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1 Abstract

Many gene expression studies attempt to develop a predictor of pre-defined diagnostic or

prognostic classes. If the classes are similar biologically, then the number of genes that are

differentially expressed between the classes is likely to be small compared to the total number of

genes measured. This motivates a two-step process for predictor development, a subset of

differentially expressed genes is selected for use in the predictor, and then the predictor

constructed from these. Both of these steps will introduce variability into the resulting classifier,

so both must be incorporated in sample size estimation.

We introduce a methodology for sample size determination for prediction in the context of

high-dimensional data that captures variability in both steps of predictor development. The

methodology is based on a parametric probability model, but permits sample size computations

to be carried out in a practical manner without extensive requirements for preliminary data. We

find that many prediction problems do not require a large training set of arrays for classifier

development.

2 Introduction/Motivation

The goal of many gene expression studies is the development of a predictor that can be applied to

future biological samples to predict phenotype or prognosis from expression levels (Golub et al.,
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1999). This paper addresses the question of how many samples are required to build a good

predictor of class membership based on expression profiles. Determining appropriate sample size is

important as available clinical samples are often either very limited or costly to acquire and assay.

As microarray studies move from the laboratory towards the clinic, the reason for developing the

predictor is increasingly to assist with medical decisions (Paik et al., 2004), and the consequences

of having a predictor that performs poorly because the sample size was too small can be serious.

Few methods have been published for developing genomic classifiers. Most publications on sample

size determination for microarray studies are limited to the objective of identifying genes which

are differentially expressed among the pre-defined classes. These have been reviewed by Dobbin

and Simon (2005). Hwang et al. (2002) addressed the objective of sample size planning for testing

the global null hypothesis that no genes are differentially expressed, which is equivalent to testing

the null hypothesis that no classifier performs better than chance. However, a sample size

sufficient for rejecting the global null hypothesis may not be sufficient for identifying a good

classifier. Mukherjee et al. (2003) developed a learning curve estimation method that is applicable

to the development of predictors but requires that extensive data already be available so that the

learning curve parameters can be estimated. Fu et al. (2005) developed a martingale stopping

rule for determining when to stop adding cases, but it assumes that the predictor is developed

sequentially one case at a time and does not provide an estimate of the number of cases needed.

The high dimensionality of microarray data, combined with the complexity of gene regulation,
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make any statistical model for the data potentially controversial. This has led some authors to

avoid modelling the expression data directly, and instead model the general abstract learning

process (Mukherjee et al., 2003; Fu et al., 2005). But a model for gene expression does not need

to be exactly correct to be useful, and to provide insights into the classification problem that

other more abstract approaches do not. We do not assert that the model presented here is exactly

correct, but a useful oversimplification. Such oversimplifications are not uncommon in sample size

determination methodologies: for example, models used to estimate sample sizes in clinical trials

are often simpler than the planned data analysis. The simpler model is likely to have lower

sensitivity and specificity, resulting in conservative sample size estimates. The simpler model also

has the advantage that the resulting calculations will be more transparent, whereas sample size

calculations based on the more complex model may be opaque and unconvincing.

A novel contribution of this paper is the integration of dimension-reduction into the framework of

the normal model to calculate sample size for high-dimensional genomic data. We develop a novel

methodology for calculating the significance level α to be used in gene selection that will produce

a predictor with the best resulting expected correct classification rate. We present methods for

sample size calculation when one class is under-represented in the population. We also present

novel results on how the size of the fold-change for differentially expressed genes, the noise level,

and the number of differentially expressed genes, affect predictor development and performance.

Section 3 presents the predictive objective that will be used to drive sample size calculation.
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Section 4 presents the probability model for microarray data and the optimal classification rates.

In Section 5, sample size algorithms are developed. In Section 6, the accuracy of the

approximation formulas used in Section 5 are assessed, as well as their robustness to violations of

model assumptions; also, the effect of model parameter combinations on sample size requirements

and correct classification rates are examined. In Section 7 the robustness of the methodologies are

assessed by application to a number of sunthetic and real-world datasets that violated the model

assumptions. In Section 8, results and recommendations are summarized.

3 The sample size objective

In a traditional class comparison study, the sample size objective is to achieve a certain power,

say 95%, to detect a specified difference between the class means when testing at an α significance

level. Under the usual class comparison model assumptions, an adequate sample size will exist

because the power goes to 1 as the sample size goes to infinity.

By analogy to the class comparison case, one might wish in the class prediction setting to

establish a sample size large enough to ensure that the probability of correct classification will be

above, say, 95%. There are at least two problems with this objective. The first problem is that

the probability of correct classification will depend on what samples are chosen for the training

set; in other words, the probability of correct classification will not be a fixed quantity, but will be

a random variable with some variance. Hence, for any sample size there will likely be some
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positive probability that the correct classification rate is below 95%. So we will instead consider

the expected value of this random variable, where the expectation is taken over all possible sample

sets of the same size in the population.

The second problem is that, unlike the power in a class comparison study (which always goes to 1

as the sample size goes to infinity), the probability of correct classification in a class prediction

study will not necessarily go to 1 as the sample size goes to infinity. This is because for any two

populations there may be areas in the predictor space where samples from each class overlap, so

that class membership cannot be determined with confidence in these areas. An extreme example

would be two identically distributed populations, where no predictor can be expected to do better

than a coin toss (50%). Lachenbruch (1968) solved this problem by framing the question as: how

large a sample size is required for the resulting predictive function “to have an error rate within γ

of the optimum value?” For example, a γ of 0.10 ensures that the expected probability of correct

classification for the predictor will be within 10% of the best possible predictor. We will use an

objective equivalent to Lachenbruch’s, namely: Determine the sample size required to ensure that

the expected1 correct classification probability for a predictor developed from training data is

within γ of the optimal expected correct classification probability for a linear classification

problem2.

