Statistical Analysis of Microarray Data

Richard Simon Lisa M. McShane Michael D. Radmacher

Biometric Research Branch National Cancer Institute

1

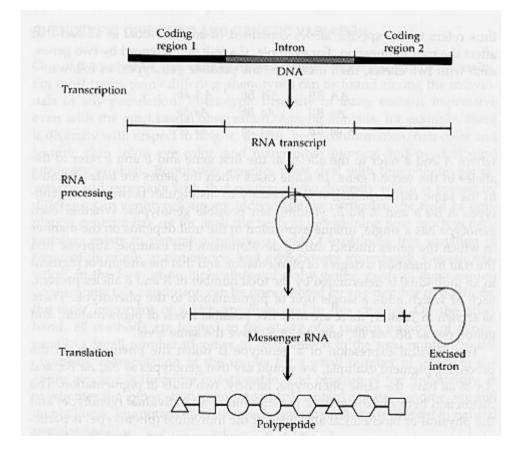
Outline

- 1) Introduction: Biology & Technology
- 2) Data Quality & Image Processing
- 3) Normalization & Filtering
- 4) Study Objectives & Design Considerations
- 5) Analysis Strategies Based on Study Objectives

Outline

- 1) Introduction: Biology & Technology
- 2) Data Quality & Image Processing
- 3) Normalization & Filtering
- 4) Study Objectives & Design Considerations
- 5) Analysis Strategies Based on Study Objectives

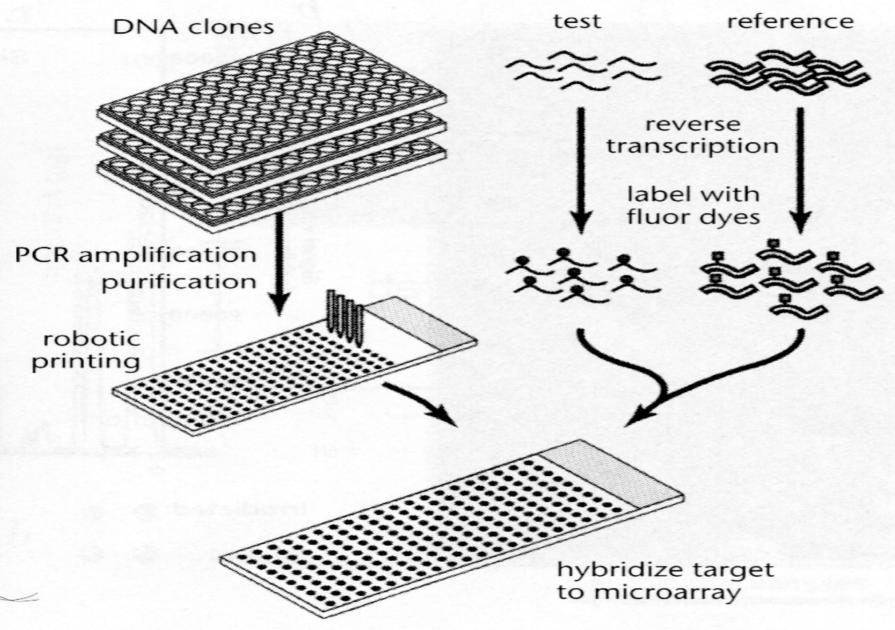
- All cells of a multi-cellular organism contain essentially the same DNA
- Cells differ in function based on the spectra of which genes are expressed and the level of expression
- Proteins do the work of cells and gene expression determines the intra-cellular concentration of proteins
- mRNA is an intermediate product of gene expression; a gene is transcribed into a mRNA molecule which is then translated into a protein molecule

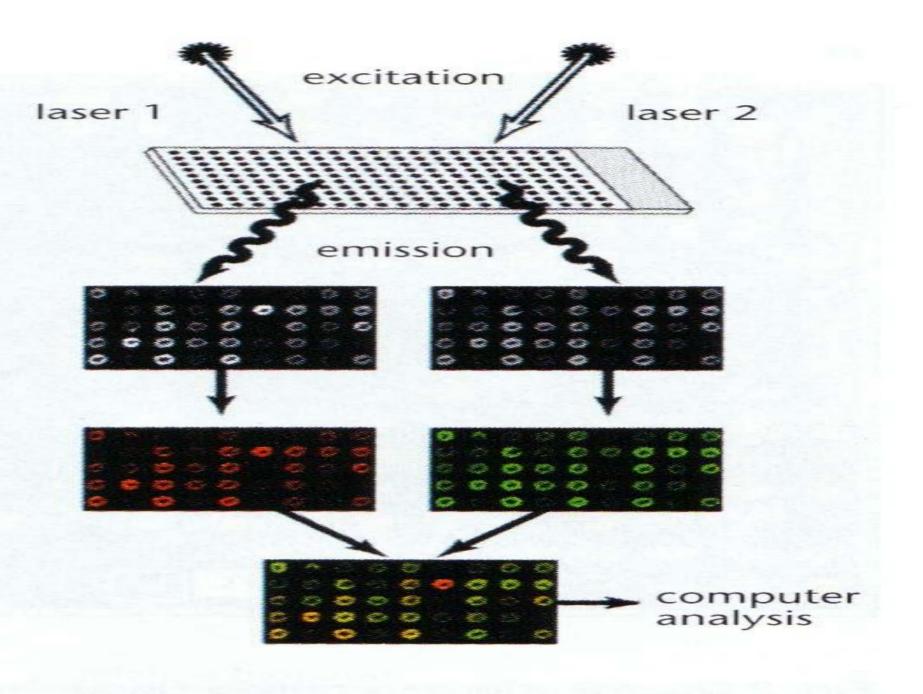


Gene Expression Microarrays

- Permit simultaneous evaluation of expression levels of thousands of genes
- Main platforms
 - cDNA arrays (glass slide)
 - Schena et al., Science, 1995
 - Oligo arrays (glass wafer "chip")
 - Lockhart et al., Nature Biotechnology, 1996
 - Affymetrix website (http://www.affymetrix.com)
 - Nylon filter arrays

