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1

Introduction

DNA micro arrays are an important technology for studying gene expression.

With a single hybridization, the level of expression of thousands of genes, or
even an entire genome, can be estimated for a sample of cells. Consequently,
many laboratories are attempting to utilze DNA microarrays in their research.
Whereas laboratories are well prepared to address the significant experimental
challenges in obtaining reproducible data from this RNA-based assay, inves-
tigators are less prepared to analyze the large volumes of data produced by
DNA microarrays.

Although many software packages have been developed for the analysis
of DNA microarray data, software alone is insuffcient. One needs knowledge
about the various aspects of data analysis in order to select and utilze software
effectively. There is a plethora of analysis methods being published and it is
diffcult for biologists to determine which methods are valid and appropriate
for their problems.

Many scientists have learned that software is not an adequate substitute
for biostatistical knowledge and seek statistical collaborators. Unfortunately,
there is presently a shortage of statisticians who are available and knowledge-
able about DNA microarrays. For statisticians to be effective collaborators in
any area, they must invest the time to understand the subject matter area and
become familar with the literature so that they can ask the right questions
and identify the key issues.

Our objectives in thi book are twofold: to provide scientists with informa-
tion about the design and analysis of studies using DNA microarrays that wil
enable them to plan and analyze their own studies or to work with statistical
collaborators effectively, and to aid statistical and computational scientists
wishing to develop expertise in thi area.

We believe that the design and analysis of micro array studies should be
driven by the objectives of the experiment. We have identified several com-
mon types of objectives and for each type we have presented methods that we
believe are statistically sound and effective. These methods are described in a
manner that we believe wil be understandable to most scientists. We empha-
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size the concepts behind the methods rather than the mechanics of the use
of the formulas. In most cases, the methods are available in existing software
and the investigator wil need knowledge of concepts to select methods and
software more than knowledge of formulas for doing the calculations by hand.
We have made the data used as examples in this book available on our Web
site (see Appendix B) and have provided readers with a tutorial on the use of
our BRB- ArrayTools software for analysis of these datasets. BRB- ArrayTools,
described in Appendix C, is a menu-drivèn program incorporating many ad-
vanced analysis features but easily usable by scientists. BRB-ArrayTools is
available without charge for noncommercial purposes.

We have tried to keep each chapter focused and relatively short in or-
der to enhance its readabilty. Analytic methods for DNA micro array data
are an active area of research. We have presented specific methods that we
have found to be valid and usefuL. Although we generally describe a variety of
approaches to analysis, we have not tried to be encyclopedic with regard to
the literature. We hope that this serves the needs of most scientists looking

for expert advice about sound and effective methods and also the needs of
statistical and computational scientists looking for a broader coverage of the
literature. Most of the material included has been written to be understand-
able to biological scientists without substantial statistical training. We have
avoided mathematical and statistical derivations and nonessential notation.

Chapter 2 is a brief description of microarray platforms commonly used
for gene expression profiling, including dual-label cDNA and oligonucleotide
platforms and Affmetrix GeneChip ™ arrays. Some experimentalists may
choose to skip this chapter. Although microarrays can also be used for pur-
poses other than gene expression profiling, such as sequencing and genotyping,
these latter applications are not the focus of this book.

Chapter 3 discusses important aspects of the design of studies that use
DNA microarrays. A complete presentation of the area of biomedical study
design is not possible in one chapter, but we attempt to address many topics
of special relevance in DNA microarray based studies.

Chapter 4 addresses the creation and analysis of images of intensities on
microarrays after hybridization of labeled targets to the immobilzed probes.
That is, we discuss how pixel-level data are converted to probe-level or gene-
level summaries. Although scientists generally do not do their own image
analysis, some need to select software and to evaluate their images. Hence a
basic understanding of the issues involved is usefuL.

Chapters 5 and 6 examine a variety of signal-processing issues, which must
be addressed before the objective-directed analysis strategy is implemented. '
Chapter 5 covers methods of evaluating quality of microarray data. These
issues are discussed separately for dual-label arrays and for GeneChips TM.

Chapter 6 addresses issues of normalization. Normalization is necessary be-
cause the raw intensities of labeled targets vary among arrays due to sources
of experimental variabilty independent of level of expression. The objec-
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tives of normalization are somewhat different for dual-label arrays and for
GeneChips TM, and both are discussed.

Chapters 7 through 9 present analysis strategies for studies where the
major objectives are class comparison, class prediction, and class discovery,
respectively. In class comparison problems discussed in Chapter 7 there is a
predefined classification of the specimens and the objective is usually to deter-
mine which genes are differentially expressed among the classes. For example,
comparing expression profies for different types of tissue or for the same tissue
under different conditions are class comparison objectives.