We would also note that although we will focus attention on this objective, the formulas
1The expectation is taken over all training samples of size n in the population.
2under the assumptions of the homogeneous variance multivariate normal model
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developed here could also be used to ensure sensitivity and/or specificity above a specified target.

4 The probability model

The general framework for the class prediction problem is that in some population of interest,

individuals can be split into k disjoint classes, C1, C2, ..., Ck. The classes may correspond to

different outcome groups (e.g., relapse in 5 years versus no relapse in 5 years), different phenotyes

(e.g., adenocarcinoma versus squamous cell carcinoma), etc. A predictive model will be developed

based on a training set T . For each individual in the training set one observes that individual’s

class membership, and a data vector x, the gene expression vector; the goal of the training set

experiment is to develop a predictor of class membership based on gene expression, and possibly

an estimate of the predictor’s performance. Our goal is to determine a sample size for the training

set.

Consider a two class problem, with the gene expression data vector denoted by x, which consists

of normalized, background-corrected, log-transformed gene expression measurements. To simplify

notation and presentation, let the first m elements of the data vectors represent the differentially

expressed genes3, the remaining (p−m) elements of the data vectors represent undifferentially

expressed genes, and each differentially expressed gene be centered around zero. The probability

model for this two class prediction problem is:
3A differentially expressed gene is defined as a gene with different average expression in the different classes.
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x ∼





N (µ,Σ) : x ∈ C1

N (−µ,Σ) : x ∈ C2

. (1)

The mean vector has the form µ = (µ1, µ2, ..., µm, 0, ..., 0)T , where µ1, ..., µm represent the

differentially expressed gene means.

The model stipulates that within each class, expression vectors follow a multivariate normal

distribution with the same covariance matrix. It will be also assumed that differentially expressed

genes are independent of undifferentially expressed genes. If Σ is singular, then some genes are

linear combinations of other genes (see, e.g., Rao, 1973, pp. 527-8). Put another way, there are

“redundant” genes with expression that is completely determined by the expression of other

genes. Having these type of “redundant” genes is analogous to having an overparameterized linear

model, and a model reduction transformation (Hocking, 1996, pp. 81) can eliminate the

”redundant” genes, resulting in a nonsingular covariance matrix. We will imagine these

redundant genes have been eliminated, so that the covariance matrix Σ is nonsingular4. Marginal

normality of the gene expression vectors may be considered reasonable for properly transformed

and normalized data, although mutlivariate normality may be more questionable. However, in

taking a model-based approach one must make some assumption and one weaker than

multivariate normality is unlikely to lead to a tractable solution. The assumption of independence
4Note that assuming Σ is nonsingular is not the same as assuming the estimated covariance matrix S is nonsingular.

S will usually be singular because of the “large p small n” issue, i.e., because there are many more genes than samples.
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between differentially expressed and non-differentially expressed genes is not critical and is mainly

made for mathematical convenience. Violations of this assumption will be evaluated.

A key issue is the size of the µi relative to the biological and technical variation present. A

relatively small µi would correspond to a differentially expressed gene that is nearly

uninformative – i.e., that will be of little practical use for prediction. We discuss these types of

genes with numerous examples below and show that nearly uninformative genes, even if there are

many of them (50-200 among 1000’s of genes), are generally of little use for predictor construction

and sample size estimates should be based on more informative genes. If the biological reality is

that all of the differentially expressed genes are nearly uninformative, then we will see that no

good predictor will result from the microarray analysis.

It will simplify presentation to assume that each differentially expressed gene has a common

variance, and each undifferentially expressed gene has a common variance. In practice, genes are

likely to have different variances. But the relationship between fold-change and gene variance

determines the statistical power in the gene selection phase of predictor development. In order to

keep this relationship intuitive, it is important to have a single variance estimate rather than a

range of variance estimates. The single variance parameter can be considered a mean or median

variance, in which case the targeted power will be achieved on average, with higher power for

some genes and lower for others. More conservatively, the 90th percentile of the gene variances

can be used, in which case the targeted power will be achieved even for genes exhibiting the
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highest variation (which may be the ones of most potential interest) across the population.

4.1 Notation

Throughout, PCC(n) will denote the marginal expected probability of correct classification taken

over all samples of size of n in the population. PCC(∞) = limn↗∞PCC(n) will denote the

expected probability of correct classification for an optimal linear classifier.

In the population of interest, the proportion in class C1 is p1, and the proportion in class C2 is

p2 = 1− p1. The covariance matrix can be written in a partitioned form, with notation

Σ =




σ2
IΣI 0

0 σ2
UΣU


 where ΣI is the m×m correlation matrix for the differentially expressed

genes, and ΣU is the (p−m)× (p−m) correlation matrix for the undifferentially expressed genes.

