predictor. This is generally called feature 
selection.  
 
Feature selection is particularly important in microarray studies because the number of 
variables that are informative for distinguishing the classes of interest may be very small 
relative to the total number of genes represented on the array. The influence of the genes 
that actually distinguish the classes may be lost among the variation of the other genes 
unless we select the informative genes to be utilized by the class predictor. 
 
The second main component of a class predictor is specification of the mathematical 
function that will provide a predicted class label for any given expression vector x. There 
are many kinds of predictor functions such as diagonal linear discriminant analysis, 
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logistic regression [9], nearest neighbor predictors [10], support vector machines [11], 
decision trees [12], and neural networks [13].  
 
Most classifiers predict the class  of a specimen based on a vector x of gene expression 
levels (log ratios or log signal values) and a vector of parameters b. For example the 
model can be written as where the function f corresponds to the type of 
model as described in the previous paragraph and in some cases may have a complex 
form with non-linear terms. The parameters in the b vector often represent weights 
assigned to the predictive variables included in the model. The parameters be assigned 
values before the predictor can provide specific predictions. These parameters are in 
many ways equivalent to the regression coefficients of ordinary linear regression. The 
machine learning literature calls the process of specifying the parameters “learning the 
data” but it is equivalent to fitting the parameters of a non-linear regression model. Even 
neural network models are essentially non-linear regression models, although they are 
often represented as something more exotic [14].    

ĉ

ˆ ( , )c f x b=

 
After selecting the kind of class predictor to be used, the predictor is fitted to a set of 
data. Before the model parameters can be determined, the genes must be selected. There 
is usually at least one parameter to specify for each genes included in the model. If the 
gene expression values are utilized in a non-linear manner, then there will be more than 
one parameter per gene. For example, if the model tries to represent the interaction of 
genes in determining class, then the number of parameters may exceed the square of the 
number of genes included in the model. For some kinds of predictors there is a cut-point 
that must be specified for translating a quantitative predictive index into a predicted class 
label (eg 0 or 1) for binary class prediction problems. Completely specifying the predictor 
means specifying all of these aspects of the predictor, the type of predictor, the genes 
included and the values of all parameters. 
 
4. Estimating Accuracy of a Class Predictor 
It is important to estimate the accuracy of class prediction for future samples for which 
the phenotype class is unknown? Knowing that there are highly statistically significant 
genes that are differentially expressed between the classes is not enough. We want to 
know how accurately we can predict which class a new sample is in. For a future sample, 
we will apply a fully specified predictor developed using the data available today. If we 
are to emulate the future predictive setting in developing our estimate of predictive 
accuracy, we must set aside some of our samples and make them completely inaccessible 
until we have a fully specified predictor that has been developed from scratch without 
utilizing those set aside samples.  
 
To properly estimate the accuracy of a predictor for future samples, the current set of 
samples must be partitioned into a training set and a separate test set [15]. The test set 
emulates the set of future samples for which class labels are to be predicted. 
Consequently the test samples cannot be used in any way for the development of the 
prediction model. This means that the test samples cannot be used for estimating the 
parameters of the model and they cannot be used for selecting the genes to be used in the 
model. This later point is often overlooked.  
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The most straightforward method of estimating the accuracy of future prediction is the 
split-sample method of partitioning the set of samples into a training set and a test set as 
described in the previous paragraph. Rosenwald et al. [5] used this approach successfully 
in their international study of prognostic prediction for large cell lymphoma. They used 
two thirds of their samples as a training set. Multiple kinds of predictors were studied on 
the training set. When the collaborators of that study agreed on a fully specified predictor, 
they accessed the test set for the first time. On the test set there was no adjustment of the 
model or fitting of parameters. They merely used the samples in the test set to evaluate 
the predictions of the model that was completely specified using only the training data. 
 