In some studies, particularly those involving expression profiles of diseased

human tissues, there are predefined classes and the emphasis is on attempting
to develop a gene expression-based predictor of the class to which a new
specimen belongs. Such class prediction problems, and the related problem
of prognostic prediction, are addressed in Chapter 8. For example, we may
have tissues from patients with a specified disease who have received a specific
treatment. One class may be those specimens from patients who responded
to the treatment and the ôther class may be those tissues from patients who

did not respond. The objective may be to predict whether a new patient is
likely to respond based on the expression profie of his or her tissue specimen.
Accurate prediction is of obvious value in treatment selection. In Chapter 8
we discuss the key components of a class prediction algorithm and describe
several commonly used methods of prediction.

Chapter 9 addresses class discovery objectives. This includes discovery
of new groupings or taxonomies of the specimens, based on expression pro-
fies. Discovering classes of co expressed and potentially coregulated genes is
also a discovery objective. Class discovery is usually adressed using methods
of cluster analysis. Chapter 9 also describes principal components analysis
and multidimensional scaling and the graphical displays associated with these
methods.

We present the material in Chapters 7 through 9 in a relatively nonmath-
ematical style that wil be understandable to a broad range of scientists and
to ilustrate many of the methods with examples.

Appendix A provides basic information on the biology of gene expression
for statistical and computational scientists who do not have biological train-
ing. Appendix B provides information about the gene expression datasets that
are used as examples in this book. Learning about analysis of DNA microar-
ray data is faciltated by experience analyzing real data. Therefore, on our

Web site http://linus . nci . nih. gov / rvbrb we provide the datasets used as

examples in this book. Individuals can practice analyzing these datasets, or
their own data, using the software of their choice. Appendix C describes the
BRB-ArrayTools software. This software includes many of the methods de-
scribed in the text and is regularly being extended with more tools based upon
our experience in the analysis of micro array data. Again, BRB-ArrayTools is
available on our Web site without charge for noncommercial purposes. It can
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be licensed from the National Institutes of Health by commercial organiza-
tions.



2

DNA Microarray Technology

2.1 Overview

DNA microarrays are assays for quantifyng the tyes and amounts of mRA
transcripts present in a collection of .cells. The number of mRNA molecules
derived from transcription of a given gene is an approximate estimate of the
level of expression of that gene; see Appendix A for basic information on
the biology of gene expression. RN A is extracted from the specimen and the
mRNA is isolated. The mRA transcripts are then converted to a form of
labeled polynucleotides, called targets, and placed on the microarray. Details
of the labeling process are provided later in this chapter.

The microarray consists of a solid surface on which strands of polynu-
cleotides have been attached in specified positions. We refer to the polynu-
cleotides immobilzed on the solid surface as probes. The probes consist either
of cDNA printed on the surface or shorter oligonucleotides synthesized or
deposited on the surface. The labeled targets bind by hybridization to the
probes on the array with which they share sufcient sequence complementar-
ity. After allowing sufcient time for the hybridization reaction, the excess
sample is washed off the solid surface. At that point, each probe on the mi-
croarray should be bound to a quantity of labeled target that is proportional
to the level of expression of the gene represented by that probe. By measuring
the intensity of label bound to each probe, one obtains numbers that, after
adjustment for technical artifacts, should provide an estimate of the level of
expression of all the corresponding genes.

2.2 Measuring Label Intensity

The amount of labeled target bound to each polynucleotide probe is quantified
by iluminating the solid surface with laser light of a frequency tuned to the
fluorescent label employed, and then measuring the intensity of fluorescence
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over each probe on the array. This intensity of fluorescence should be propor-
tional to the number of molecules of target bound to the probe. For a given
number of bound molecules, other factors that can influence the intensity
of fluorescence include the labeling effciency, the number of polynucleotide
strands in the probe, the laser voltage, and the photomultiplier tube setting.
The number of bound molecules wil be affected by the number of cells in
the specimen, the RNA extraction effciency, and the spatial distribution of
labeled sample on the array.

The fluorescence emitted by molecules of targets bound to a probe is mea-
sured by a detector. Most commercial scanners use confocal microscopy de-

tection. A confocal microscope focuses the photons originating in a very small
region on the array to a photomultiplier tube. By collecting photons from

one very small region at a time, the confocal method is effective in limiting
contamination of the signal by other sources of fluorescence. This is impor-
tant because the fluorescent signal emitted by the fluorophore is relatively
weak. The resolution of most commercial confocal microscope-based scanners
is about 3 ¡.m, much less than the diameter of the region containing the probe.
The array is scanned, collecting photons from each 3 ¡.m region (pixel). At
each step of the scan, the photons are focused into a photomultiplier tube

where the photon density is translated into an electrical current which is am-
plified and digitized. If there are two samples co hybridized to the array with
two fluorophores, the array is scanned for each labeL. With many systems, the
array is scanned twice for each label and the average intensities recorded.

The fluorescent microscope does not directly measure the intensity of fluo-
rescence over each probe. The instrument does not even know where the probes
are located on the surface of the array. Instead, the microscope measures the
intensity of fluorescence at each location of an imaginary grid covering the
array surface. The grid locations are called pixels, short for picture elements.
The distance between pixels is much less than the distance between probes.
The output of the fluorescent microscope is a computer fie, called an image
file, giving the intensity of fluorescence measurement at each pixeL. If two la-
beled samples were cohybridized, then two fies are output, one corresponding
to each label, or each channel. An image analysis algorithm processes these
image files to estimate the intensity of label in each channel over each probe
on the array, as described in Chapter 4.