4.2 Optimal classification rates for the model

The optimal classification rule and rate will depend on the proportion in class C1 in the

population. For a two class problem with equal covariance matrices, if the model parameters are

known, then the optimal normal-based linear discriminant rule, that is, the Bayes rule, is known

and the classification rate of this classifier can be determined. In Appendix 9.1 it is shown that
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PCC(∞) = p1Φ


µ′Σ−1µ− 1

2 ln
(

1−p1

p1

)
√

µ′Σ−1µ


 + (1− p1)Φ


µ′Σ−1µ + 1

2 ln
(

1−p1

p1

)
√

µ′Σ−1µ




where ln is the natural logarithm, and Φ is the cumulative distribution function for a standard

normal random variable. When p1 = 1
2 , so that each class is equally represented in the

population, this simplifies to,

PCC(∞) = Φ
(√

µ′Σ−1µ

)
(2)

Note that 2
√

µ′Σ−1µ is the Mahalanobis’ distance between the class means, making this result

closely related to that of Lachenbruch (1968).

In the special case when µi = δ, i = 1, 2, ...m and σ2
I = σ2

U = σ2, it is shown in Appendix 1 that an

upper bound on the the best probability of correct classification is:

PCC(∞) ≤ Φ

(
δ

σ

√
m

λ∗I

)
. (3)

where λ∗I is the smallest eigenvalue of ΣI , which is 1 if genes are independent.



Class Prediction 12

5 Methods

Consider linear classifiers of the form: Classify in C1 if l(x) = w′x > k, and in class C2 otherwise.

The vector w is estimated from the training set, and will depend on how genes are selected for

inclusion in the predictor, and what prediction method is used. We will take a simple approach to

predictor construction which does not weight the importance of the individual genes in the

predictor. Each element of w is 0 or 1; a 1 indicates a gene determined to be differentially

expressed by the hypothesis test of H0 : µi = 0 versus H1 : µi 6= 0; a 0 indicates a gene determined

not to be differentially expressed. This simple predictor is likely to have lower sensitivity and

specificity than more sophisticated ones that assign weights to individual genes and we would by

no means recommend people use it. But, the sample sizes that we calculate this way should tend

be conservative (large).

Consider the hypothesis tests for gene selection described in the previous paragraph. These are

tests of differential expression for each of the p genes. With each hypothesis test is associated a

specificity, which will be denoted 1− α, and is the probability of correctly identifying a gene that

is not differentially expressed; and also a sensitivity or power, which will be denoted 1− β, and is

the probability of correctly identifying a gene as differentially expressed when in fact it is

differentially expressed by a specified amount (δ). These hypothesis tests could be based on many

different statistics. The calculations here will use two-sample t-tests.
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5.1 Formulas for PCC(n)

Each differentially expressed gene will be assumed to be differentially expressed by δ, and a

common variance σ2 = σ2
I = σ2

U for genes will be assumed. An approximate lower bound for the

expected probability of correct classification is derived in Appendix 2, and is

PCC(n) ≥ p1Φ


 1

σ
√

λ1

δm(1− β)− 1
2 ln

(
1−p1

p1

)
√

m(1− β) + (p−m)α


 + (1− p1)Φ


 1

σ
√

λ1

δm(1− β) + 1
2 ln

(
1−p1

p1

)
√

m(1− β) + (p−m)α


 .

where λ1 is the largest eigenvalue of the population correlation matrix. When the other

parameters are fixed, PCC(n) reaches a minimum at p1 = 1
2 . When p1 = 1

2 , so that the two

classes are equally represented, this simplifies to (Appendix 2),

PCC(n) ≥ Φ

(
δ

σ
√

λ1

√
m

√
1− β

√
m(1− β)

m(1− β) + (p−m)α

)

In the special case when Σ = σ2I, λ1 = 1.

Note that 1− β is the power associated with the gene-specific hypothesis tests that each gene is

not differentially expressed among the classes, and the term under the final root sign is the true

discovery rate5

5Technically, this is the approximate true discovery rate (TDR), the expected value of the true discovery proportion

(TDP). Let FDn be the number of false discoveries when the sample size is n, and TDn the number of true discoveries.
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In fact, power calculations can be used to eliminate β from the equation (see Appendix 3).

5.2 Sample size determination

Recall that the objective is to find a sample size that will ensure that PCC(∞)− PCC(n) < γ,

where γ is a pre-specified constant. The calculation can be based on the general formula

PCC(∞)− PCC(n) ≤

p1Φ


 1

σ
√

λ∗
δm− 1

2 log
(

1−p1

p1

)

√
m


 + (1− p1)Φ


 1

σ
√

λ∗

1
2 log

(
1−p1

p1

)
+ δm

√
m




−p1Φ


 1

σ
√

λ1

δm(1− β)− 1
2 log

(
1−p1

p1

)
√

m(1− β) + (p−m)α


− (1− p1)Φ


 1

σ
√

λ1

1
2 log

(
1−p1

p1

)
+ δm(1− β)

√
m(1− β) + (p−m)α


 .(4)

Note that this formula will only guarantee that the overall probability of correct classification is

within the specified bound, but the probability of correct classification for the individual classes

may differ. In particular, the rarer subgroup may have much poorer probability of correct

classification. A more stringent approach is discussed below in Section 5.4. If we assume that

p1 = 1
2 and that genes are independent, then the simpler formula

Then, TDR = E[TDP ] = 1− E [FDP ] ≈ 1− E[FDn]
E[TDn]+E[FDn]

= 1− (p−m)α
m(1−β)+(p−m)α
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PCC(∞)− PCC(n) ≈ Φ
(

