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Validation of pharmacogenomic biomarker
classifiers for treatment selection
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Abstract. Physicians need improved tools for selecting treatments for individual patients. Many syndromes traditionally viewed
as individual diseases are heterogeneous in molecular pathogenesis and treatment responsiveness. This results in treatment of
many patients with ineffective drugs and leads to the conduct of large clinical trials to identify small average treatment benefits for
heterogeneous groups of patients. New genomic and proteomic technologies provide powerful tools for the selection of patients
likely to benefit from a therapeutic without unacceptable adverse events. In spite of the large literature on developing predictive
biomarkers and on statistical methodology for analysis of high dimensional data, there is considerable uncertainty about the
validation of biomarker based diagnostic classifiers for treatment selection. In this paper we attempt to clarify these issues and to
provide guidance on the design of clinical trials for evaluating the clinical utility and robustness of pharmacogenomic classifiers.
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1. Introduction

Physicians need improved tools for selecting treat-
ments for individual patients. For example, many can-
cer treatments benefit only a minority of the patients
to whom they are administered. Being able to predict
which patients are most likely to benefit would not only
save patients from unnecessary toxicity and inconve-
nience, but might facilitate their receiving drugs that
are more likely to help them. In addition, the current
over-treatment of patients results in major expense for
individuals and society, an expense which may not be
indefinitely sustainable. In this paper we will address
some key issues in the validation of pharmacogenomic
classifiers.

2. Pharmacogenomic classifiers

Much of the discussion about disease biomarkers is
in the context of markers which measure some aspect of
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disease status, extent, or activity. Such biomarkers are
often proposed for use in early detection of disease or as
a surrogate endpoint for evaluating prevention or ther-
apeutic interventions. The validation of such biomark-
ers is difficult for a variety of reasons, but particularly
because the molecular pathogenesis of many diseases
is incompletely understood and hence it is not possible
to establish the biological relevance of a measure of
disease status.

A pharmacogenomic biomarker is any measurable
quantity that can be used to select treatment; for ex-
ample, the result of an immunohistochemical assay for
a single protein, the abundance of a protein in serum,
the abundance of mRNA transcripts for a gene in a
sample of disease tissue or the presence/absence status
of a specified germline polymorphism or tumor muta-
tion. A pharmacogenomic classifier is a mathematical
function that translates the biomarker values to a set of
prognostic categories. These categories generally cor-
respond to levels of predicted clinical outcome. With
the advent of gene expression profiling, it is increas-
ingly common to define composite pharmacogenomic
classifiers based on the levels of expression of dozens
of genes. For a fully specified classifier, however, all
of the parameters and cut-points are specified for de-
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termining how to weight the different components and
how to map the multivariate data into a defined set
of categories. A completely defined classifier can be
used to select patients and stratify patients for therapy
in clinical trials that enable the clinical value of the
classifier to be evaluated. Specifying only the genes
involved does not enable one to structure prospective
clinical validation experiments in which patients are as-
signed or stratified in prospectively well defined ways.
Repeatedly correlating expression of individual genes
against outcomes does not constitute adequate evalua-
tion of the medical value of a diagnostic technology for
treatment selection.

3. Validation

Biomarkers are used for very different purposes and
validation should relate to fitness for a defined purpose.
It is not likely to be productive to require validation
in some more absolute biological sense for diseases
whose molecular pathogenesis is not fully understood.
For pharmacogenomic biomarkers, we will focus on
the design of validation studies to establish clinical ben-
efit in assisting with treatment selection. For example,
the Oncotype-Dx risk score was developed to measure
prognosis for node negative, estrogen receptor positive
patients with primary breast cancer receiving Tamox-
ifen therapy after surgical resection of the primary le-
sion [6]. The validation issue is whether use of this
risk score results in clinical benefit. The components
of expression signature classifiers need not be valid
biomarkers in the sense of the Food and Drug Admin-
istration [1]. Those criteria require that the role of the
biomarker be mechanistically understood and accepted
as markers of disease activity. Such criteria are rel-
evant for biomarkers used as surrogate endpoints but
not for the components of expression signatures used
for tailoring treatments. It is, of course, desirable to
understand the mechanistic relationship of the compo-
nents of an expression signature, but the classifier can
be validated without such understanding.