Cross-validation is an accepted alternative to the split sample method of estimating 
prediction accuracy when it is applied properly. There are several forms of cross-
validation. Here we will describe leave-one-out cross-validation (LOOCV). LOOCV 
starts like split-sample cross validation in forming a training set of samples and a test set. 
With LOOCV, however, the test set consists of only a single sample; the rest of the 
samples are placed in the training set. Cross-validation is similar to the split sample 
method in that the single sample in the test set is placed aside and not utilized in any way 
in the development of the class prediction model. Using only the training set, the 
informative genes are selected and the parameters of the model are fit to the data. Let us 
call M1 the model developed with sample 1 in the test set. When this model is fully 
developed, it is used to predict the class of sample 1. This prediction is made using the 
expression profile of sample 1, but obviously without using knowledge of the true class 
of sample 1. Symbolically, if 1x denotes the complete expression profile of sample 1, 
then we apply model M1 to 1x to obtain a predicted class . This predicted class is 
compared to the true class label c

1̂c
1 of sample 1. If they disagree, then the prediction is in 

error. Comparing the predicted class  to the true class c1̂c 1 for sample 1 is an unbiased 
comparison because the expression profile for sample 1 was not used in any way for 
developing the model M1 on which the prediction  was based.  1̂c
 
 Then a new training set - test set partition is created. This time sample 2 is placed in the 
test set and all of the other samples, including sample 1, are placed in the training set. A 
new model is constructed from scratch using the samples in the new training set. Call this 
model M2 . Model M2 will generally not contain the same genes as model M1. Although 
the same algorithm for gene selection and parameter estimation is used, since model M2 
is constructed from scratch on the new training set, it will in general not contain exactly 
the same gene set as M1. After creating M2, it is applied to the expression profile 2x  of 
the sample in the new test set to obtain a predicted class . If this predicted class does 
not agree with the true class label c

2ĉ
2 of the second sample, then the prediction is in error.  

 
The process described in the previous paragraph is repeated n times where n is the 
number of biologically independent samples. Each time it is applied, a different sample is 
used to form the single-sample test set. During the n steps, n different models are created 
and each one is used to predict the class of the omitted sample. The prediction errors are 
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totaled and that is the leave-one-out cross-validated estimate of the prediction error. With 
two classes, one can use a similar approach to obtain cross-validated estimates of the 
sensitivity, specificity, and ROC curve [16]. 
 
 
If we use all of the data to select genes and construct a model, there is no independent 
data left to validly estimate prediction error. A commonly used but completely invalid 
estimate is called the re-substitution estimate [17]. You use all the samples to develop a 
model M. Then you predict the class of each sample i using it’s expression profile ix ; 

( )îc M x= i . The predicted class labels are compared to the true class labels and the 
errors are totaled.  
 
Simon et al. [17] performed a simulation to examine the bias in estimated error rates for 
class prediction. In a simulated data set, twenty expression profiles of 6000 genes were 
randomly generated from the same distribution. Ten profiles were arbitrarily assigned to 
“Class 1” and the other ten to “Class 2”, creating an artificial separation of the profiles 
into two classes. Since no true underlying difference exists between the two classes class 
prediction will perform no better than a random guess for future biologically independent 
samples. Hence, the estimated error rates for simulated data sets should be centered 
around 0.5 (i.e, ten misclassifications out of twenty).  

 
Figure 1 shows the observed number of misclassifications resulting from each level of 
cross-validation for 2000 simulated data sets. It is well-known that the re-substitution 
estimate of error is biased for small data sets and the simulation confirms this, with an 
astounding 98.2 % of the simulated data sets resulting in zero misclassifications even 
though no true underlying difference exists between the two groups. Moreover, the 
maximum number of misclassified profiles using the re-substitution method was only 
one.  
 
Two types of leave-one-out cross-validation were studied. In one approach the 
differentially expressed genes to be used in the class predictor were selected using all of 
the data before starting the cross-validation process. This is partial cross-validation. With 
proper cross-validation, the gene selection is re-done for each leave-one-out training set.  