δ

σ

√
m

)
− Φ

(
δ

σ

√
m

√
1− β

√
m(1− β)

m(1− β) + (p−m)α

)
(5)

can be used to determine the sample size. Ideally, one would want to eliminate m from the

equation, so that the number of differentially expressed genes need not be stipulated. One can do

this by maximizing the difference over m. As m gets large the distance between the class means

increases, and PCC(∞)− PCC(n) goes to zero (but the difference is not always strictly

decreasing). So the maximum m value should be a low integer, and most likely m = 1. To ensure

the difference is less than γ one can use:

PCC(∞)− PCC(n) ≤ Max1≤m≤p

{
Φ

(
δ

σ

√
m

)
− Φ

(
δ

σ

√
m

√
1− β

√
m(1− β)

m(1− β) + (p−m)α

)}
(6)

This gives rise to the following algorithm for sample size determination:

1. Initialize n = 0.

2. n = n + 2.

3. For m ∈ 1, 2, ..., p, use Equation 10 to find the optimal α for each m, by a linear search over

α ∈ [0, 1]. Then plug these αs into Equation 6 to get an upper bound on

PCC(∞)− PCC(n), call this Un.
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4. Is Un ≤ γ? If no, return to step 2). If yes, continue to step 5.

5. Use a sample of size n, with n/2 from each class.

If we do not assume gene independence, then it will be necessary to estimate extreme eigenvalues

of the correlation matrix. Based on simulation with block diagonal compound symmetric

covariance matrices (not shown), we suggest the method of Ledoit and Wolf (2004), which seems

to perform reasonably well compared to others we examined. One could then plug these estimates

into the equation

PCC(∞)− PCC(n)

≤ Max1≤m≤pΦ

(
δ

σ

√
m

λ∗I

)
− Φ

(
δ

σ

√
m

λ1

√
1− β

√
m(1− β)

m(1− β) + (p−m)α

)
. (7)

5.3 Sample size for a test set

Once a predictor has been developed, an estimate of its performance is required. Such estimates

are calculated using either a separate testing set of samples that were not used at all in the

predictor development, or by cross-validation applied to the training set. Advantages to having an

independent test set are discussed in Simon et al. (2003).

How best to split a collection of samples into a test set and training set is addressed in Molinaro

et al. (2005). Alternatively, one can use the methods developed here to determine the sample size
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required for the training set, then base the sample size for the test set on the width of the

resulting confidence interval for the probability of correct classification. This is a valid approach

because the independence of the test set implies that a binomial random variable correctly models

the number of correct classifications. If L is the interval length, then the sample size formula6 for

the test set is just ntest =
4z2

α/2
p̂(1−p̂)

L2 , where p̂ is the estimated correct classification rate. For

example, if p̂ = 0.90, then L = 0.19, 0.17, 0.15, 0.12 results in sample sizes of 40, 50, 60, 100,

respectively.

5.4 Controlling the probability of correct classification in each class

We have presented methods for controlling the overall probability of correct classification. In

some cases, one may want to control the probability of correct classification for each class

individually. If one class is under-represented, then the probability of correct classification using

the optimal cut-point will be lower in the under-represented class.

PCC Under-represented Class (n) ≥ Φ


 1

σ
√

λ
·
δ ·m · pow(α, n, pmin)− 1

2 ln
[

1−pmin
pmin

]
√

m · pow(α, n, pmin)− (p−m)α




where pmin is the proportion in the under-represented class, and pow(α, n, pmin) is the power to

detect a differentially expressed gene given α, n, and pmin. This formula can be used to develop

methods similar to those we have presented to determine sample size.
6The formula is valid when np̂ ≥ 5 and n(1− p̂) ≥ 5, which must be verified.
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A simpler rough approach is to let n0.5 be the sample size calculated by the methods we have

presented for the case when half the population is from each class, for example, based on

Equation 6. Then use a sample size of

np1 =
n0.5

2min(p1, 1− p1)

to ensure that the expected number from the under-represented class is the same as it would be if

both classes were equally represented.

If p1 is close to 0 or 1, then this approach may lead to very large sample sizes. One option in this

case is to oversample from the rarer class, so that for example half the samples are from each

class. But resulting estimates of classification error will depend on external estimates of the

proportion in each class, so oversampling is most appropriate for preliminary studies.

6 Results

We first ran an extensive simulation to verify that the approximations used in the course of the

derivation of the equation for the probability of correct classification produced good estimates.

Table 1 shows the estimated probabilities of correct classification based on Equation 4, and

compares these to estimates of the population values based on Monte Carlo for a variety of

combinations of values of effect size, 2δ/σ, number of genes affected, m, and sample size, n. For
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the Monte Carlo based estimates, data were generated according to the model specifications, then

predictors developed as outlined in Section 5, and finally prediction accuracy assessed on an

independent test set. As can be seen, the equation-based estimates are close to the Monte

Carlo-based population estimates and, when different, tend to be conservative.

We next consider choice of α, the significance level for gene selection. α can be chosen to

maximize the resulting probability of correct classification. Plots of the PCC(n) as a function of

α for varying values of n are shown in Figure 1. The plots show that there is an optimal α value

on the interval. As the sample size n increases, the α that maximizes the probability of correct

classification decreases. This trend is intuitively reasonable because α determines the cutoff value

used in the gene selection step, and as the sample size gets large the power associated with small

αs will increase. Also note from the plots that the larger the effect size (2δ/σ), the smaller the α

value that will maximize PCC(n) for fixed n. This makes sense since larger effect sizes will be

easier to detect, so that one can afford to use more stringent αs to reduce the false positive rate.