4. Developmental and validation studies

It is important to distinguish the studies which devel-
op parmacogenomic classifiers from those which eval-
uate the clinical utility of such classifiers. The vast
majority of published prognostic marker studies are de-
velopmental and are not adequate for establishing the

clinical utility and robustness of a classifier [11]. De-
velopmental studies are often based on a convenience
sample of patients for whom tissue is available but who
are heterogeneous with regard to treatment and stage.
The studies are generally performed in an exploratory
manner with no written protocol, no eligibility criteria,
no primary endpoint or hypotheses and no defined anal-
ysis plan. The analysis often includes numerous anal-
yses of different endpoints and patient subsets. Often
there are multiple candidate biomarkers to evaluate and
multiple ways of measuring and combining the candi-
date biomarkers. Such an informal approach is appro-
priate in a developmental study so long as one recog-
nizes that the same study cannot be used to evaluate the
clinical value of the resulting biomarkers or classifiers.
The developmental study is exploratory and directed to
hypothesis formation. The special statistical issues in-
volved in development of genomic classifiers based on
high dimensional data are a topic in themselves. Some
of these issues are reviewed elsewhere (e.g. [15]).

Developmental studies should develop completely
specified classifiers and completely specified hypothe-
ses that can be tested in subsequent validation studies.
Although there is a large literature on prognostic mark-
ers, few such factors are used in clinical practice. To
a large extent this is due to a lack of adequate vali-
dation studies which demonstrate the therapeutic rele-
vance and robustness of pre-specified biomarker classi-
fiers. Prognostic markers are unlikely to be used unless
they are therapeutically relevant and most developmen-
tal studies, unless they are based on patients treated in a
single clinical trial, are not based on a cohort medical-
ly coherent enough to establish therapeutic relevance.
Developmental studies rarely establish the robustness
of the classifier and of the underlying assays under con-
ditions that simulate those likely to be found in real
world patient management.

4.1. Estimates of predictive accuracy based on
developmental studies

Developmental studies are analogous to phase 2 clin-
ical trials. They should include an indication of whether
the genomic classifier is promising and worthy of phase
3 evaluation. There are special problems in evaluating
whether classifiers based on high dimensional genomic
or proteomic assays are promising however. The diffi-
culty derives from the fact that the number of candidate
features available for use in the classifier is much larger
than the number of cases available for analysis. In such
situations, it is always possible to find classifiers that
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accurately classify the data on which they were devel-
oped even if there is no relationship between expression
of any of the genes and outcome [8]. Consequently,
even in developmental studies, some kind of validation
on data not used for developing the model is necessary.
This “internal validation” is usually accomplished ei-
ther by splitting the data into two portions, one used for
training the model and the other for testing the mod-
el, or some form of cross-validation based on repeated
model development and testing on random data parti-
tions. This internal validation should not, however, be
confused with external validation of the classifier utility
in a setting simulating broad clinical application.

The most straightforward method of estimating the
prediction accuracy is thesplit-sample method of par-
titioning the set of samples into a training set and a test
set. Rosenwald et al. [9] used this approach successful-
ly in their international study of prognostic prediction
for large B cell lymphoma. They used two thirds of
their samples as a training set. Multiple kinds of pre-
dictors were studied on the training set. When the col-
laborators of that study agreed on a single fully speci-
fied prediction model, they accessed the test set for the
first time. On the test set there was no adjustment of
the model or fitting of parameters. They merely used
the samples in the test set to evaluate the predictions
of the model that was completely specified using only
the training data. In addition to estimating the overall
error rate on the test set, one can also estimate other
important operating characteristics of the test such as
sensitivity, specificity, positive and negative predictive
values.

The split-sample method is often used with so few
samples in the test set, however, that the validation is
almost meaningless. One can evaluate the adequacy
of the size of the test set by computing the statistical
significance of the classification error rate on the test
set or by computing a confidence interval for the test
set error rate. Since the test set is separate from the
training set, the number of errors on the test set has a
binomial distribution.

Michiels et al. [4] suggested that multiple training-
test partitions be used, rather than just one. The split
sample approach is mostly useful, however, when one
does not have a well defined algorithm for developing
the classifier. When there is a single training set-test set
partition, one can perform numerous unplanned analy-
ses on the training set to develop a classifier and then
test that classifier on the test set. With multiple training-
test partitions however, that type of flexible approach to
model development cannot be used. If one has an algo-

rithm for classifier development, it is generally better to
use one of the cross-validation or bootstrap resampling
approaches to estimating error rate (see below) because
the split sample approach does not provide as efficient
a use of the available data [5].