2.3 Labeling Methods

For glass slide arrays the mRNA is usually reverse-transcribed to complemen-
tary DNA (cDNA), and a fluorescent label is incorporated into the cDNA
during or after the reverse transcription reaction. The labeled cDNA is then
placed on the micro array.

For AffymetrÌX GeneChip ™ arrays the preparation of labeled targets is
somewhat different (Affmetrix 2000). After isolation of mRNA, cDNA is
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synthesized. The cDNA is used as a template for T7 RNA polymerase to
amplify the cDNA into synthesized cRNA molecules. In this amplification
step a biotin label is introduced into the cRNA. The cRNA molecules are
then fragmented into molecules 80 tolOO nucleotides long. The biotin-labeled
cRNA fragments are then hybridized to the GeneChip TM. After hybridization,
the bound cRNA fragments are stained with a biotin antibody.

2.4 Printed Microarrays

Microarrays differ in many important details. cDNA micro arrays usually con-

sist of probes of cDNA robotically printed on a microscope slide coated with
poly-lysine or poly-amine to enhance absorption of the DNA probes (Schena
et al. 1995, 2000). The robotic printers have several pins arranged in a rect-
angular pattern (Figure 2.1). For example, if there are four pins, then for

Fig. 2.1. Schematic of robotic printing of spots for cDNA array (right) and of

processing of RNA samples for cohybridization to array.

each location of the robotic arm, four spots wil be printed. At any time, the
pins are loaded with cDNA from four different inventory wells and these PCR
product clones are printed on each array of the print run. Then the pins are
automatically washed and loaded with four other clones. The arm advances ei-
ther horizontally or vertically an amount equal to the distance between spots,
and the four clones are printed on all of the arrays of the print run. . Thus,
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for a four-pin printer, the spots on the array are printed in four rectangular
grids corresponding to the rectanguar arrangement of the robotic pins (Fig-
ure 2.2). The spots of each grid are printed with the same pin of the robot.
The distance between the spots corresponds to the distance that the robotic
arm moves between loadings of the pins, and the distance between the grids
corresponds to the distance between the pins.

Fig. 2.2. A typical cDNA rncroarray image with two rows and two colum of
grids.

Because the cDNA probes are generally several hundred bases long, strin-
gent hybridization conditions can be employed and cross-reactivity is limited.
However, robotic printing often results in substantial variabilty in the size
and shape of corresponding spots on different arrays. Also, with cDNA arrays,
the labeled sample is not uniformly distributed across the face of the array
and the distribution of the sample differs among otherwise identical arrays.

Hence direct comparison of intensities of corresponding probes on different ar-
rays is problematic. Some of the interarray variabilty can be eliminated by a
statistical "normalization" described in Chapter 4. Even after normalization,
however, there is often substantial among corresponding variabilty spots on
different arrays. Much of this variabilty can be controlled by co-hybridizing

two samples on the same array. The two cDNA samples are labeled with differ-
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ent fluorescent dyes. By using two laser sources, the intensity of fluorescence
in each of the two frequency channels is measured over each probe. The second
sample may represent either a specimen whose expression profile relative to
the first specimen is of biological interest, or a reference sample used on all
arrays in order to control experimental variabilty.

Externally synthesized oligonucleotides can also be robotically printed on
coated glass slides. Because sample distribution across the face of the arrays
remains variable, much of the interslide variabilty that is characteristic of
cDNA arrays also applies to printed oligonucleotide arrays. Consequently, co-
hybridization of two separately labeled samples is also advantageous.

2.5 Affmetrix GeneChipTM Arrays

Affymetrix GeneChip ™ arrays have oligonucleotide probes lithographically
synthesized directly on the array. The array in this case is not a glass slide,
but a silcon chip (Fodor et al. 1991). The oligonucleotides at all locations on
the chip are synthesized in paralleL. At the first step, the chip is bathed in

a solution containing a precursor to one of the four nucleotides, say G. The
synthesis of a nucleotide and attachment of the nucleotide to the anchor or
the partially constructed oligonucleotide chain is light actuated. A mask is
employed to ensure that light reaches only those addresses where the next
nucleotide in the desired sequence is that represented by the current bath, say

G. The in situ synthesis continues in this manner with multiple baths, washes,
and masks employed.

The probes on GeneChipTM arrays.are more homogeneous and less vari-
able relative to cDNA arrays. Inter array variabilty due to sample distribu-
tion effects is also minimized because the samples are circulated inside the
GeneChip ™ during hybridization. Because of these reductions in inter array
variabilty, a single sample is usually hybridized to GeneChipsTM.