cDNA Array



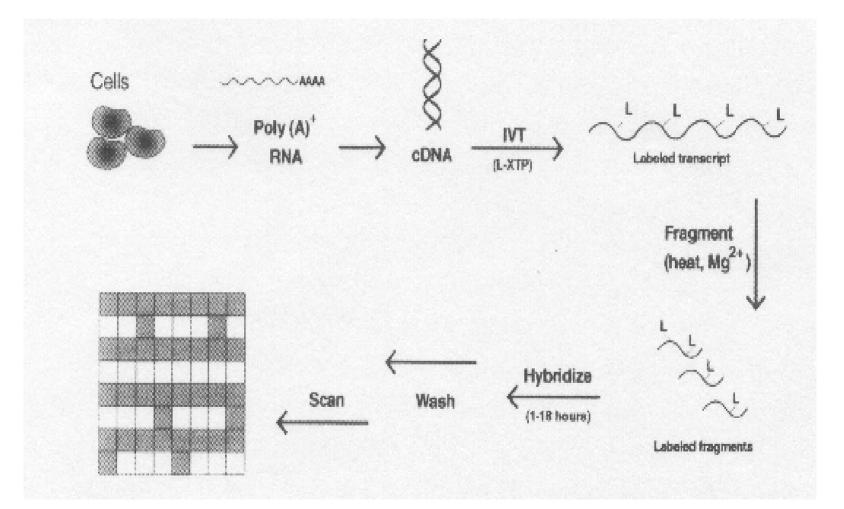


cDNA Arrays

- Each gene represented by one spot (occasionally multiple)
- Two-color (two-channel) system
 - Two colors represent the two samples competitively hybridized
 - Each spot has "red" and "green" measurements associated with it

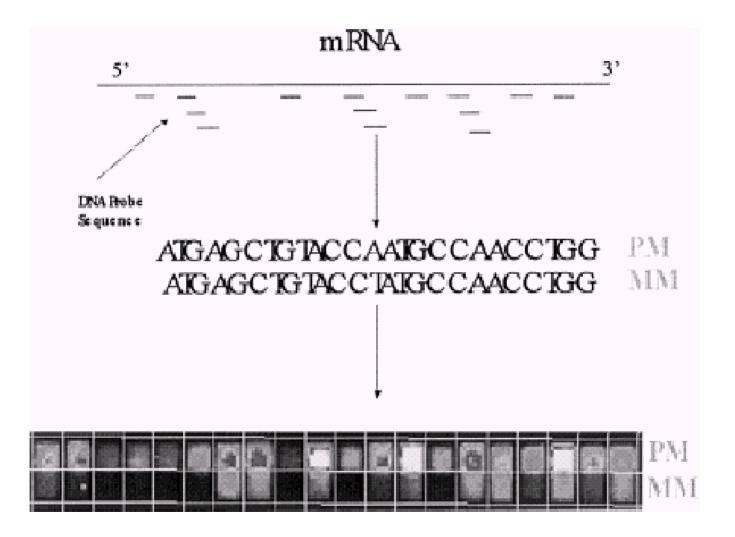
[Affymetrix] Hybridization Oligo Array

Oligo Array: Assay procedure



(Figure 1 from Lockhart et al., Nature Biotechnology, 1996)

Oligo Arrays: Perfect Match - Mismatch Probe Pairs

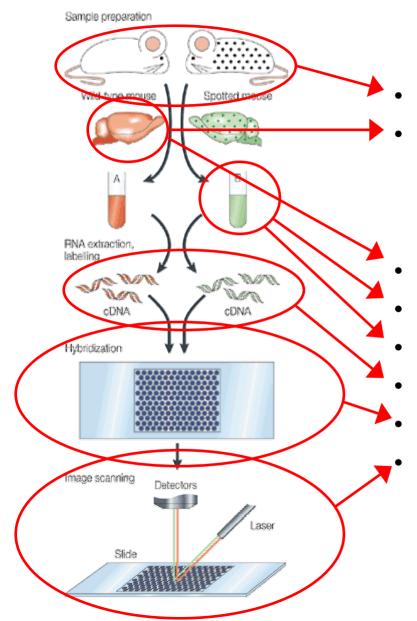


(Figure 2 from Schadt et al., Journal of Cellular Biochemistry, 2000)

Oligo Arrays

- Single sample hybridized to each array
- Each gene represented by a "probe set"
 - One probe type per array "cell"
 - Typical probe is a 25-mer oligo
 - 11-20 PM:MM pairs per probe set(PM = perfect match, MM = mismatch)

Image of a Scanned Affymetrix Gene Chip



(Geschwind, Nature Reviews Neuroscience, 2001)

Sources of Variability (cDNA Array Example)

- Biological Heterogeneity in Population
- Specimen Collection/ Handling Effects
 - Tumor: surgical bx, FNA
 - Cell Line: culture condition, confluence level
- Biological Heterogeneity in Specimen
- RNA extraction
- **RNA** amplification
- Fluor labeling
- Hybridization
- Scanning
 - PMT voltage
 - laser power

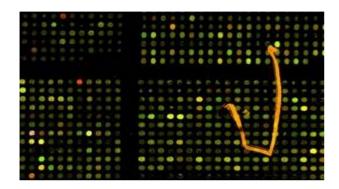
Outline

 Introduction: Biology & Technology
 Data Quality & Image Processing
 Normalization & Filtering
 Study Objectives & Design Considerations
 Analysis Strategies Based on Study Objectives

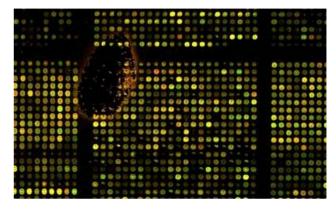
Slide Quality

A "good" quality cDNA array

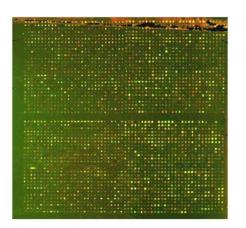
cDNA Arrays: Slide Quality



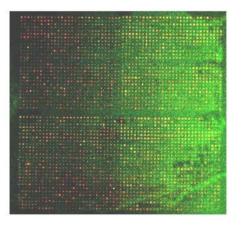
Scratch?