Cross-validation is an alternative to the split sample
method of estimating prediction accuracy [8]. Moli-
naro et al. describe and evaluate many variants of cross-
validation and bootstrap re-sampling for classification
problems where the number of candidate predictors
vastly exceeds the number of cases [5]. The cross-
validated prediction error is an estimate of the predic-
tion error associated with application of the algorithm
for model building to the entire dataset.

A commonly used invalid estimate is called there-
substitution estimate. You use all the samples to devel-
op a model. Then you predict the class of each sample
using that model. The predicted class labels are com-
pared to the true class labels and the errors are totaled.
It is well-known that the re-substitution estimate of er-
ror is biased for small data sets and the simulation of
Simon et al. [14] confirmed that, with an astounding
98.2% of the simulated data sets resulting in zero mis-
classifications even when no true underlying difference
existed between the two groups.

Simon et al. [14] also showed that cross-validating
the prediction rule after selection of differentially ex-
pressed genes from the full data set does little to cor-
rect the bias of the re-substitution estimator: 90.2% of
simulated data sets with no true relationship between
expression data and class still result in zero misclassi-
fications. When feature selection was also re-done in
each cross-validated training set, however, appropriate
estimates of mis-classification error were obtained; the
median estimated misclassion rate was approximately
50%.

The simulation results underscore the importance of
cross-validating all steps of predictor construction in es-
timating the error rate. It can also be useful to compute
the statistical significance of the cross-validated esti-
mate of classification error. This determines the proba-
bility of obtaining a cross-validated classification error
as small as actually achieved if there were no relation-
ship between the expression data and class identifiers.
A flexible method for computing this statistical signif-
icance was described by Radmacher et al. [8]. It in-
volves randomly permuting the class identifiers among
the patients and then re-calculating the cross-validated
classification error for the permuted data. This is done
a large number of times to generate the null distribu-
tion of the cross-validated prediction error. If the value
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of the cross-validated error obtained for the real data
lies far enough in the tail of this null distribution, then
the results are statistically significant. This method of
computing statistical significance of cross-validated er-
ror rate for a wide variety of classifier functions is im-
plemented in the BRB-ArrayTools software [12]. Sta-
tistical significance, however, does not imply that the
prediction accuracy is sufficient for the test to have
clinical utility.

Even if a classifier is developed for a set of patients
sufficiently homogeneous and uniformly treated to be
therapeutically relevant, it may be important to evaluate
whether the classifier predicts more accurately than do
standard prognostic factors or adds predictive accuracy
to that provided by standard prognostic factors. For
example, Rosenwald et al. [9] developed a classifier
of outcome for patients with advanced diffuse large B
cell lymphoma receiving CHOP chemotherapy. The
International Prognostic Index (IPI) is easily measured
and prognostically important for such patients, how-
ever, and so it was important for Rosenwald et al. to
address whether their classifier provided added value.
The most effective way of addressing whether a clas-
sifier adds predictive accuracy to a standard classifica-
tion system is to examine outcome for the new system
within the levels of the standard system.

5. Design of validation studies

The objective of external validation is to determine
whether use of a completely specified diagnostic classi-
fier for therapeutic decision making in a defined clinical
context results in patient benefit. Patient benefit may
represent better efficacy, reduced incidence of adverse
events, better convenience or lower costs. The objec-
tive is not to repeat the developmental study and see if
the same genes are prognostic or if the same classifier
is obtained.

An independent validation study could be a prospec-
tive clinical trial in which patients are randomized to
treatment assignment without use of the classifier ver-
sus treatment assignment with the aid of the classifier.
This design requires that the classifier be determined
only in half of the patients. Often, however, this de-
sign will be inefficient and require a huge sample size
because many or most of the patients will receive the
same treatment either way they are randomized. For
example, consider women with lymph node negative,
ER positive breast cancers. About one third of such pa-
tients might be expected to be classified as low risk for

Table 1
Approximate number of events required for 80% power with 5%
two-sided log-rank test for comparing arms of design shown in Fig. 1.
Randomized arms are mixtures of marker – and marker+ patients.
Hazard ratio for marker – patients is 1 for the two treatment groups
and 0.67 for marker+ patients. All patients are followed to failure