 
Figure 1 shows that partial cross-validation is nearly as problematic as no cross-
validation. Cross-validating the prediction rule after selection of differentially expressed 
genes from the full data set does little to correct the bias of the re-substitution estimator: 
90.2 % of simulated data sets still result in zero misclassifications. It is not until gene 
selection is also subjected to cross-validation that we observe results in line with our 
expectation: the median number of misclassified profiles jumps to eleven, although the 
range is large (0 to 20).  

 
The simulation results underscore the importance of cross-validating all steps of predictor 
construction in estimating the error rate. A study of breast cancer also illustrates the 
point: van ′t Veer et al. [18] predicted clinical outcome of patients with axillary node-
negative breast cancer (metastatic disease within 5 years versus disease-free at 5 years) 
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from gene expression profiles, first using the re-substitution method and then using a 
fully cross-validated approach. The investigators controlled the number of misclassified 
recurrent cases (i.e., the sensitivity of the test) in both situations, so here we focus 
attention on the difference in estimated error rates for the disease-free cases. The 
improperly cross-validated method and the properly cross-validation result in estimated 
error rates of 27% (12 out of 44) and 41% (18 out of 44), respectively. The improperly 
cross-validated method results in a seriously biased under-estimate of the error rate, 
probably largely due to over-fitting the predictor to the specific data set. While van ′t 
Veer et al. report both estimates of the error rate, the properly cross-validated estimate 
was reported only in the supplemental results section on the website and the invalid 
estimate received more attention. Another example of this occurred in a study where 
classification trees were built from gene expression data to classify specimens as normal 
colon or colon cancer [19]. The authors used a procedure that only cross-validated steps 
that occurred after selection of genes for inclusion in the predictor from the full data set. 
As our simulation shows, not subjecting gene selection to cross-validation can result in a 
large bias. Other examples are described by Ambroise and McLachlan [20]. 
 
5. Class Prediction Algorithms 
5.1 Feature selection 
The most commonly used approach to feature selection is to identify the genes that are 
differentially expressed among the classes when considered individually. For example, if 
there are two classes, one can compute a t-test or a Mann-Whitney test for each gene. The 
log-ratios or log-signals are generally used as the basis of the statistical significance tests. 
The genes that are differentially expressed at a specified significance level are selected 
for inclusion in the class predictor. The stringency of the significance level controls the 
number of genes that are included in the model. If one wants a class predictor based on a 
small number of genes, the threshold significance level is made very small.  
 
Several authors have developed methods to identify optimal sets of genes which together 
provide good discrimination of the classes [21], [22], [23], [24]. These algorithms are 
generally very computationally intensive, some requiring a large cluster of parallel 
computers. Unfortunately, it is not clear whether the increased computational effort of 
these methods is warranted. In some cases, the claims made do not appear to be based on 
properly cross-validated calculations; all of the data being used to select the genes and 
cross-validation used only for fitting the parameters of the model. Thorough studies 
comparing the performance of such methods to the simpler univariate methods are 
needed.  
 
Some investigators have used linear combinations of gene expression values as predictors 
[9] [25]. Principal components are the orthogonal linear combinations of the genes 
showing the greatest variability among the cases. The principal components are 
sometimes referred to as singular values [26]. Using principal components as predictive 
features provides a vast reduction in the dimension of the expression data, but has two 
serious limitations. One is that the principal components are not necessarily good 
predictors. The second problem is that measuring the principal components requires 
measuring expression of all the genes. The method of gene shaving attempts to provide 
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linear combinations with properties similar to the principal components that does not 
require measuring all of the genes [27].  
 