Bubble



Edge effect



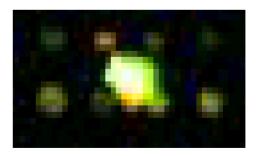
Background haze

cDNA Arrays: Spot Quality

Poorly defined borders

Large holes

Saturated spot



Dust specs

Oligo Arrays: Quality problems due to debris

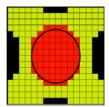
(Figure 1 from Schadt et al., Journal of Cellular Biochemistry, 2000)

cDNA Arrays: Image Processing

- Segmentation
- Background correction & signal calculation
- Spot flagging criteria
- Gene-level summaries

cDNA Arrays: Segmentation

• Segmentation - separation of feature (F) from background (B) for each spot.



(See software documentation)

- Summary measures computed for F
 - Intensity: mean or median over pixels
 - Additional measures: SD, # pixels (size)

cDNA Arrays: Background Correction & Signal Calculation

- No background correction Signal = F intensity
- Local background correction Signal = F intensity - B_{local}
- Regional background correction Signal = F intensity - B_{regional}

cDNA Arrays: Flagging Spots for Exclusion

A spot is excluded from analysis if "signal" or "signalto-noise" measure(s) at that spot fail to exceed a threshold. Several criteria can be used:

- F (F-B)/SD(B)
- F-B Spot Size
- F/B

Excluding Entire Arrays or Regions

- Too many spots flagged
- Narrow range of intensities
- Uniformly low signals

cDNA Arrays: Gene-level Summaries

- Model-based methods
 - Work directly on signals from two channels (two colors)
- Ratio methods
 - Red signal/Green signal

Oligo Arrays: Image Processing

- Grid alignment to probe cells
- Summarize over probe sets to get gene expression indices
 - Detection calls present/absent
- See Affymetrix documentation:
 - Affymetrix website (<u>http://www.affymetrix.com</u>)
 - Affymetrix Microarray Suite User Guide

Oligo Arrays: Probe Set (Gene) Summaries

- $AvDiff_i = \Sigma(PM_{ij}-MM_{ij})/n_i$ for each probe set i (original Affymetrix algorithm)
- MBEI_i = θ_i estimated from PM_{ij}- MM_{ij} = $\theta_i \phi_j + \varepsilon_{ij} \Rightarrow$ weighted average difference (Model-Based Expression Index, Li and Wong, *PNAS*, 2001)
- Other algorithms e.g. address issues of negative or outlier differences
 - Corrected or global backgrounds, robust measures, etc.
 - "New" Affymetrix algorithm
 - Irizarry *et al.*, 2002
 - (http://biosun01.biostat.jhsph.edu/~ririzarr/papers)
 - PM only (Naef et al. referenced in Irizarry et al., 2002)

Outline

 Introduction: Biology & Technology
 Data Quality & Image Processing
 Normalization & Filtering
 Study Objectives & Design Considerations
 Analysis Strategies Based on Study Objectives

Need for Normalization for cDNA Array Data

- Unequal incorporation of labels
 green better than red
- Unequal amounts of sample
- Unequal PMT voltage

Normalization Methods for cDNA Array Data

- Model-based methods
 - Normalization incorporated into model
- Ratio-based methods
 - Median (or Mean) Centering Method
 - Lowess Method
 - Multitude of other methods

Chen et al., Journal of Biomedical Optics, 1997

Yang et al. (http://oz.berkeley.edu/users/terry/zarray)

- Scaling factors, separately by printer pin, etc.

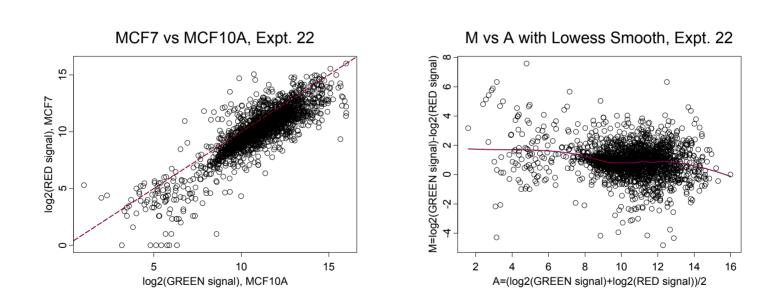
Median (or Mean) Centering

MCF7 vs MCF10A, Expt. 3

In plot of log(red signal) versus log(green signal), if point scatter is parallel to 45° line, adjust intercept to 0.

Subtract median or mean log-ratio (computed over all genes on the slide or only over housekeeping genes) from each log-ratio.

Lowess Normalization: M vs A plots Yang *et al.* (http://oz.berkeley.edu/users/terry/zarray)



 $M = \log_2(\text{GREEN signal}) - \log_2(\text{RED signal})$ $A = (\log_2(\text{GREEN signal}) + \log_2(\text{RED signal}))/2$

Normalization for Oligo Arrays

- Need
 - Variations in amount of sample or environmental conditions
 - Variations in chip, hybridization, scanning
- Methods
 - Median, lowess, quantile adjustments, . . .
 - Across probe cells or across genes summaries?
 - Adjust to fixed value or to "reference" array

Filtering Genes

- "Bad" values on too many arrays.
- Not differentially expressed across arrays.

- Variance (assumes approx. normality) Let $s_i^2 = sample$ variance of gene *i* (log) measurements across *n* arrays; i = 1, 2, ..., k.

Exclude gene *i* if

(*n*-1) $s_i^2 < \chi^2(1-\alpha, n-1) \times median(s_1^2, s_2^2, ..., s_k^2)$.