The expense of fabrication and frequency of sequence errors for Gene-
Chips ™ increase with the length of the oligonucleotide probes employed,

therefore relatively short 25 mer oligonucleotides are generally used. In or-
der to obtain suffcient binding strength from 25 mer oligonucleotides, the
hybridization conditions must be made less stringent than for cDNA arrays
or longer spotted oligonucleotide arrays. Consequently, substantial cross hy-

bridization is possible.
Affmetrix attempts to deal with the cross-hybridization problem by using

multiple probe pairs for each target transcript (Lockhart et al. 1996). A probe
pair consists of a 25 mer oligonucleotide perfectly complementary to a 25
nucleotide sequence of an exon of the target gene, and a 25 mer that differs
from that perfect match probe by a single mismatched nucleotide at the central
position. Affymetrix expects that the mismatched probe should not hybridize
well to the target transcript but should hybridize to many transcripts to which
the perfect-match oligonucleotide cross-hybridizes. Thus the intensity of signal
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at the perfect match probe minus the intensity at the mismatched paired

probe may be a better estimate of the intensity due to hybridization to the
true target transcript.

Current GeneChipsTM use 11 to16 probe pairs for each target gene but
the lengths of the probes are smaller than for cDNA arrays. The differences in
perfect-match minus mismatch intensities are averaged across the probe pairs
to give an estimate of intensity of hybridization to the target transcript; see
Section 4.3.

2.6 Other Microarray Platforms

Several companies such as Protogene (Menlo Park, CA) and Agilent Technolo-
gies (Palo Alto, CA) in collaboration with Rosetta Inpharmatics (Kirkland,
WA) have developed methods of in situ synthesis of oligonucleotides on glass
arrays using ink-jet technology that does not require photolithography. The
ink-jet technology of Agilent can also be used to attach pre synthesized DNA
probes to glass slides.

Another class of DNA microarrays utilzes cDNA probes printed on a
nylon membrane, and radioactive labeling of the sample. The radioactive label
provides a stronger signal than fluorescent dye. This is useful when the amount
of mRNA available for labeling is limited, but the wide scattering of label
limits the density of probes that can be printed on the array, and larger format
arrays are necessary. Although most of the principles of experimental design
and analysis apply equally to arrays using radioactively labeled samples as to
arrays using fluorescent labels, we generally talk in terms of the latter.
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Design of DNA Microarray Experiments

3.1 Introduction

Microarray based experiments, like all experiments, should be carefully
planned. Careful planning begins with a clear objective. The objective drives
the selection of specime~s and the specification of an appropriate analysis
strategy. It is a common misconception that microarray experiments do not
require planning or objectives; in this view, expression profies are placed in a
pattern recognition blackbox and discoveries emerge. Although pattern recog-
nition algorithms have a role for some objectives involving microarrays, most
successful microarray-based experiments have a definite focus.

There is substantial confion about the role of "hypothesis testing" in
studies using microarrays. It is true that micro array-based research is gen-
erally not based on a mechanistic biological hypothesis focused on specific

genes. Other technologies are more suitable for testing hypotheses about spe-
cifc genes. Nevertheless, most good microarray experiments are based on a
hypothesis. For example, the hypothesis might be that there are genes whose
expression is up-regulated or down-regulated in a tumor compared to normal
tissue of the same tissue type. Or, the hypothesis might be that different tu-
mors of the same tissue type and the same stage are not homogeneous with
regard to gene expression profiles. Clearly identifyng the general hypothesis
of the study is important for ensuring that the type and number of specimens
collected are appropriate. Clarity on the general hypotheses is also important
for selecting methods of data analysis. A DNA microarray is just a highly
parallel assay. It does not herald an era in which good practices of carefully
thinking about the objectives of the experiment and of carefully planning the
experiment and its analysis are obsolete.

Because DNA micro array investigations are not focused on a prespeci-

fied gene-specific hypothesis, there is much more opportunity for spurious
findings than with more traditional types of investigations. Although the con-
texts in which micro arrays are used are exploratory, strong claims are often

made about which genes are differentially expressed under specifed condi-
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tions, which are disreguated in diseased tissue, and which are predictive of
response to treatment. The serious multiplicity problems inherent in examin-
ing expression profiles of tens of thousands of genes mandate careful planning
and special forms of analysis in order to avoid being swamped by spurious
associations .

Design issues can be divided into those relating to the design of the DNA
micro array assay itself and issues involving the selection, labeling, and ar-
raying of the specimens to be assayed. In this chapter, we focus on the latter
issues. Section 3.2 describes the importance of defining the study objectives for
designing a microarray study, Section 3.3 discusses the diffculties in satisfying
study objectives when only two RNA samples are compared. The sources of
variation and the levels of replication of the experiment, discussed in Section
3.4, are important to consider when designing a study. Section 3.5 discusses

the possibilty of pooling samples and assaying the pooled sample with a
microarray. With dual-label microarrays, the different ways of pairing and
labeling the samples are discussed in Sections 3.6 and 3.7, respectively. The
chapter ends with a discussion of the sample sizes required to meet the study
objectives.

3.2 Study Objectives

DNA microarrays are useful in a wide variety of investigations with a wide
variety of objectives. Many of these 'objectives fall into the following categories.