 
5.2 Class Prediction Algorithm 
Many algorithms have been used effectively with DNA microarray data for class 
prediction. Dudoit et al. [12] compared several algorithms using publicly available data 
sets. The algorithms compared included nearest neighbor classification and several 
variants of linear discriminant analysis and classification trees. A linear discriminant is a 
function  
 

( ) i i
i F

l x w x
∈

=∑                                     (1) 

 
 
where xi denotes the log-ratio or log-signal for the i’th gene, wi is the weight given to that 
gene, and the summation is over the set F of features (genes) selected for inclusion in the 
class predictor. For a two-class problem, there is a threshold value d, and a sample with 
expression profile defined by a vector x of values is predicted to be in class 1 or class 2 
depending on whether ( )l x  as computed from equation (1) is less than or greater than d 
respectively.  
 
Several kinds of class predictors used in the literature have the form shown in (1). They 
differ with regard to how the weights are determined. The oldest form of linear 
discriminant is Fisher’s linear discriminant [13]. The weights are selected so that the 
mean value of ( )l x in class 1 is maximally different from the mean value of ( )l x in class 
2. The squared difference in means divided by the pooled estimate of the within-class 
variance of ( )l x was the specific measure used by Fisher. To compute these weights, one 
must estimate the correlation between all pairs of genes that were selected in the feature 
selection step. The study by Dudoit et al. indicated that Fisher linear discriminant 
analysis did not perform well unless the number of selected genes was small relative to 
the number of samples; otherwise there are too many correlations to estimate and the 
method tends to be un-stable and over-fit the data.  
 
Diagonal linear discriminant analysis is a special case of Fisher linear discriminant 
analysis in which the correlation among genes is ignored [12]. By ignoring such 
correlations, one avoids having to estimate many parameters, and obtains a method which 
performs better when the number of samples is small. Golub’s weighted voting method 
[2] and the compound covariate predictor of Radmacher et al.[15] are similar to diagonal 
linear discriminant analysis and tend to perform very well when the number of samples is 
small. They compute the weights based on the univariate prediction strength of individual 
genes and ignore correlations among the genes.  
 
Support vector machines are very popular in the machine learning literature. Although 
they sound very exotic, linear kernel support vector machines use a predictor of the form 
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of equation (1). The weights are determined by optimizing an error rate criterion, 
however, instead of a least-squares criterion as in linear discriminant analysis [11]. 
Although there are more complex forms of support vector machines, they appear to be 
inferior to linear kernel SVM’s for class prediction with large numbers of genes [28].  
 
Khan et al.[25] reported accurate class prediction among small, round blue cell tumors of 
childhood using an artificial neural network. The inputs to the ANN were the first ten 
principal components of the genes; that is, the l0 orthogonal linear combinations of the 
genes that accounted for most of the variability in gene expression among samples. Their 
neural network used a linear transfer function with no hidden layer and hence it was a 
linear perceptron classifier of the form of equation (1). Most true artificial neural 
networks have a hidden layer of nodes, use a non-linear transfer functions and individual 
features as inputs. Such a “real” neural network would likely not perform as well as the 
linear model of Khan et al. because of the number of parameters to be estimated would be 
too large for the available number of samples.  
 
In the study of Dudoit et al. [12], the simplest methods, diagonal linear discriminant 
analysis and nearest neighbor classification, performed as well or better than the more 
complex methods. Nearest neighbor classification is based on a feature set F of genes 
selected to be useful for discriminating the classes and a distance function ( , )d x y which 
measures the distance between the expression profiles x and y of two samples. The 
distance function utilizes only the genes in the selected set of features F. To classify a 
sample with expression profile y , compute ( , )d x y for each sample x in the training 
set. The predicted class of y  is the class of the sample in the training set which is closest 
to y with regard to the distance function. A variant of nearest neighbor classification is k-
nearest neighbor classification. For example with 3-nearest neighbor classification, you 
find the three samples in the training set which are closest to the sample y . The class 
which is most represented among these three samples is the predicted class for y .  
 