Fold difference

Examples: Max/Min < 3 or 4(95th percentile/5th percentile) < 2 or 3

Outline

- 1) Introduction: Biology & Technology
- 2) Data Quality & Image Processing
- 3) Normalization & Filtering
- 4) Study Objectives & Design Considerations
- 5) Analysis Strategies Based on Study Objectives

Design and Analysis Methods Should Be Tailored to Study Objectives

- Class Comparison (supervised)
 - For predetermined classes, establish whether gene expression profiles differ, and identify genes responsible for differences
- Class Discovery (unsupervised)
 - Discover clusters among specimens or among genes
- Class Prediction (supervised)
 - Prediction of phenotype using information from gene expression profile

Class Comparison Examples

- Establish that expression profiles differ between two histologic types of cancer
- Identify genes whose expression level is altered by exposure of cells to an experimental drug

Class Discovery Examples

- Discover previously unrecognized subtypes of lymphoma
- Identify co-regulated genes

Class Prediction Examples

- Predict from expression profiles which patients are likely to experience severe toxicity from a new drug versus who will tolerate it well
- Predict which breast cancer patients will relapse within two years of diagnosis versus who will remain disease free

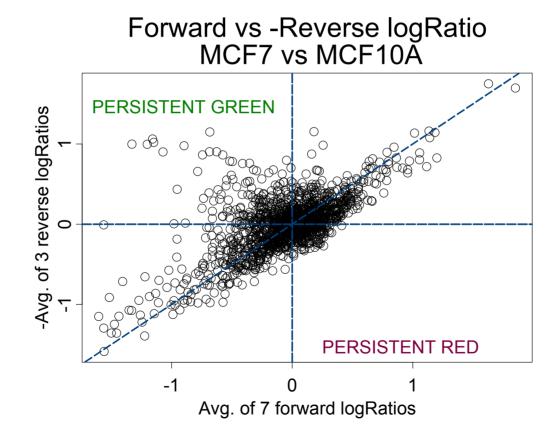
Design Considerations

- Controls
- Levels of replication
- Allocation of samples to (cDNA) array experiments
 - Kerr and Churchill, *Biostatistics*, 2001
 - Dobbin and Simon (http://linus.nci.nih.gov/~brb)

Controls

- Multiple clones (cDNA arrays) or probe sets (oligo arrays) for same gene spotted on array
- Spiked controls (e.g. yeast or *E. coli*)
- Reverse fluor experiments (cDNA arrays)

cDNA Arrays: Reverse Fluor Experiments



Levels of Replication

- RNA sample divided into multiple aliquots
- Multiple RNA samples from a specimen
- Multiple subjects from population(s)

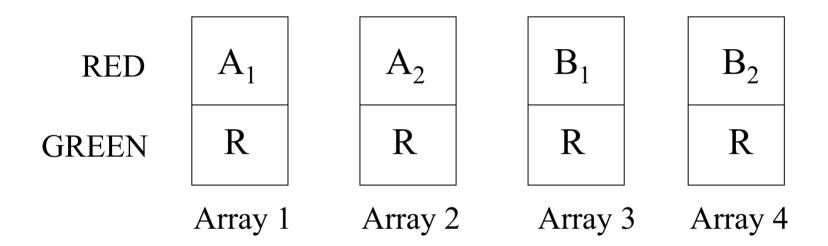
Levels of Replication

• For comparing classes, replication of samples should generally be at the "subject" level because we want to make inference to the population of "subjects", not to the population of sub-samples of a single biological specimen.

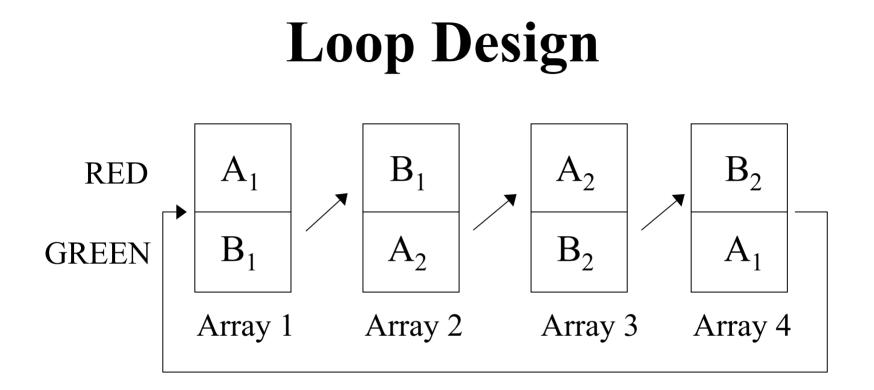
Class Comparison: Allocation of Specimens to cDNA Array Experiments

- Reference Design
- Loop Design
 - Kerr and Churchill, Biostatistics, 2001
- Block Design

Reference Design



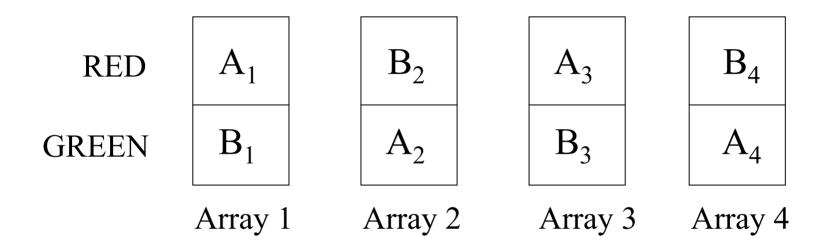
 $A_i = i$ th specimen from class A $B_i = i$ th specimen from class B R = aliquot from reference pool



 A_i = aliquot from *i*th specimen from class A B_i = aliquot from *i*th specimen from class B

(Requires two aliquots per specimen)

Block Design



 $A_i = i$ th specimen from class A $B_i = i$ th specimen from class B

Comparison of Designs

- For class discovery, a **Reference** design is preferable because of large gains in cluster performance.
- For class comparisons . . .
 - With a fixed number of arrays, Block design is more efficient than Loop or Reference design, but Block design precludes clustering.
 - With a fixed number of specimens, Reference design is more efficient than Loop or Block design when intraclass variance is "large".

Sample Selection

- Experimental Samples
 - A random sample from the population under investigation? Biases?
 - How many samples are needed?
- Reference Sample (cDNA array experiments using reference design)
 - In most cases, does not have to be biologically relevant.
 - Expression of most genes, but not too high.
 - Same for every array
 - Other situations exist (e.g., matched normal & cancer)

Sample Size Planning

- No comprehensive method for planning sample size exists for gene expression profiling studies.
- In lieu of such a method...
 - Plan sample size based on comparisons of two classes involving a single gene.
 - Make adjustments for the number of genes that are examined.