Figure 2 shows the sample sizes required as a function of 2δ/σ, for m = 1 and m = 2 differentially

expressed genes. Here p1 = 1/2. The sample sizes were optimized7 over α, and will ensure the

expected PCC(n) is within 0.05 of the best possible prediction rule. For a fixed effect size 2δ/σ

per gene, m = 2 is an easier classification problem than m = 1, because the distance between the

class means is 2 δ
σ

√
m. So the sample size requirements are smaller for m = 2. For an effect size of

7For these plots, the optimal α was calculated for all even sample sizes from 2 to 100, and then for each possible

sample size the corresponding optimal α was used to estimate the mean PCC.
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1.5 (e.g., 2δ = 1 for a two-fold change in expression, and σ = 0.71), a sample size around 60

appears adequate.

We next turned to the question of the relationship between effect size, 2δ/σ, the number of

differentially expressed genes m, and the Mahalonobis distance between the class means (which

determines the best possible classification rate). Table 2 shows examples where the effect size is

small, so that each gene is nearly uninformative. For example, when the effect size is 0.2, and the

number of informative genes is 200 or less, then one of two bad things will happen: either 1) even

an optimal predictor will have a poor PCC(∞), so that predictions will be unreliable; or 2)

development of a predictor with PCC(∞)− PCC(n) within some reasonable bound will require

prohibitively large sample sizes (500 or more). In the latter case, while a good predictor exists,

the problem is too hard practically to work out with this technology. The table also shows that as

the effect size gets larger, these issues go away. Hence it is critical that at least some genes have a

reasonably large effect size in order to develop a predictor. Therefore, for sample size calculations,

one should assume that some genes do have reasonable effect sizes.

These considerations also lead to the following recommendation: when using conservative sample

size approaches with m = 1, the estimated effect size 2δ/σ should correspond to the estimated

largest effect size for informative genes. This is the approach we used in the next section and

seemed to perform adequately. Note also that we assume that p is in the 1000 to 22000 range,

that there are m = 1− 200 or so genes differentially expressed. When either p or m values fall
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outside these assumptions, then our conclusions may not be valid. For example, microarrays with

10’s or 100’s of genes represented would require amendment of this approach.

Figure 3 shows plots of the probability of correct classification as a function of n. The lines

represent different values of 2δ/σ. One can see the PCC(n) values approaching their asymptotic

PCC(∞) values as n approaches 100.

7 Examples using synthetic and real microarray data

We tested the robustness of these methods using synthetic microarray data that violates the

model assumptions, and real microarray data that likely do as well. Results are presented in

Table 3. See table caption for detailed description of analysis.

The estimates of PCC(∞)− PCC(n) and PCC(n) based on our method are uniformly

conservative across all datasets. The PCC(∞)− PCC(n) estimates are very conservative when

applied to the Golub dataset. This might be expected since there are likely many genes with large

effect sizes in these different tumor types, so that our assumption that there is only m = 1

informative gene makes the problem much harder than it really is. The PCC(n) estimates are

extremely conservative not only for the Golub dataset but for several others as well. This is offset

somewhat in the PCC(∞)− PCC(n) estimates since both quantities are biased in the same

direction, causing some of the bias to cancel out of the difference.



Class Prediction 22

One must be somewhat careful in the interpretation of Table 3, because although for smaller

sample sizes like n = 24 the PCC(∞)− PCC(n) and PCC(n) estimates, which are based on

means over multiple simulations, appear uniformly conservative, there was also significant

variation observed in the performance of classifiers in different simulations. For example, while

the mean for the synthetic dataset on the first row of the table was 0.92 using support vector

machines, the worst classifier had an estimated correct classification rate of 0.79.

We applied both the gene independence based method and the Ledoit and Wolfe eigenvalue

estimation method, to two other real microarray datasets (not shown) and found that resulting

sample size estimates were similar in the two approaches, and in the 40-60 samples range.

In conclusion, our method tends to be conservative in estimating PCC(n), PCC(∞) and

PCC(∞)− PCC(n) for the datasets we examined, sometimes very conservative. So the method

should be lead to adequate sample sizes while sometimes producing larger sample size estimates

than are truly required. For example, our formulas are likely to significantly overestimate the

required sample size for classification problems involving morphologically diverse tissues that are

expected to have many differentially expressed genes with large effect sizes. In these cases, it may

be advisable to follow the guidelines in Mukherjee et al. (2003) instead.
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8 Conclusion

We have presented novel methods for determining sample size for building predictors of class

membership from high dimensional microarray data. These methods take into account variability

both in predictor construction and gene selection. These methods require only that two quantities

be specified: the size of the fold-change relative to the variation in gene expression, and the

number of genes on the microarrays. We presented an alternative approach based on eigenvalue

estimation. We investigated the robustness of our method on synthetic datasets that violated our

model assumptions and on publicly available microarray datasets.

We found that sample sizes in the 20-30 per class range may be adequate for building a good

predictor in many cases. These results are similar to Mukherjee et al. (2003). In general, we

found that the sample size requirements for prediction are relatively small. We showed that the

reason for this is that if a good gene-expression-based predictor exists in the population, then it is

likely that some genes exhibit significant differential expression between the classes relative to the

biological noise present. Hence adequate power to identify these genes can be achieved without a

large number of microarrays. One drawback of our approach is that it controls the expected

probability of correct classification to be within some tolerance of the optimal, but does not

control the actual probability of correct classification; for small sample sizes, the probability of

correct classification may be highly variable depending on what samples are chosen for the

training set, so that our method may not give adequate control and should be used with caution
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in these situations.