 
Dudoit et al. also studied some more complex methods such as classification trees and 
aggregated classification trees. These methods did not appear to perform any better than 
diagonal linear discriminant analysis or nearest neighbor classification. Ben-Dor et al. 
[28] also compared several methods on several public datasets and found that nearest 
neighbor classification generally performed as well or better than more complex methods. 
 
 
 
 
6. Clinical Applicability 
Many of the publications on microarray based diagnostic classification are proof-of-
principle studies for which established diagnostic methods already exist. For example, 
distinguishing tumors of different organs or that originate in very distinct cell types is 
usually a relatively easy diagnostic problem by traditional histopathologic means. It is 
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also usually an easy problem for microarray class prediction because there may be 
hundreds of differentially expressed genes. In some cases it may take very few samples 
of each class in order to develop an accurate class predictor..  
 
Using gene expression profiles to distinguish among disease states that appear similar 
histologically or predicting response to treatment of patients with the same stage of a 
given type of disease are generally more difficult tasks requiring more samples. There are 
an increasing number of examples of success for clinically relevant problems. For 
example, Pomeroy et al. were able to use expression profiles to distinguish among several 
types of embryonal tumors of the central nervous system and to predict clinical outcome 
of children with medulloblastomas. Shipp et al. [4] and Rosenwald et al. [5] developed 
gene expression based predictors of long-term survival for patients with large B-cell 
lymphoma who received combination chemotherapy. Vasselli et al. [29] developed a 
gene expression based prognostic index for patients with kidney cancer, and Wang et al.  
[3] developed a gene expression based predictor of complete response to IL2 based 
therapy for patients with advanced melanoma. van ′t Veer et al. have published a gene 
expression based class predictor of long term disease free survival for stage I patients 
with breast carcinoma [18] [30] and similar studies have been reported in a wide range of 
diseases. 
 
6.1 Prognostic Markers 
In oncology, in spite of the extensive literature on cancer prognostic markers, relatively 
few have been adopted into clinical practice. There are often conflicting literature reports 
on prognostic markers and the process of development of a prognostic marker is much 
less clearly defined than is the process of drug development [31]. Most of the problems 
that have hindered the study and development of prognostic markers exist for DNA 
microarray based expression profiles as markers. For example, there are multiple 
platforms and protocols for measuring expression profiles, most studies do not evaluate 
either inter-laboratory assay reproducibility or intra-laboratory reproducibility on 
multiple samples of the same tissue specimen.  
 
Some of the problems that exist in the prognostic marker literature derive from the non-
prospective nature of most marker studies. Clinical drug trials are generally prospective, 
with patient selection criteria, primary endpoint, hypotheses and analysis plan specified 
in advance in a written protocol. The consumers of clinical trial reports have been 
educated to be skeptical of data dredging to find something “statistically significant” to 
report in clinical trials. They are skeptical of analyses with multiple endpoints or multiple 
subsets, knowing that the chances of erroneous conclusions increase rapidly once one 
leaves the context of a focused single hypothesis clinical trial.  
 
Prognostic marker studies are generally performed with no written protocol, no eligibility 
criteria, no primary endpoint or hypotheses and no defined analysis plan. The analysis is 
performed on tissue for previously treated patients for whom enough information and 
enough tissue is available. Consequently, the analysis is often much less structured, the 
patient population more heterogeneous, and there are many subset analyses.  
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Because of the number of genes available for analysis analysis, microarray data can be a 
veritable fountain of false findings unless statistical care is applied. This is one of the 
reasons why it is important that the authors of microarray based publications with clinical 
implications should make their raw data available for independent analysis by others. 
Independent analysis is not sufficient, however, for establishing clinical applicability of 
microarray findings.  
 