Sample Size Planning

GOAL: Identify genes differentially expressed in a comparison of pre-defined classes of specimens.

• Total sample size when comparing two equal sized, independent groups:

$$n = 4\sigma^2(z_{\alpha/2} + z_\beta)^2/\delta^2$$

where δ = mean difference between classes σ = standard deviation

 $z_{\alpha/2}$, z_{β} = standard normal percentiles

- Choose α small, e.g. $\alpha = .001$
- Alternative formulas for unequal, paired, or multiple groups

Outline

- 1) Introduction: Biology & Technology
- 2) Data Quality & Image Processing
- 3) Expression Measures, Normalization & Filtering
- 4) Study Objectives & Design Considerations
- 5) Analysis Strategies Based on Study Objectives

Analysis Strategies for Class Comparisons

- Model-based methods
- Global tests
- Multiple testing procedures to identify differentially expressed genes

Model-based Methods for cDNA Arrays

- Kerr *et al., Journal of Computational Biology*, 2000
- Lee *et al., PNAS*, 2000
- Kerr and Churchill, Biostatistics, 2001
- Wolfinger *et al., Journal of Computational Biology*, 2001

Model-based Methods for Analysis of cDNA Array Data: ANOVA for Logarithm of Background Adjusted Intensities

- First Stage Normalization Model
 - Array
 - Dye
 - Array * Dye
 - Variety (Class)
 - Sample within variety

ANOVA for Logarithm of Background Adjusted Intensities

- Gene-Variety Second Stage Models Fitted to Residuals from Normalization Model
 - Gene
 - Array by Gene
 - Variety by Gene
 - Sample within Variety by Gene
- Gene-Variety Models Fitted Separately by Gene

Gene-Variety Model

- $r = G_g + AG_{ag} + VG_{vg} + SG_{sg} + \varepsilon$
- $\epsilon \sim N(0,\sigma_g^2)$
- Efficiency of design based on variance of estimators of VG_{ig} - VG_{jg}
- To study efficiency, assume $SG_{sg} \sim N(\mu_g, \tau_g^2)$

Global Tests for Differences Between Classes

- Choice of summary measure of difference Examples:
 - Sum of squared univariate t-statistics
 - Number of genes univariately significant at 0.001 level
- Statistical testing by permutation test

Multiple testing procedures: Identifying differentially expressed genes while controlling for false discoveries*

- *Expected Number* of False Discoveries E(FD)
- Expected Proportion of False Discoveries E(FDP) = False Discovery Rate (FDR)
- Actual Number of False Discoveries FD
- Actual Proportion of False Discoveries FDP

*False discovery = declare gene as differentially expressed (reject test) when in truth it is not differentially expressed

Simple Procedures

• Control $E(FD) \le u$

- Conduct each of k tests at level u/k

- Control $E(FDP) \le \gamma$
 - FDR procedure
- Bonferroni control of familywise error (FWE) rate at level α
 - Conduct each of k tests at level α/k
 - At least $(1-\alpha)100\%$ confident that FD = 0

False Discovery Rate (FDR)

- FDR = *Expected* proportion of false discoveries among the tests declared significant
- Procedure^{*} to control FDR $< \gamma$:
 - Order p-values $P_{(1)} < P_{(2)} < \ldots < P_{(k)}$
 - Reject tests 1, 2, . . ., i where i is the largest index satisfying $P_{(i)}k < i\gamma$
 - Control not proven in all cases

*Attributed to Eklund by Seeger (1968), studied by Benjamini and Hochberg (1995) and Yekutieli and Benjamini (submitted)

Problems With Simple Procedures

- Bonferroni control of FWE is very conservative
- Controlling *expected* number or proportion of false discoveries may not provide adequate control on *actual* number or proportion

Additional Procedures

- "SAM" Significance Analysis of Microarrays
 - Tusher et al., PNAS, 2001
 - Estimate FDR
 - Statistical properties unclear
- Empirical Bayes
 - Efron et al., JASA, 2001
 - Related to FDR
- Step-down permutation procedures
 - Korn *et al.*, 2001 (http://linus.nci.nih.gov/~brb)
 - Control number or proportion of false discoveries

Step-down Permutation Procedures (Korn et al., 2001)

Want procedures to allow statements like:

- **FD Procedure**: "We are 95% confident that the (actual) number of false discoveries is no greater than 2."
- **FDP Procedure**: "We are 95% confident that the (actual) proportion of false discoveries does not exceed .10."

Step-down Permutation Procedures

- "Step-down"
 - Sequential testing (smallest to largest p-value), adjusting critical values as you go
 - Less conservative than uniform critical value methods
- Permutation-based
 - Independent of distribution
 - Preserve/exploit correlation among tests by permuting each profile *as a unit*

FD Algorithm To be $(1-\alpha)100\%$ confident that the (actual) number of false discoveries is $\leq u$:

- Automatically reject $H_{(1)}, H_{(2)}, \ldots, H_{(u)}$.
- For r > u, having rejected $H_{(r-1)}$, reject $H_{(r)}$ if $P_{(r)} < y(\alpha)_{r, u}$ (See Korn *et al.*, 2001 for definitions of critical values.)
- Once a hypothesis is not rejected, all further hypotheses are not rejected.

Notes

- FD procedure with u = 0 reduces to stepdown FWE procedure (Westfall and Young, 1993)
- Ties can be handled
- Computationally intensive approximations possible
- Allowing a few errors may buy a lot in power to detect "true discoveries"

FDP Algorithm To be $(1-\alpha)100\%$ confident that the (actual) proportion of false discoveries is $\leq \gamma$:

- Reject $H_{(1)}$ if $P_{(1)} < y(\alpha)_{K, 0}$.
- Having rejected H_(r-1), reject H_(r) if either |[rγ]| > |[(r-1)γ]| or P_(r) < y(α)_{r, |[rγ]|}.
 (See Korn *et al.*, 2001 for definitions of critical values.)
- Once a hypothesis is not rejected, all further hypotheses are not rejected.