3.2.1 Class Comparison

Class comparison focuses on determiing whether gene expression profiles dif-
fer among samples selected from predefined classes and identifying which genes
are differentially expressed among the classes. For example, the classes may
represent different tissue types, the same tissue under different experimental
conditions, or the same tissue type for different classes of individuals. In can-
cer studies, the classes often represent distinct categories of tumors difering
with regard to stage, primary site, genetic mutations present, or with regard
to response to therapy; the specimens may represent tissue taken before or af-
ter treatment or experimental intervention. There are many study objectives
that can be identified as class comparison. The defining characteristic of class
comparison is that the classes are predefined independently of the expression
profiles. Many studies are performed to compare gene expression for several
types of class definition. For example, two genotypes of mice may be stud-
ied under two different experimental conditions. One analysis may address
differences in gene expression for the two types of animals under the same
experimental condition and the other analysis may address the effect of the
experimental intervention on gene expression for a given genotype.
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3.2.2 Class Prediction

Class prediction is similar to class comparison except that the emphasis is on
developing a statistical model that can predict to which class a new specimen
belongs based on its expression profile. This usually requires identifyng which
genes are informative for distinguishing the predefined classes, using these
genes to develop a statistical prediction model, and estimating the accuracy of
the predictor. Class prediction is important for medical problems of diagnostic
classification, prognostic prediction, and treatment selection.

3.2.3 Class Discovery

Another type of microarray study involves the identification of novel sub-
types of specimens within a population. This objective is based on the idea
that important biological differences among specimens that are clinically and
morphologically similar may be discernible at the molecular leveL. For exam-

ple, many microarray studies in cancer have the objective of developing a
taxonomy of cancers that originate in a given organ site in order to identify
subclasses of tumors that are biologically homogeneous and whose expression
profiles either reflect different cells of origin or other differences in disease
pathogenesis (Alizadeh et al. 2000; Bittner et al. 2000). These studies may
uncover biological features of the disease that pave the way for development
of improved treatments by identification of molecular targets for therapy.

3.2.4 Pathway Analysis

The objective of some studies is the identification of genes that are coregulated
or which occur in the same biochemical pathway. One widely noted example is
the identification of cell cycle genes in yeast (Spellman et aL. 1998). Pathway
analysis is often based on performing an experimental intervention and com-
paring expression profiles of specimens collected before and at various time
intervals after the experimental intervention. In some cases, however, pathway
analysis may involve comparing the wild type organim to genetically altered
variants.

3.3 Comparing Two RNA Samples

The initial cDNA microarray studies involved the cohybridization of one
mRNA sample labeled with one fluorescent dye and a second mRA sam-
ple labeled with a second fluorescent dye on a single microarray (DeRisi et aL.
1996). This type of study, and the high cost of microarrays, left many investi-
gators hoping and believing that no replication was needed. It also led to the
publication of a variety of statistical methods for comparing the expression
levels in the two channels at each gene on a single microarray. Even today,
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Affmetrix software is designed to compare gene expression on just two arrays
(one sample on each array) and to compare two classes of specimens one must
compare the specimens two at a time (Affetrix 2002).

The main problems with drawing conclusions based on comparing two
RNA samples apply to both dual-label and Affmetrix arrays. First, the rela-
tive intensity for a given gene in the two specimens can reflect an experimental
artifact in tissue handling, cell culture conditions, RNA extraction, labeling,
or hybridization to the arrays that is not removed by the normalization pro-
cess. The analysis of two RNA samples each arrayed once provides very little
evidence that if the same two samples were rearrayed the results would be
similar.

Even more important, the conclusions derived from comparing two RNA
samples, even if they are arrayed on replicate arrays, apply only to those
two samples and not to the tissues or experimental conditions from which
they were derived. For example, in comparing two RNA samples, none of
the biological variabilty is represented. In comparing expression profiles of

tumors of one type to tumors of another type, there is generally substantial
variation among tumors of the same class (e.g., Hedenfalk et aL. 2001). There
may even be substantial variation in expression within a single tumor. Hence,
comparison of one RNA sample from one tumor of the fist type to one RNA
sample from one tumor of the second type is not adequate. In comparing
tissue from inbred strains of mice, the biological variabilty is generally less
than for human tissue but some biological replication is stil necessary. Even

. for comparing expression of a cell line under two conditions, there is biological
variabilty resulting from variation in experimental conditions, growth and
harvest of the cells, and extraction of the RNA. Hence some replication of the
entire experiment is important. This is discussed further in the next section. \

3.4 Sources of Variation and Levels of Replication

Some important sources of variation in microarray studies can be categorized
as

. between individuals within the same "class" or between complete replica-

tion of tissue culture experiments under the same experimental conditions;
. between specimens from the same individual or same experiment;

. between RNA samples from the same specimen;

. between arrays for the same RNA sample;

. between replicate spots on the same array.