The initial study should be conducted with attention to the statistical principles described 
in previous sections. For example, if the study has not been correctly internally cross-
validated, then the claims are not likely to be worth confirming or attempting to translate 
to clinical applicability. Assuming that the initial study is performed properly, however,  
it might be considered a phase II study, and the next step should be to conduct a phase III 
study that is focused on testing the specific classifier developed by the initial study [31]. 
We will assume that the outcome of the initial study is a microarray based classifier that 
claims to distinguish patients who have good outcome following some specified type of 
treatment. The phase III study should be conducted with a written protocol. One of the 
components of the protocol is to define patient selection criteria so that the study is 
focused on a medically meaningful population. Often in prognostic marker studies the 
patient population is very broadly defined and the fact that a marker is “prognostic” may 
not have therapeutic relevance. The marker may be prognostic because it is correlated 
with disease stage or some other know prognostic marker. Broad populations are also 
often heterogeneously treated and so finding that a marker is prognostic in such a 
population may be difficult to interpret. Prognostic markers that do not have therapeutic 
implications are rarely used. Consequently, it is important to focus the phase III study on 
a patient population which is medically meaningful from a therapeutic point of view. The 
population should be adequately diagnosed and staged using conventional procedures and 
be relatively homogeneous with regard to diagnosis, stage and treatment.  
 
The phase III trial should be designed to test the classifier developed in the previous 
study. The classifier should be fully specified in the protocol including the genes 
included, the mathematical form of the classifier, parameter values and cut-off thresholds 
for distinguishing the classes or prognostic groups.  
 
The phase III study should attempt to perform the microarray assay in a manner as 
similar as possible to the way it would be performed broadly outside of a research setting 
if the diagnostic classifier were adopted. Consequently, careful thought is required in 
determining whether the same platform should be used for the phase III trial as for the 
phase II trial. If the platform is changed, then clearly some intermediate steps will be 
needed to translate the classification algorithm from use on the phase II platform to the 
platform used in the phase III trial.  
 
Even if there is not a change in platform, intermediate steps may be required to prepare 
the classifier for use with multiple laboratories performing the array profiling. The phase 
II trial may have had all of the microarrays performed at a single location by a research 
laboratory and it may be advisable to conduct the phase III trial in a manner more similar 
to the way it would be performed if the classifier were adopted for national use. 
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Generally this will mean that several laboratories will be conducting the microarray 
assays. Consequently, the protocol for the phase III study should specify procedures to be 
used for conducting the assay. It is also useful to conduct pilot studies of inter-laboratory 
reproducibility by shipping pieces of tissue to different laboratories. This study can also 
address tissue heterogeneity issues. Unless inter-laboratory reproducibility is sufficiently 
high, it is not advisable to proceed with the phase III trial.  
 
If the classifier was developed using a dual-label array platform, then use of the classifier 
in other laboratories requires that they use the same common reference RNA as was used 
for the initial study. Since different batches of the common reference will be utilized for 
classifying subsequent patients, calibration studies will generally be required to ensure 
that the expression profile of the common reference does not change and to adjust the 
classifier for small changes.  
 
One important design issue for the phase III trial is whether the study will be performed 
with prospective accrual of patients or retrospectively based on frozen tissue. Prospective 
accrual is desirable for many reasons. One can never be sure that the patients for whom 
one has adequate preserved tissue are representative of the population of patients 
presenting for treatment. It is difficult to assure that a retrospective cohort was adequately 
staged and treated, and the data available may be incomplete. It is also difficult to assess 
whether a diagnostic procedure is practical unless it is studied in the real-time context of 
presenting patients who need to be evaluated and treated. Prospective accrual is also 
important for evaluating the diagnostic classifier in the context of real-time tissue 
handling. Because microarrays are RNA assays, tissue handling issues are of great 
importance.  
 