Notes

- Proof of FDP procedure requires asymptotic arguments, so control is only approximate for small samples
- Ties can be handled
- Computationally intensive approximations possible
- Allowing a small proportion of errors may buy a lot in power to detect "true discoveries"

Class Discovery

- Cluster analysis algorithms (Gordon, 1999)
 - Hierarchical
 - K-means
 - Self-Organizing Maps
 - Maximum likelihood/mixture models
 - Multitude of others
- Graphical displays
 - Hierarchical clustering
 - Dendrogram
 - "Ordered" color image plot
 - Multidimensional scaling plot

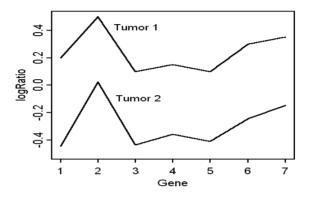
Hierarchical Agglomerative Clustering Algorithm

- Merge two closest observations into a cluster.
 - How is distance between individual observations measured?
- Continue merging closest clusters/observations.
 - How is distance between clusters measured?
 - Average linkage
 - Complete linkage
 - Single linkage

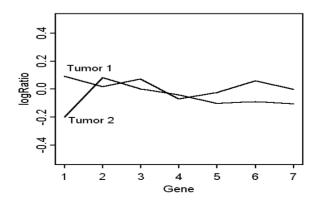
Common Distance Metrics for Hierarchical Clustering

- Euclidean distance
 - Measures absolute distance (square root of sum of squared differences)
- 1-Correlation
 - Large values reflect lack of linear association (pattern dissimilarity)

Euclidean distance large, 1-Correlation small

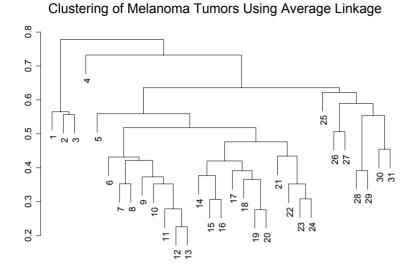


Euclidean distance small, 1-Correlation large

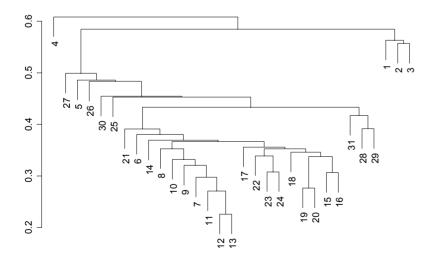


Linkage Methods

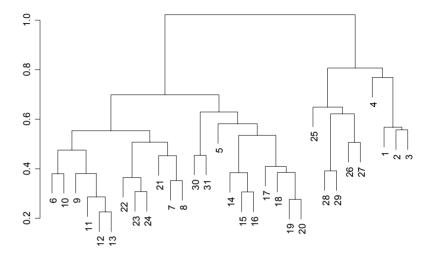
- Average Linkage
 - Merge clusters whose average distance between all pairs of items (one item from each cluster) is minimized
 - Particularly sensitive to distance metric
- Complete Linkage
 - Merge clusters to minimize the maximum distance within any resulting cluster
 - Tends to produce compact clusters
- Single Linkage
 - Merge clusters at minimum distance from one another
 - Prone to "chaining" and sensitive to noise



Clustering of Melanoma Tumors Using Single Linkage



Clustering of Melanoma Tumors Using Complete Linkage



Dendrograms using 3 different linkage methods, distance = 1-correlation

(Data from Bittner *et al.*, *Nature*, 2000)

Interpretation of Cluster Analysis Results

- Cluster analyses always produce cluster structure Where to "cut" the dendrogram?
- Different clustering algorithms may find different structure using the same data.
- Which clusters do we believe?
 - Reproducible between methods
 - Reproducible within a method

Assessing Cluster Reproducibility: Data Perturbation Methods

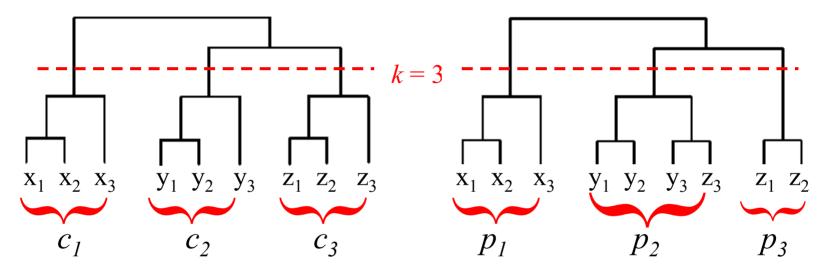
- Most believable clusters are those that persist given small perturbations of the data.
 - Perturbations represent an anticipated level of noise in gene expression measurements.
 - Perturbed data sets are generated by adding random errors to each original data point.
 - McShane *et al.* (http://linus.nci.nih.gov/~brb) Gaussian errors
 - Kerr and Churchill (PNAS, 2001) Bootstrap residual errors

Assessing Cluster Reproducibility: Data Perturbation Methods

- Perturb the log-gene measurements and re-cluster.
- For each original cluster:
 - Compute the proportion of pairs of elements that occur in the cluster in the original clustering and whose elements remain together in the perturbed data clustering when cutting dendrogram at the same level k.
 - Average the cluster-specific proportions over many perturbed data sets to get an *R*-*index* for each cluster.

*R***-index Example**

Perturbed Data

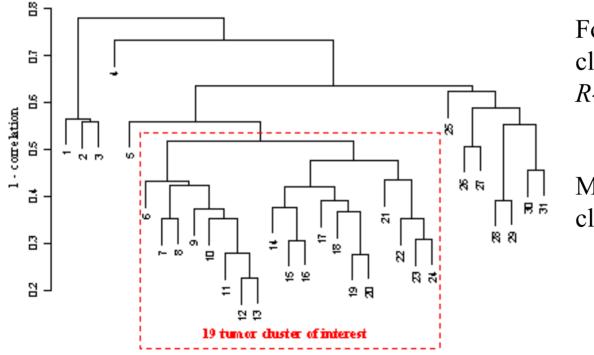


- 3 out of 3 pairs in c_1 remain together in perturbed clustering.
- 3 out of 3 in c_2 remain together.
- 1 out of 3 in c₃ remain together.
- *R*-index = (3 + 3 + 1)/(3 + 3 + 3) = 0.78

Cluster Reproducibility: Melanoma

(Bittner et al., Nature, 2000)

Expression profiles of 31 melanomas were examined with a variety of class discovery methods. A group of 19 melanomas consistently clustered together.