We identified scenarios in which either no good predictor exists, or it is practically not feasible to

construct one. No good predictor may exist when differential expression is small relative to

biological variation – and this may be the case even when as many as a hundred genes are

differentially expressed. We further found that even if enough genes are differentially expressed to

construct a reasonable predictor (in theory), if the fold-changes for differentially expressed genes

are uniformly small relative to the biological variation, then identification of differentially

expressed genes and construction of a good predictor will probably not be feasible.

We investigated both the case when each class is equally represented in the population and when

they are not equally represented. We presented methods for controlling the overall probability of

correct classification and for controlling the probability of correct classification in the worst group

in these situations (sensitivity and specificity).

The eigenvalue based estimation method presented is quite preliminary and we would in general

recommend that the independence assumption approach be used instead. One problem with the

eigenvalue approach is that there will be uncertainty about the eigenvalue estimates. Another

problem is that these formulas are theoretical worst-case-scenarios bounds that may in fact be

much worse than reality, and therefore lead to too conservative estimate for the sample size.

Additionally, Table 3 suggests that the gene independence method may be conservative enough

already, even when it is violated.
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A method for finding the optimal significance level α to use for gene selection when developing a

predictor was presented, and approaches to determining sample size for a testing set discussed.

The optimal significance levels α tend to be on par with those generally used in microarray

experiments (e.g., α = 0.001). We further showed that the probability of correct classification

depends critically on the power and the true discovery rate, so that gene selection methods that

control the false discovery rate should produce good predictors.
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9 Appendices

9.1 Appendix 1

Assume Equation 1 where Σ is positive definite, and has the form Σ =




ΣI 0

0 ΣU


, where ΣI

indicates an m by m covariance matrix. For an x randomly selected from the population of

interest P, define p1 = P (x ∈ C1). Then 1− p1 = P (x ∈ C2) follows.

The linear prediction rule which results in the best probability of correct classification classifies x

in C1 if (see, e.g., Enis and Geisser, 1974):

2x′Σ−1µ > Log

(
1− p1

p1

)

and classifies x in C2 otherwise. If p1 = 1
2 , then the rule reduces to: classify x in C1 if

2x′Σ−1µ > 0, and otherwise classify x in C2.

The vector µ′Σ−1x is a linear combination of normal random variables, and so is normally

distributed:

µ′Σ−1x ∼





N
(
µ′Σ−1µ, µ′Σ−1µ

)
: C1

N
(−µ′Σ−1µ, µ′Σ−1µ

)
: C2

.
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Therefore, the probability of correct classification for this optimal classifier is

PCC(∞) = p1P (CC|x ∈ C1) + (1− p1)P (CC|x ∈ C2)

= p1P

(
µ′Σ−1x >

1
2
log

(
1− p1

p1

)
|C1

)
+ p1P

(
µ′Σ−1x <

1
2
log

(
1− p1

p1

)
|C2

)

= p1P


z >

1
2Log

(
1−p1

p1

)
− µ′Σ−1µ

√
µ′Σ−1µ


 + (1− p1)P


z <

1
2Log

(
1−p1

p1

)
+ µ′Σ−1µ

√
µ′Σ−1µ




= p1Φ


µ′Σ−1µ− 1

2Log
(

1−p1

p1

)
√

µ′Σ−1µ


 + (1− p1)Φ


µ′Σ−1µ + 1

2Log
(

1−p1

p1

)
√

µ′Σ−1µ




If p1 = 1
2 , then this simplifies to,

PCC(∞) = Φ
(√

µ′Σ−1µ

)
.

An extremal property of eigenvalues is that µ′Σ−1
I µ ≤ µ′µ 1

λ∗I
(Schott, 1997, Theorem 3.15). If

µi = δ, i = 1, ...,m and σ2 = σ2
I = σ2

U , then it follows that

PCC(∞) ≤ Φ

(
δ

σ

√
m

λ∗I

)
.

If we further assume the covariance matrix for the differentially expressed genes has the form σ2I,

so that differentially expressed genes are independent, then
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PCC(∞) = Φ
(

δ

σ

√
m

)
.

9.2 Appendix 2

Assume that each gene has the same variance σ2, and all differentially expressed genes have the

same fold-change, µi = δ, i = 1, ..., m. The linear predictor w developed on some training set

consist of zeros and ones. To simplify notation, let k = 1
2 log

(
1−p1

p1

)
.

PCC(n) = Ew
[
p1P (w′x > k|w, x ∈ C1) + (1− p1)P (w′x < k|w, x ∈ C2)

]

= p1Ew

[
Φ

(
w′µ− k√

w′Σw

)]
+ (1− p1)E

[
Φ

(
k + w′µ√

w′Σw

)]

≈ p1Φ

(
E[w′µ]− k√

E[w′Σw]

)
+ (1− p1)Φ

(
k + E[w′µ]√

E[w′Σw]

)
.