Proportion of Approximate number
patients marker+ of events required

20% 5200
33% 1878
50% 820

recurrence based on the Oncotype-DX expression sig-
nature based risk score [6]. If one wants to test the strat-
egy of withholding cytotoxic chemotherapy (systemic
treatment with Tamoxifen alone) from the subset of pa-
tients classified as low risk, it would be inefficient to
randomize all of the node negative ER positive patients.
If one randomizes all the patients and only performs the
assay on the half randomized to have classifier based
therapy, then the two randomization groups must be
compared overall, although two thirds of the patients
receive the same treatment in both arms. The classifier
is considered clinically useful if the outcome for the
two randomized groups are equal because some of the
patients in the group with marker determined therapy
were spared the side effects of chemotherapy. This is a
therapeutic equivalence design, but a very problemat-
ic one since most patients in both randomization arms
receive the same therapy.

Table 1 indicates the approximate number of events
required for the “Assay after randomization” design of
Fig. 1. Table 1 is based on the assumption that time-
to-event distributions are exponential, and that the haz-
ard ratio between treatment groups is 0.67 in marker
positive patients and 1.0 in marker negative patients.
For application to the breast cancer example considered
above, recall that the marker negative patients receive
the same treatment with marker determined treatment
or standard of care treatment. The number events re-
quired to obtain 80% statistical power for detecting sta-
tistical significance using a 5% two-sided log-rank test
are shown in Table 1 in terms of the proportion of pa-
tients who are marker positive. If only one third of the
patients are marker positive, then approximately 1878
events are required. If the average event rate over the
follow-up period is 10%, then observing 1878 events
requires the accrual of 18,780 patients. Designs related
to that shown in Fig. 1 have been discussed by Sargent
et al. [10].

A more efficient alternative is to perform the assay
up front for all patients, and then randomize only those
classified as low risk. Those patients would be ran-
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Fig. 1. Randomized clinical trial for evaluating whether use of a
biomarker based classifier for treatment selection results in improved
clinical outcome. All patients with conventional diagnosis are ran-
domized between biomarker based treatment (M-rx) or standard of
care based treatment (SOC-rx). This design is often very inefficient.

domized to either receive Tamoxifen alone or Tamox-
ifen plus cytotoxic chemotherapy. Randomizing on-
ly the patients classified as low risk is much more ef-
ficient than randomizing all of the patients. For the
case where one treatment reduces the hazard of failure
by one-third for the marker positive patients, approx-
imately 200 events are required to obtain 80% statis-
tical power with a two-sided 5% log-rank test for the
design of Fig. 2 where only marker positive patients are
randomized.

One might argue that treatment determination using
a genomic classifier for women with stage I ER positive
breast cancer should not be compared to the strategy of
giving all such women Tamoxifen plus chemotherapy,
because there are practice guidelines available based on
tumor size and age that withhold chemotherapy from
some patients. Nevertheless, it would still be very
inefficient to randomize women to genomic classifier
determined therapy or non-genomicpractice guidelines
determined therapy in which the genomic classifier is
measured only on the women randomized to its use.
Most of the women will probably receive the same
treatment whichever arm they are randomized to. It is
much more efficient to perform the assay for measuring
the genomic classifier, and then randomize only the
women for whom the two treatment strategies differ as
indicated in Fig. 2.

The null hypothesis for the design of Fig. 2 is that the
marker based treatment selection strategy is equivalent
to the standard care treatment selection strategy. In
the breast cancer example described above, the marker
based treatment selection strategy called for withhold-
ing systemic therapy other than tamoxifen for patients

Fig. 2. Improved clinical trial design for evaluating whether use of a
biomarker based classifier for treatment selection results in improved
clinical outcome. The biomarker classifier based treatment (M-rx)
and standard of care based treatment (SOC-rx) are determined before
randomization and patients for whom the two treatment strategies
agree are not randomized. This design is often much more efficient
than that shown in Fig. 1.

predicted to be at low risk of recurrence based on the
classifier. The standard of care treatment might incor-
porate decision making based on established predictive
markers. For example, the standard of care might be
include treatment with Herceptin for patients whose tu-
mors expressed the Her2/neu receptor. Or the standard
of care strategy might involve withholding systemic
therapy other than Tamoxifen if the tumor size is below
a specified threshold. The design of Fig. 2 requires that
the standard of care treatment and the classifier based
treatment for each eligible patient be determined before
randomization and only those patients for whom the
two treatments differ are randomized.