Replicate arrays made from the same sample of RNA are often called
technical replicates, in contrast to biological replicates made from RNA from
biologically independent samples (Yang and Speed 2002b). There are, how-
ever, several levels of biological replicates.
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Suppose we wish to determine gene expression diferences between breast
tumors with a mutated BRCAI gene and tumors without a mutation. If we
performed array experiments on one breast tumor with a BRCAI mutation
and one without a mutation we would not be able to draw any valid conclu-
sions about the relationship of BRCAI mutations to gene expression because
we have no information about the natural variation within the two popu-
lations being studied. The situation would not improve even if the tumors
under investigation were large enough for us to be able to perform multiple
mRN A extractions and run independent array hybridizations on each extrac-
tion. Sets of tumors representative of the BRCAI mutated population and
the non-BRCAI mutated population are necessary to draw valid conclusions
about the relationship of BRCAI mutations to gene expression. .

There is sometimes confusion with regard to the level of replication appro-
priate for micro array studies. For example, in comparing expression profiles
of BRCAI mutated tumors to expression profies of non-BRCAlmutated tu-
mors, it is not necessary to have replicate arrays of a single RNA sample
extracted from a single biopsy of a single tumor. Having such replication may
provide protection from having to exclude the tumor if the one array avaable
is of poor quality, but such replications are merely assay replicates and do not
satisfy the crucial need for studying multiple tumors of each type. Often the
biological vaiation between individuals will be much larger than the assay
variation and it will be ineffcient to perform replicate arrays using specimens
from a small number of individuals rather than performing single arrays using
a larger number of individuals.

In comparing expression profiles between two cell lines, or for a given cell
line under different conditions, the concept of "individual" may be unclear.
Suppose, for example, we wish to compare the expression profie of a cell line
before treatment to the expression profie after treatment. Cell lines change

their expression profiles depending on the culture conditions. Growing the
cells and harvesting the RNA under "fied conditions" wil result in variable
expression profiles because of differences in important factors such as the con-
fluence state of the culture at the time of cell harvesting. Consequently, it is
important to have independent biological replicates of the complete experi-
ment under each of the conditions being compared. The degree of variation
between independent biological samples may be less for experiments involving
cell lines or inbred strains of model species compared to those involving hu-
man tissue samples, and this wil influence the number of biological samples
required as described in Section 3.8.

In some cases it is n8eful to obtain two specimens from the same individual.
For example, if you are attempting to discover a new taxonomy of a disease
based on an expression profie, it is useful to establish that the classification
is robust to sampling variation within the same individuaL. For many studies
of human tissue, however, the tissue samples will not be large enough to
provide multiple specimens for independent processing. It is important to

note that there is a distinction between multiple specimens from the same
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individual and multiple independently labeled aliquots of one RNA sample.
The latter wil show less variabilty than the former, especially when the tissue

is heterogeneous. However, even without tissue heterogeneity, variation may
be observed among expression profiles of multiple specimens taken from the
same individual because of differences in tissue handling and RNA extraction.

Performing technical replicate arrays with independently labeled aliquots
of the same RN A provides information about the reproducibilty of the mi-
croarray assay, that is, the reproducibilty of tlie labeling, hybridization, and
quantification procedures. It is useful to know that the reagents, protocols
and procedures used provide reproducible results on aliquots of the same
RNA sample. Generally, it wil be suffcient to obtain such technical repli-
cates on just a few RNA samples. Serious attention should be devoted to
reduce techncal variabilty in a study. If possible, RNA extraction, labeling,
and hybridization of all arrays in an experiment should be performed by the
same individual using the same reagents. If spotted arrays are used, it is de-
sirable to use arrays from the same print set and certaiy the same batch
of internal reference RNA. If samples become avalable at different times in
a long-term study, it is best to save frozen specimens so that all of the array
assays can be done at approximately the same time.

When techncal replicate arrays of the same RNA samples are obtained,
they can be averaged to improve precision of the estimate of the expression
profie for a iiven RNA sample. If reproducibilty is poor, however, it may
be preferable to discard techncally inferior arrays rather than average repli-
cates. Although averaging of replicates may seem ad hoc, analysis of variance
methods also average replicates although they account for the differences in
precision available for different samples based on their possibly varying num-
ber of replicates. Replicate arrays of the same RNA samples are also sometimes
used in dye-swap experimental designs described later in this chapter.

3.5 Pooling öf Samples

Some investigators pool samples in the hope that through pooling they can
reduce the number of microarrays needed. For example, in comparing two
tissue types, a pool of one type of tissue is compared to a pool of the other
tissue type. Replicate arrays might be performed on each pooled sample. Al-
though the pooled sample approach may be applicable for preliminary screen-
ing, the approach does not provide a valid basis for biological conclusions
about the types of tissues being compared. If only one array of each pooled

sample is prepared, then even the two pools cannot be validly statistically
compared because there is no estimate of the variabilty associated with inde-
pendently labeling and hybridizing the same pool onto different arrays. Even
if the two pools are hybridized to replicate arrays, one cannot assess the vari-
ability among pools of the same type and so one doesn't know how adequate a
pool of that number of RNA specimens is in reflecting the population of that



3.6 Pairing Samples on Dual-Label Microarrays 17

tissue type. Unless multiple biologically independent pools (of distinct spec-
imens) of each type are arrayed, only the pooled samples themselves can be
compared, not the populations from which they were derived. Biological repli-
cation is necessary. It can be achieved either by assaying individual samples,
or by assaying independent pools of distinct samples. Studying independent
pools of samples would be necessary in studying small model species where it
may be necessary to pool in order to obtain enough RNA for assay (Jin et al.
2001).