The objective of the phase III trial is to test the hypothesis that the classifier can separate 
the uniformly staged and treated patients into groups of differing outcome. Consequently, 
the treatment should not generally be changed based on the microarray classifier. In some 
cases with other kinds of markers, phase III trials are designed to determine whether a 
risk based treatment assignment strategy can improve patient outcome. That is a more 
complex and study. For example, the classifier may divide patients into a predicted good 
prognosis group G, and a poor prognosis group P under standard therapy S. The clinical 
trial may be structured to assign standard treatment S to patients in G, but use a new 
experimental treatment E for patients in P. Such a trial would be difficult to interpret, 
however, because there is no concurrent control group for evaluating the prognosis based 
treatment assignment. One could randomize patients in P to either receive standard 
treatment S or experimental treatment E. This would not provide a test of the classifier. 
The new treatment E might have been superior to the standard S both for good prognosis 
and poor prognosis patients and the prognostic classifier might not be needed. By 
randomizing both good prognosis and poor prognosis patients to treatments E or S and 
comparing treatments within the two subsets separately one can determine whether risk 
based treatment assignment is useful, but this would require a very large study.  
 
One could use a trial design to randomize all patients to either receive standard treatment 
S or to receive a prognosis group based treatment assignment. The latter might be for all 
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patients in G to receive S and for all patients in P to receive E. Such a trial is properly 
controlled, but it has other defects. It would require a huge sample size because the good 
risk patients in both randomization groups receive the same treatment. Consequently the 
differences observed between the two groups will be limited. The other main defect is 
that this trial is really a trial of treatments S versus E for the poor risk patients. If 
experimental treatment E is not more effective than S for poor risk patients, then even a 
huge randomized trial will be negative. If E is better than S for poor risk patients, then the 
classifier is useful because it was used to identify the poor risk patients. A defect of the 
design, however, is that the evaluation of the classifier is intertwined with the evaluation 
of the new treatment E. On the other hand, this design tests whether the classifier is 
clinically useful for treatment selection. 
 
Often, it may be better to confirm the effectiveness of the classifier for distinguishing risk 
groups without tying its evaluation to some specific new treatment. If the classifier can 
effectively classify patients into prognosis groups, then it may be useful to a range of 
different investigators who are studying a variety of new treatments. Consequently the 
simpler design of treating patients uniformly independent of the value of the classifier 
may be preferable. Such a study can be performed most rapidly using frozen tissue when 
available for an appropriate cohort of patients. In some cases it may be effective to first 
conduct a confirmatory trial based on archived tissue, but otherwise structured as a phase 
III trial as described here. If this trial confirms the effectiveness of the classifier, then a 
prospective trial could be considered.   
 
6.2 Pharmacogenomic Markers 
Two important developments in therapeutics are the use of molecularly targeted drugs 
and the growing recognition that many common diseases are molecularly and genetically 
heterogeneous. Although one hears debate about whether pharmaceutical companies want 
to develop drugs focused on molecularly defined subsets of disease populations, there are 
compelling advantages to doing so. If one has an a classifier for identifying a subset of 
patients likely to benefit from a given treatment, then a clinical trials focused on the 
subset become enormously more efficient than a trial that includes the full range of 
patients. In the context of treatments with side effects (most drugs), and treatments paid 
for by third parties (most drugs), it will become increasingly more difficult to develop 
drugs in the traditional manner. Molecularly targeted drugs will be developed on targeted 
populations, and the effective ones will have a greater benefit to side-effect ratio and 
benefit to cost ratio than many current drugs in non-targeted application.  
 
Microarray classifiers distinguishing responders from non-responders can be developed 
during phase II clinical trials of a new treatment. The classifiers should be developed 
using the statistical practices described in previous sections of this paper, because the 
pace of drug development will dictate that the classifier be used in selecting patients for 
the randomized phase III clinical trials of the new treatment. It will be useful to have 
phase II experience with patients treated with the standard treatment S as well as those 
treated with the new treatment E so that a classifier can be developed to identify patients 
who are predicted to be more responsive to the new treatment E than to standard 
treatment S.  
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This approach is outlined in Figure 2 for a phase III superiority trial comparing the new 
treatment E to a standard treatment S with pre-screening of patients using the classifier 
developed in phase 2 trials. Only patients predicted to be responsive to treatment E are 
randomized. The treatment could potentially also be evaluated by a separate clinical trial 
in patients not predicted to be responsive to E using the classifier but this could be a 
difficult trial to get patients and physicians to participate in.  
 