Phase III clinical trials generally attempt to utilize
an intervention in a manner that it might be used if
adopted in broad clinical practice. For evaluating a di-
agnostic classifier, a multi-center clinical trial provides
the challenges of distributed tissue handling and real
time assay performance that would be met in general
use. The assays might be performed in multiple labo-
ratories and cannot be batched in time with a single set
of reagents as might be done in a retrospective study.
Consequently, the prospective clinical trial is the gold
standard for external validation of a genomic classifier.

Validation based on a new prospective clinical trial
will require a long follow-up time for low risk patients.
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In such circumstances it can be useful to conduct a
prospectively planned validation using patients treat-
ed in a previously conducted prospective multi-center
clinical trial if archived tumor specimens are available
for the vast majority of patients. The validation study
should be prospectively planned with at least as much
detail and rigor as for prospective accrual of new pa-
tients. Although assaying procedures probably cannot
be distributed over time in the same way as for newly
accrued patients, assay reproducibility studies should
be conducted to demonstrate that the assay has been
standardized and quality controlled sufficiently so that
such sources of variation are negligible. A written pro-
tocol should be developed to ensure that the study is
prospectively planned to evaluate the clinical benefit of
a completely specified genomic classifier for a defined
therapeutic decision in a defined population in a hy-
pothesis testing manner as it would for a prospective
clinical trial.

The study of Paik et al. [6] of the OncoType Dx
classifier for women with node negative ER positive
breast cancer is an example of careful prospective plan-
ning of an independent validation study using archived
specimens. Their study was based on the observation
that although randomizing only the patients classified
as low risk is more efficient than randomizing all of
the patients, it still would require many patients. It is
a therapeutic equivalence trial in the sense that find-
ing no difference in outcome changes clinical practice;
consequently it is important to be able to detect small
differences. Since the expected recurrence rate is so
low, it would take many patients to detect a difference
between the treatment arms. But if the recurrence rate
is as low as predicted by the classifier, then the benefit
of chemotherapy is necessarily extremely small. Con-
sequently, an alternative design for external validation
is a single arm study in which the patients classified
as low risk are treated with Tamoxifen alone. If, with
long follow-up, these patients have a very low recur-
rence rate, then the classifier is considered validated for
providing clinical benefit because it enabled the iden-
tification of patients whose prognosis was so good on
Tamoxifen monotherapy that they could be spared the
toxicity, inconvenience and expense of chemotherapy.
This was the approach used by Paik et al. for validation
of the OncoType Dx classifier for patients with node
negative, estrogen receptor positive breast cancer [6].
The genes that appeared prognostic were initially iden-
tified based on published microarray studies. Primers
for measuring expression of those genes using RT-PCR
of FFPE tissue were developed and a classifier was de-

veloped based on archived tissue from NSABP studies.
The completely pre-specified classifier was then tested
on 668 patients from NSABP B-14 who received ta-
moxifen alone as systemic therapy. Fifty one percent
of the assayed patients fell in the low risk group. They
had a distant recurrence rate at 10 years of 6.8 percent
(95% confidence interval 4.0 to 9.6). Much higher rates
of distant recurrence were seen in the intermediate and
high risk groups of the classifier (14.3% and 30.5%
respectively).

6. Development of genomic classifiers for
experimental drugs

The objective of validation of a genomic classifier
differs somewhat for existing therapy compared to an
experimental therapy. With existing therapy, the em-
phasis should be on validation of the clinical benefit
of using the classifier. With an experimental therapy,
however, the emphasis should be on demonstrating ef-
fectiveness of the drug in a population identified by the
classifier as being more likely to benefit. Simon and
Maitournam [13] demonstrated that use of a genomic
classifier for focusing a clinical trial in this manner can
result in a dramatic reduction in required sample size,
depending on the sensitivity and specificity of the clas-
sifier for identifying such patients. Not only can such
targeting provide a huge improvement in efficiency in
phase III development, it also provides an increased
therapeutic ratio of benefit to toxicity and results in a
greater proportion of treated patients who benefit.