3.6 Pairing Samples on Dual-Label Microarrays

With Affmetrix GeneChips TM, single samples are labeled and hybridized
to individual arrays. Spotted cDNA arrays, however, generally use a dual-
label system in which two RNA samples are separately labeled, mied, and
hybridized together to each array. When using dual-label arrays one must
decide on a design for pairing and labeling samples.

3.6.1 The Reference Design

The most commonly used design, called the reference design, uses an aliquot
of a reference RNA as one of the samples hybridized to each array. This serves
as an internal standard so that the intensity of hybridization to a probe for
a sample of interest is measured relative to the intensity of hybridization to
the same probe on the same array for the reference sample. This relative hy-
bridization intensity produces a value that is standardized against variation in
size and shape of corresponding spots on different arrays. Relative intensity is
also automatically standardized with regard to variation in sample distribu-
tion across each array inasmuch as the two samples are mied and therefore
distributed similarly. The measure of relative hybridization generally used is
the logarithm of the ratio of intensities of the two labeled specimens at the
probe. Figure 3.1 is taken from Brody et al. (2002) who cohybridized labeled
RNA from C2C12 myoblast cells and from lOTI/2 fibroblasts on an array
that contained 100 spots for the glycerol-3-phosphate dehydrogenase gene.

The figure shows the vast range of intensities among spots printed with the
same clone on the same array. The ratio of intensities for the two samples,
however, has little variation as evidenced by the tight linear association.

The reference design is ilustrated in Figure 3.2. Generally, the reference

is labeled with the same dye on each array. Any gene specific dye bias not
removed by normalization affects all arrays similarly and does not bias class
comparisons. Using a reference design, any subset of samples can be compared
to any other subset of samples. Hence the design is not dependent on the
specification of a single type of class comparison. For example, in studying
BRCAI mutated and BRCAI nonmutated tumors, one might be interested in
comparing samples based on their mutation status, comparing samples based
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Fig. 3.1. Intensities of labeled RNAfrom C2C12 myoblast cells and labeled RNA
from 1OTI/2 fibroblasts hybridized to one array containing 100 spots of the glycerol-
3-phosphate dehydrogenase gene. The figure shows the vat range of intensities
among spots printed with the same clone on the same array. The ratio of inten-
sities for the two samples, however, has little variation. From Brody et aL (2002).
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Fig. 3.2. Reference design. Aliquot of reference sample is labeled with the same

label and used on each array.
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on their estrogen receptor status, or comparing samples based on the stage
of disease of the patient. The reference design is also convenient for class

discovery using cluster analysis because the relative expression measurements
are consistently measured with respect to the same reference sample.

If a laboratory uses reference designs with the same reference sample for all
of their arrays, even those for different experiments, then all of their expres-
sion profiles can be directly compared. Consequently, expression signatures of
different tissues studied in different experiments can be compared. This lat-
ter advatage can even extend to comparisons of expression profiles made by
diferent laboratories using reference designs with the same reference sample.

There is sometimes confusion about the role of the reference sample. Some
investigators erroneously believe that analysis is always based on combining
single array determinations of whether the Cy5 (red) label is differentially
expressed compared to the Cy3 (green) label for a given spot on a given array.
Therefore they assume that the reference sample must be biologically relevant
for comparison to the nOlleference samples. In fact, the reference sample does
not need to have any biological relevance. The analysis will usually involve
quantitative comparisons of the average logarithm of intensity ratios for one
set of arrays to average log ratios for another set' of arrays.

It is desirable that most of the genes be expressed in the reference sample
but not expressed at so high a level as to saturate the intensity detection
system. Often, the reference sample consists of a mixure of cell lines so that
nearly all genes will be expressed to some leveL. It is also important that a

single batch of reference RN A is used for all arrays in a reference design. Dif-
ferent batches of reference RNA may have quite different expression profiles.
When assaying samples collected over a long period of time, it is generally
best to freeze the RNA samples and to perform the microarray assays at one
time when all reagents can be standardized.

3.6.2 The Balanced Block Design

A disadvantage of the reference design is that half of the hybridizations are
used for the reference sample, which may be of no real interest. Balanced block
designs (Dobbin and Simon 2002) are alternatives that can be used in simple
situations. For example, suppose one wished to compare BRCAI mutated
breast tumors to BRCAI nonmutated breast tumors, that equal numbers of
each tumor were available and that no other comparisons or other analyses
were of interest. One could hybridize on each array one BRCAI mutated
tumor sample with one nonmutated sample. On half of the arrays the BRCAI
mutated tumors should be labeled with the red dye and on the other half the
nonmutated tumors should be labeled with the red dye. This block design is
ilustrated in Figure 3.3. The analysis of data for the block design is discussed

in Section 7.9. In its simplest form, a paired value t-test or Wilcoxon signed-
rank test is performed for each gene, pairing the samples cohybridized to the
same array. The block design can accommodate n samples of each type using
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Fig. 3.3. Loop design for comparing two classes of samples. Each biologically in-
dependent sample is subaliquoted and hybridized to two arrays, once with the Cy3
label and once with the Cy5 labeL. Each array contains a sample from each class.

only n microarrays. No reference RNA is used at all. The reference design
would require' 2n arrays to accommodate n nOlleference samples from each
of the two classes.