Having the new treatment E developed in the context of a targeted population obviously 
introduces complexities as well as potential benefits. If the targeted phase III trial is 
successful, a widely applicable assay is needed for the delivery of the new treatment 
broadly. This is always a challenge, and is certainly no simpler for an RNA based assay 
such as a microarray based classifier. The developmental steps for studying inter-
laboratory reproducibility and intra-specimen reproducibility as described in section 6.1 
are no less important in the context of targeted drug development. 
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Figure Legends 

 

Figure 1. Effect of various levels of cross-validation on the estimated error rate of a class 
predictor derived from 2000 simulated datasets. Class labels were arbitrarily assigned to 
the specimens within each dataset, so poor classification accuracy is expected. Class 
prediction was performed on each dataset as described in [17], varying the level of leave-
one-out cross-validation. Vertical bars indicate the proportion of simulated datasets 
resulting in a given number of misclassifications. Figure previously appeared in Simon et 
al. [17].  
 
Figure 2. Block diagram of strategy for utilizing gene expression profiling in clinical 
development of a new treatment (E). Gene expression based predictor of patients likely 
to respond to E is developed during Phase II studies. Only patients predicted to be 
responsive to E are entered into randomized Phase III trials comparing E to standard 
treatment S.    
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Key Issues 

 

• DNA microarray technology is sufficiently mature for the development of 
medically important diagnostic and prognostic classification systems 

 
• Microarray based classification systems are likely to be used only if they are 

therapeutically relevant 
o Therapeutic options are available 
o Patients included in microarray studies constitute a uniformly staged 

therapeutically meaningful group  
• Microarray based response predictors developed during phase II treatment trials 

can serve for the selection of patients for highly efficient phase III trials 
 

• DNA microarray data is often improperly analyzed, using cluster analysis where 
more powerful supervised methods are preferable 

 
• Because the number of candidate genes that can be used in predictive models is 

orders of magnitude larger than the number of cases in most microarray studies: 
o Statistical methods must be properly used to avoid misleading claims.  
o Simple predictive models generally perform best for microarray data. The 

hype associated with complex models is often mis-guided. 
 

• Invalid claims are often made for microarray based classification systems and 
classification algorithms because of a failure to properly cross-validate 
predictions 

o Cross-validation based on a pre-selected set of predictive genes is invalid 
 

• Confirmatory phase III trials of fully specified gene expression based 
classification systems are needed before such systems are adopted into medical 
practice. The structure of such phase III trials is discussed.  
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Five Year Views 
 

• DNA microarrays will be a standard laboratory tool for investigating biological 
mechanisms, discovering new disease taxonomies and developing therapeutically 
relevant diagnostic tests. . 

 
• DNA microarrays will be an integral tool for clinical therapeutics in many disease 

areas. In clinical drug development, transcription profiling of specimens from 
responding and non-responding participants in phase II studies of a drug will 
enable response predictors to be developed. Such predictors will be used to select 
patients for phase III trials thereby increasing the efficiency of clinical 
development, and improving the therapeutic index of new drugs. This process will 
avoid many of the delays and uncertainties of developing assays for patient 
selection when biological mechanisms and pathways are incompletely 
understood. 

 
• Microarray based predictive assays accepted into clinical practice will be those 

that are therapeutically relevant and biologically plausible. 
 

• Elucidation of the biologic basis of disease and development of effective 
therapeutics will increasingly require inter-disciplinary teams of biologists and 
computational/statistical scientists working together in new organizational 
structures not currently found in industry, government or academia. 
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