For hierarchical clustering, the cluster of interest had an R-index = 1.0.

 \Rightarrow highly reproducible

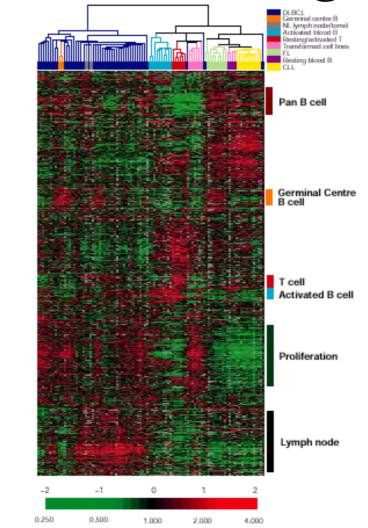
Melanomas in the 19 element cluster tended to have:

- reduced invasiveness
- reduced motility

Estimating the Number of Clusters

- Global test of "no clustering" followed by comparison of *R-index* and *D-index* over many cuts in the original dendrogram (McShane *et al.*, http://linus.nci.nih.gov/~brb, to appear in *Bioinformatics*)
- Gap Statistic (Tibshirani *et al., JRSS B*, 2002)
- Comparisons of methods for estimating number of clusters in small dimension cases (Milligan and Cooper, *Psychometrika*, 1985)

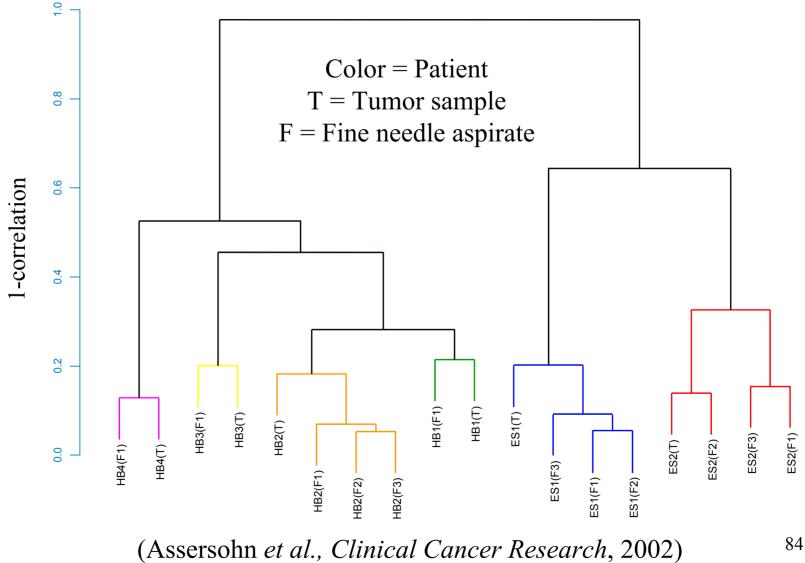
Graphical Displays: Ordered Color Image Plot



Hierarchical Clustering of Lymphoma Data (Alizadeh et al., Nature, 2000)

83

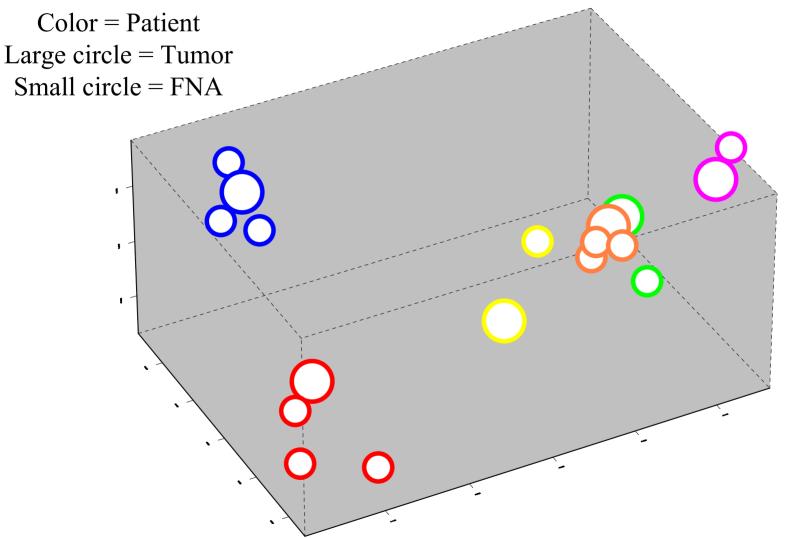
Color-Coded Hierarchical Clustering Dendrogram for Breast Tumor and FNA Samples



Graphical Displays: Multidimensional Scaling (MDS)

- High-dimensional (e.g. 5000-D) data points are represented in a lower-dimensional space (e.g. 3-D)
 - Principal components or optimization methods
 - Depends only on pairwise distances (Euclidean, 1correlation, . . .) between points
 - Relative distances
 - "Relationships" need not be well-separated clusters

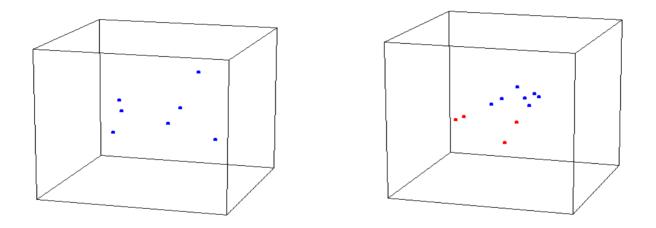
MDS: Breast Tumor and FNA Samples



⁽Assersohn et al., Clinical Cancer Research, 2002)

MDS Representation of Total and Amplified RNA Samples from Same Cell Line

(Fang et al., unpublished)



- There appears to be a difference between total and amplified samples.
- Variability among amplified samples appears larger than variability among total samples.