Now E[w′µ] =
m∑

i=1
δE[wi] = mδ(1− β). Also, if λ1 is the largest eigenvalue of the correlation

matrix of the genes, then w′Σw ≤ λ1σ
2w′w (see, for example, Schott, 1997, Theorem 3.15). So

E[w′Σw] ≤ λ1σ
2 ∑

i = 1pE[w2
i ] = λ1σ

2m(1− β) + σ2(p−m)α. Thus

PCC(n) ≥ p1Φ

(
1

σ
√

λ1

δm(1− β)− k√
m(1− β) + (p−m)α

)
+ (1− p1)Φ

(
1

σ
√

λ1

k + δm(1− β)√
m(1− β) + (p−m)α

)
.

If p1 = 1
2 , then k = 0 and
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PCC(n) ≥ Φ

(
δ

σ
√

λ1

m(1− β)√
m(1− β) + (p−m)α

)
.

If genes are also independent, so that Σ = σ2I, then E[w′Σw] = σ2(m(1− β) + (p−m)α), and

PCC(n) ≈ Φ

(
δ

σ

m(1− β)√
m(1− β) + (p−m)α

)
.

9.3 Appendix 3

In this Appendix, we present a method for finding the optimal α for fixed n.

Fix a sample size n, and assume this is an even number. First, note that the distance between the

class means under the current model is 2δ. Now use the normal approximation sample size

formula to solve for β. Recall that notationally tβ,n−2 = T−1
n−2(β) where T−1

n−2 is the inverse

cumulative distribution function for a central T distribution with n− 2 degrees of freedom.

n ≈ 4
σ2

(2δ)2
[
tn−2,α/2 + tn−2,β

]2

→
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β ≈ Tn−2

(
− δ

σ

√
n− tn−2,α/2

)

= 1− Tn−2

(
δ

σ

√
n + tn−2,α/2

)

→

1− β ≈ Tn−2

(
δ

σ

√
n + tn−2,α/2

)

This results in:

PCC(n, α) ≈ Φ




δ
σmTn−2

(
δ
σ

√
n + tn−2,α/2

)
√

mTn−2

(
δ
σ

√
n + tn−2,α/2

)
+ α(p−m)


 (8)

(9)

PCC(n, α) ≈ Φ




δ
σmTn−2

(
δ
σ

√
n + tα/2,n−2

)
√

mTn−2

(
δ
σ

√
n + tα/2,n−2

)
+ α(p−m)


 (10)

where Tn−2 is the cumulative distribution function for a Student’s t distribution with n−2 degrees

of freedom. Equation 10 can be used to select an α significance level that will maximize PCC(n).

9.4 Appendix 4

In Appendix 1 it was shown that:
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PCC(∞) ≤ Φ

(
δ

σ

√
m

λ∗I

)
.

In Appendix 9.2, it was shown that

PCC(n) ≥ Φ

(
δ

σ

√
m

λ1

√
1− β

√
m(1− β)√

m(1− β) + (p−m)α

)

so that,

PCC(∞)− PCC(n) ≤ Φ

(
δ

σ

√
m

λ∗I

)
− Φ

(
δ

σ

√
m

λ1

√
1− β

√
m(1− β)√

m(1− β) + (p−m)α

)
.

Under the assumption Σ = σ2I, and µi = δ, 1 ≤ i ≤ m, we have

PCC(∞)− PCC(n) = Φ
(

δ

σ

√
m

)
− Φ

(
δ

σ

√
m

√
1− β

√
m(1− β)

m(1− β) + (p−m)α

)

9.5 Appendix 5

The empirical Bayes method used in Table 3 is presented. Let τ2 = 2
n σ̂2

median where σ̂2
median is the

median (across genes) of the estimated pooled within-class variance. Let s2 be the sample
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variance of the estimated effect sizes, var(2δ̂/σ). Then B̂ = τ2

τ2+(s2−τ2)+
and

δ̂/σg = ¯δ/σ + (1− B̂)(δ̂/σg − ¯δ/σ). See, e.g., Carlin and Louis (1996). The largest estimated

effect size was used.
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Figure 1: Plots of the estimated PCC as a function of α, plotted for various values of n, based

on Equation 10. In each plot, ”Effect” is defined as 2δ
σ , m = 10 is the number of differentially

expressed genes, and p = 10, 000 is the number of genes in vector x. The sample sizes are, from left

to right, n = 12, n = 32 and n = 70. The maximum points on the plots (indicated by vertical lines)

are, for the top row, 0.02, 0.0003 and 3x10−5, and for the bottom row, 0.11, 0.002, and 0.0002.
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Figure 2: Plot of effect size (2δ/σ) versus sample size. Optimal α used for determination of

sample size. The sample sizes ensure that the average probability of correct classification is within

γ = 0.05 of the best possible correct classification probability. Gene independence is assumed. Half

the population is from each group, so that p1 = 1/2.
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Figure 3: Left plot is m = 1 and right plot is m = 5. p = 10, 000. Plot of sample size versus

probability of correct classification for various values of the effect size 2δ/σ. Gene independence

is assumed. PCC(n) use optimal α. Population assumed evenly split between the classes, so

p1 = 1/2.
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11 TABLES
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2 δ
σ n m α P̂CC Equation P̂CC Monte Carlo B̂ias