Simon and Maitournam consider use of the Targeted
Design shown in Fig. 3. During pre-clinical and phase
I/II clinical development one identifies a fully specified
classifier of which patients have a high probability of
responding to the experimental drug. That classifier is
then used to select patients for phase III trial. This is a
form of enrichment design. Table 2 shows the number
of events required in order to have 80% statistical pow-
er for comparing exponential survival times using the
design of Fig. 3 if the treatment results in a halving of
the hazard in the patients selected for study using the
classifier. The number of events shown in Table 2 is
compared to the number of events required in a standard
clinical trial if the classifier is not used to select patients
for randomization (Table 1). The table assumes that
the treatment is not effective for the classifier negative
patients. More extensive results on relative efficiency
of the targeted and untargeted designs are described by
Simon and Maitournam [3,13].
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Table 2
Approximate number of events required for 80% power with 5%
two-sided log-rank test for comparing arms of design shown in Fig. 3.
Only marker+ patients are randomized. Treatment hazard ratio for
marker+ patients is shown in first column. Time-to-event distribu-
tions are exponential and all patients are followed to failure

Hazard ratio for Number of
marker+ patients events required

0.5 74
0.67 200

Fig. 3. Targeted clinical trial design for evaluating a new experi-
mental therapy. A biomarker classifier is developed for identifying
those patients most likely to respond to the new treatment (E). On-
ly those patients are randomized to E versus the control treatment.
The patients predicted less likely to respond (marker negative) are
off study. The targeted design is most useful in cases where the
biomarker classifier has a strong biological rationale for identifying
responsive patients and where it may not be ethically advisable to
expose marker negative patients to the new treatment.

Developing a genomic classifier of which patients
are likely to benefit for targeting phase III trials may
require larger phase II studies. This depends on the
type of drug being developed. For example, if the drug
is an inhibitor of a kinase mutated in cancer, then there
is a natural diagnostic and no genome-wide screening
is needed. For many molecularly targeted drugs, how-
ever, the appropriate assay for selecting patients is not
known and development of a classifier based on com-
paring expression profiles for phase II responders ver-
sus phase II non-responders may be the best approach.
In such instances, one may not have sufficient confi-
dence in the genomic classifier developed in phase II
to use it for excluding patients in phase III trials as in
Fig. 3. It may be better in this case to accept all con-
ventionally eligible patients, and use the classifier in
the pre-defined analysis plan.

Fig. 4. Stratified analysis design for evaluating a new experimental
treatment (E) relative to a control (C). The status of a biomarker
based classifier of the likelihood of responding to E is utilized in
a prospectively specified analysis plan. The biomarker classifier is
not just used for stratifying the randomization. Alternative analysis
plans are described in the text.

Figure 4 shows the Marker by Treatment Interaction
Design discussed by Sargent et al. [10] and by Pusztai
and Hess [7]. Both marker positive and marker negative
patients are randomized to the experimental treatment
or control. The analysis plan either calls for separate
evaluation of the treatment difference in the two marker
strata or for testing the hypothesis that the treatment
effect is the same in both marker strata. When this de-
sign is used for development of an experimental drug,
an appropriate analysis plan might be to utilize a pre-
liminary test of interaction; if the interaction is not sig-
nificant at a pre-specified level, then the experimental
treatment is compared to the control overall. If the in-
teraction is significant, then the treatment is compared
to the control within the two strata determined by the
marker. The sample size planning for such a trial and
determination of the appropriate significance level for
the preliminary interaction test require further study.

Freidlin and Simon [2] proposed an alternative anal-
ysis plan for the design of Fig. 4. They suggested
that the overall null hypothesis for all randomized pa-
tients is tested at the 0.04 significance level. A por-
tion, e.g. 0.01, of the usual 5 percent false positive rate
is reserved for testing the new treatment in the subset
predicted by the classifier to be responsive. The anal-
ysis starts with a test of the overall null hypothesis,
without a preliminary test of interaction. If the overall
null hypothesis is rejected, then one concludes that the
treatment is effective for the randomized population as
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a whole and that the classifier is not needed. If the
overall null hypothesis is not rejected at the 0.04 level,
then a single subset analysis is conducted; comparing
the experimental treatment to the control in the sub-
set of patients predicted by the classifier as being most
likely to be responsive to the new treatment. If the
null hypothesis is rejected, then the treatment is con-
sidered effective for the classifier determined subset.
This analysis strategy provides sponsors an incentive
for developing genomic classifiers for targeting therapy
in a manner that does not unduly deprive them of the
possibility of broad labeling indications when justified
by the data.

7. Conclusions

Physicians need improved tools for selecting treat-
ments for individual patients. The genomic technolo-
gies available today are sufficient to develop such tools.
There is not broad understanding of the steps needed
to translate research findings of correlations between
gene expression and prognosis into robust diagnostics
validated to be of clinical utility. This paper has at-
tempted to identify some of the major steps needed for
such translation.
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