Class Prediction

- Predict membership of a specimen into pre-defined classes
 - mutation status
 - poor/good responders
 - long-term/short-term survival

Selection of a Class Prediction Method

"Note that when classifying samples, we are confronted with a problem that there are many more attributes (genes) than objects (samples) that we are trying to classify. This makes it always possible to find a perfect discriminator if we are not careful in restricting the complexity of the permitted classifiers. To avoid this problem we must look for very simple classifiers, compromising between simplicity and classification accuracy." (Brazma & Vilo, *FEBS Letters*, 2000)

Weighted voting method: distinguished between subtypes of human acute leukemia (Golub *et al.*, *Science*, 1999)

Support vector machines: classified ovarian tissue as normal or cancerous (Furey *et al.*, *Bioinformatics*, 2000)

Clustering-based classification: applied to above data sets and others (Ben-Dor *et al.*, *J Comput Biol*, 2000)

Compound covariate prediction: distinguished between mutation positive and negative breast cancers (Hedenfalk *et al.*, *NEJM*, 2001)

The Compound Covariate Predictor (CCP)

- We consider only genes that are differentially expressed between the two groups (using a two-sample *t*-test with small α).
- The CCP
 - Motivated by J. Tukey, *Controlled Clinical Trials*, 1993
 - Simple approach that may serve better than complex multivariate analysis
 - A compound covariate is built from the basic covariates (log-ratios)

$$\mathrm{CCP}_i = \sum_j t_j x_{ij}$$

 t_j is the two-sample *t*-statistic for gene *j*. x_{ij} is the log-ratio measure of sample *i* for gene *j*. Sum is over all differentially expressed genes.

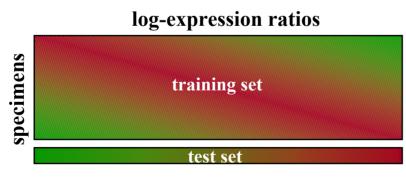
• Threshold of classification: midpoint of the CCP means for the two classes.

Non-Cross-Validated Prediction

log-expression ratios

Prediction rule is built using full data set.
 Rule is applied to each specimen for class prediction.

Cross-Validated Prediction (Leave-One-Out Method)



- 1. Full data set is divided into training and test sets (test set contains 1 specimen).
- 2. Prediction rule is built using the training set.
- 3. Rule is applied to the specimen in the test set for class prediction.
- 4. Process is repeated until each specimen has appeared once in the test set.

Prediction on Simulated Null Data

Generation of Gene Expression Profiles

- 14 specimens (P_i is the expression profile for specimen i)
- Log-ratio measurements on 6000 genes
- $P_i \sim MVN(0, I_{6000})$
- Can we distinguish between the first 7 specimens (Class 1) and the last 7 (Class 2)?

Prediction Method

- Compound covariate prediction
- Compound covariate built from the log-ratios of the 10 most differentially expressed genes.

Percentage of simulated data sets with *m* or fewer misclassifications

	Non-cross-validated	Cross-validated
т	class prediction	class prediction
0	99.85	0.60
1	100.00	2.70
2	100.00	6.20
3	100.00	11.20
4	100.00	16.90
5	100.00	24.25
6	100.00	34.00
7	100.00	42.55
8	100.00	53.85
9	100.00	63.60
10	100.00	74.55
11	100.00	83.50
12	100.00	91.15
13	100.00	96.85
14	100.00	100.00

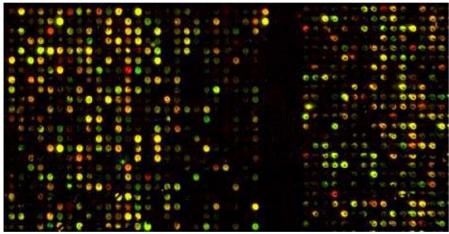
From Radmacher et al., Journal of Computational Biology (in press)

Gene-Expression Profiles in Hereditary Breast Cancer

(Hedenfalk et al., NEJM, 2001)

cDNA Microarrays

Parallel Gene Expression Analysis



- Breast tumors studied: 7 *BRCA1*+ tumors 8 *BRCA2*+ tumors 7 sporadic tumors
- Log-ratios measurements of 3226 genes for each tumor after initial data filtering

RESEARCH QUESTION

Can we distinguish *BRCA1*+ from *BRCA1*- cancers and *BRCA2*+ from *BRCA2*- cancers based solely on their gene expression profiles?

Classification of hereditary breast cancers with the compound covariate predictor					
	Number of		Proportion of random		
	differentially	m = number of	permutations with <i>m</i> or		
Class labels	expressed genes	misclassifications	fewer misclassifications		
$BRCA1^+$ vs. $BRCA1^-$	9	$1 (0 BRCA1^+, 1 BRCA1^-)$	0.004		
$BRCA2^+$ vs. $BRCA2^-$	11	4 (3 <i>BRCA2</i> ⁺ , 1 <i>BRCA2</i> ⁻)	0.043		

Validation of Predictor on Independent Data

- Potential pitfalls of estimated prediction accuracy from leave-one-out cross-validation on a single data set
 - High variance of LOO CV error rate for small samples
 - Peculiarities of the training set may influence the prediction rule
- Independent data set for validation
 - Should be fairly large (e.g., as big as training set)
 - Similar proportions of specimens for the classes as exist in the population

Summary Remarks

- Data quality assessment and pre-processing are important.
- Different study objectives will require different statistical analysis approaches.
- Different analysis methods may produce different results. Thoughtful application of *multiple* analysis methods may be required.
- Chances for spurious findings are enormous, and validation of any findings on larger independent collections of specimens will be essential.
- Analysis tools are not an adequate substitute for collaboration with professional data analysts.

Software Availability

- NCI: http://linus.nci.nih.gov/BRB-ArrayTools.html
 - Excel front end, R backend
 - Data is input as Excel worksheets
- Berkeley: http://www.stat.berkeley.edu/users/terry/zarray/Html/index.html
- Harvard: http://www.dchip.org
- Hopkins: http://biosun01.biostat.jhsph.edu/~ririzarr/Raffy/
- Jackson Labs: http://www.jax.org/research/churchill/
- Stanford: http://genome-www5.stanford.edu/MicroArray/SMD/restech.html
- MANY OTHERS referenced in papers