4 32 1 0.0001 0.92 0.96 -0.04
4 32 1 0.001 0.72 0.78 -0.06
4 32 1 0.01 0.58 0.59 -0.01
4 32 1 0.05 0.54 0.59 -0.05
4 32 1 0.1 0.53 0.54 -0.01
4 32 10 0.0001 >0.99 1.00 ≈0
4 32 10 0.001 >0.99 1.00 ≈0
4 32 10 0.01 0.97 0.99 -0.02
4 32 10 0.05 0.81 0.99 -0.18
4 32 10 0.1 0.74 0.78 -0.04
3 70 1 .0001 0.86 0.92 -0.06
3 70 1 .001 0.67 0.81 -0.14
3 70 1 .01 0.56 0.59 -0.03
3 70 1 .05 0.53 0.52 +0.01
3 70 1 .10 0.52 0.52 -0.02
3 70 10 .0001 >0.99 1.00 ≈0
3 70 10 .001 >0.99 1.00 ≈0
3 70 10 .01 0.92 0.98 -0.06
3 70 10 .05 0.75 0.73 +0.02
3 70 10 .10 0.68 0.74 -0.06

Table 1: Table 1: The expected probability of correct classification (PCC) estimate is generally
either accurate or conservative (underestimates the true PCC). Here, the number of genes is p =
10, 000, 2δ/σ is the effect size for differentially expressed genes, n is the number of samples in the
training set, m is the number of differentially expressed genes, and α is the significance level used
for gene selection. Monte Carlo PCC estimates were calculated by generating a predictor based on
a simulated sample, then generating 100 datasets from the same populations and calculating the
prediction error rate of the predictor; this entire process was repeated 100 times and the average
correct classification proportions appear in the table.
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Differentially expressed genes Effect size 2δ/σ PCC(∞) PCC(500) PCC(200)
50 0.2 0.76 0.60 0.54
100 0.2 0.84 0.64 0.56
150 0.2 0.89 0.67 0.57
200 0.2 0.92 0.70 0.59
10 0.4 0.74 0.71 0.62
20 0.4 0.81 0.79 0.68
30 0.4 0.86 0.84 0.72
40 0.4 0.89 0.88 0.75
10 0.6 0.83 0.83 0.79
20 0.6 0.91 0.91 0.88
30 0.6 0.95 0.95 0.93
40 0.6 0.97 0.97 0.95

Table 2: Impact of small effect sizes on the correct classification rate. PCC(∞) is the best possible
correct classification rate, PCC(500) and PCC(200) are the correct classification rates with samples
of size 500 and 200 respectively. For small effect size 0.2, a strong classifier exist only if many genes
are differentially expressed; but even with many differentially expressed genes and a sample size
of 500, the estimator performs poorly. For somewhat larger effect size 0.4, fewer differentially
expressed genes are required for a good classifier to exist, but even n = 200 samples does not result
in estimates within 10% of the optimal classification rate. For effect size 0.6, the situation is more
amenable if running a large sample is feasible. For reference, if σ = 0.5, then an effect size of 0.6
corresponds to a 22δ = 20.3 = 1.23 fold-change. Gene independence assumed here.
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Synthetic Data
Reality P̂CC(∞)− P̂CC(n) P̂CC(n)

2δ/σ ρ n Our SVM∗ 1-NN∗ Our SVM∗ 1-NN∗

3,2,1 0.8 24 0.07 0.00 0.00 0.86 0.92 0.92
1.5,1.5,1.5 0.8 100 0.07 0.00 0.00 0.70 0.90 0.85
1.5,1.5,1.5 0.8 24 0.16 0.13 0.12 0.61 0.77 0.73

Real Data
Reality P̂CC(∞)− P̂CC(n) P̂CC(n)

Dataset Classes n Our SVM∗ 1-NN∗ Our SVM∗ 1-NN∗

Golub AML/ALL 40 0.21 0.01 0.00 0.75 0.96 0.96
Golub AML/ALL 20 0.27 0.02 0.03 0.69 0.94 0.94
Golub AML/ALL 10 0.45 0.09 0.10 0.51 0.87 0.87

Rosenwald 2 year vital 100 0.06 0.00 0.02 0.50 0.55 0.54
Rosenwald GCB/non-GCB 200 0.07 0.00 0.03 0.67 0.96 0.91
Rosenwald GCB/non-GCB 100 0.07 0.02 0.04 0.67 0.94 0.90
Rosenwald GCB/non-GCB 50 0.09 0.06 0.07 0.64 0.90 0.87
* Test-set based estimates

Table 3: Robustness evaluation of PCC estimates. Gene selection based on α = 0.001, with sup-
port vector machine (SVM) and nearest neighbor (1-NN). The sample size is n, with n/2 taken
from each class. All equation-based P̂CC estimates use m = 1. Synthetic datasets: Generated
from multivariate normal distribution with 3 differentially expressed genes with effect sizes given.
p = 1, 000 genes with block diagonal correlation structure compound symmetric with 20 blocks
of 50 genes each and within-block correlation ρ, and each gene with variance 1. True PCC(n)
for each classification algorithm estimated using n for classifier development and remainder for
PCC(n) estimation, with 10 replicates of a samples size of 200, then averaging correct classifica-
tions. PCC(∞) estimated using cross-validation on a sample size of 200. Real datasets: Taken
from Golub (1999) and Rosenwald (2002). Predictor developed using n for classifier developent and
remainder for PCC(n) estimation.Process repeated 30(20) times for Golub (Rosenwald) datasets,
and average probabilities of correct classification presented. Effect size 2δ/σ was estimated from
the complete data using empirical Bayes methods. See Appendix 5 for details. PCC(∞) estimated
based on cross-validation on complete datasets. Analyses were performed using BRB ArrayTools
developed by Dr. Richard Simon and Amy Peng Lam.