The balanced block design is very effcient in the use of arrays, but it
has major limitations. For one, cluster analysis of the expression profiles can-
not be performed effectively. Without a common reference, any comparisons
between expression profiles of samples on different arrays will be subject to
noise resulting from variation in size and shape of corresponding spots on
different arrays and variation in sample distribution patterns on individual
arrays (Dobbin and Simon 2002).

Another important limitation of the balanced block design is that it is
based on a single specified two-class comparison. It does not easily accommo-
date analyzing the data in different ways for contrasting different groups of
samples. Because it may be diffcult to pair the samples simultaneously with
regard to all of the class comparisons of interest, the block design is most

effective when there is a single type of class comparison. The block design is
also not effective for developing class predictors as described in Chapter 8.

In addition, the balanced block design also requires an arbitrary pairing
of samples from the two classes and is less effective than the reference design
when there is large inters ample variabilty or when the number of samples,
rather than the number of arrays, is limiting (Dobbin and Simon 2002).

3.6.3 The Loop Design

Loop designs (Kerr and Churchil 2001a) are another alternative to reference
designs. When cluster analysis is planned, two aliquots of each sample must
be arrayed for the loop design (Figure 3.4). For example, the first array would
consist of one aliquot of the first sample labeled red and an aliquot of the sec-
ond sample labeled green. The second array would consist of a second aliquot
of the second sample, labeled red this time, and an aliquot of a third sample
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Fig. 3.4. Balanced block design for comparing two classes of samples. Each array

contains a biologically independent sample from eah class. Each class is labeled on
half the arrays with one label and on the other half of the arrays with the other
labeL Each biologically independent sample is hybridized to a single array.

labeled green. The third array would consist of a second aliquot of the third
sample labeled red tils time, and an aliquot of a fourth sample labeled green.

This loop continues and concludes with the nth and final array which consists
of a second aliquot of the final sample n labeled red and hybridized with a
second aliquot of the first sample, labeled green this time. This uses n ar-
rays to study n samples, using two aliquots of each sample. The loops permit
all pairs of samples to be contrasted in a manner that controls for variation
in spot size and sample distribution patterns using a statistical modeL. Con-

trasting two samples far apart in the loop, however, involves modeling many
indirect effects corresponding to the arrays linking the two arrays of interest
and this adds substantial variance to many of these contrasts (Dobbin and
Simon 2002). Consequently loop designs are not effective for cluster analysis.
Loop designs can be used for class comparisons, but are less effcient than bal-
anced block designs and require more complex methods of analysis than do
common reference designs. Loop designs are less robust against the presence
of bad quality arrays; two bad arrays break the loop. Loop designs also require

enough RNA to be available for each sample for at least two hybridizations.
Because of these limitations, loop designs are not generally recommended.

3.7 Reverse Labeling (Dye Swap)

Some investigators believe that all arrays should be performed both forward-
and reverse- labeled. That is, for an array with sample A labeled with Cy3
and sample B labeled with Cy5, there should be another array with sample A
labeled with Cy5 and sample B labeled with Cy3. In general, tils is unneces-
sary and wasteful of resources (Dobbin et aL. 2003a,b). Balanced labeling, as
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described in Section 3.6.2 is in general much more effcient than replicating
hybridizations of the same specimens with swapped dye labeling. We discuss
here, however, one circumstance where some reverse-labeling of samples is
appropriate.

Dye swap or dye balance issues arise because the relative labeling inten-
sity of the Cy3 and Cy5 may be different for different genes. Although the
normalization process may remove average dye bias, gene-specific dye bias
may remain. This is not important for comparing classes of nOlleference sam-
ples using a reference design when the reference is consistently assigned the
same labeL. Suppose, however, that we wanted to compare tumor tissue to

matched normal tissue from the same patient Using dual-label microarrays.
As discussed in Section 3.6.2, one effective design would be to pair tumor and
normal tissues from the same patient for co hybridization on the same array,
with half of these arrays having the tumor labeled with Cy3 and the other half
having the tumor labeled with Cy5 (Figure 3.3). Because the dye a,signments
are balanced, it is not necessary to perform any reverse-labeled replicate ar-
rays of the tissues from the same patient (Dobbin et aL. 2003a,b). For a fied
total number of arrays, it is best to use the available arrays to assay tissue
from new p~tients, using the balanced block design described, rather than
to perform replicate reverse-labeled arrays for single patients. The balanced
block design is also best when there are n tumor tissues and n normal tissues
even though the tissues are not from the same patients, or for comparing any
two classes of samples. In these cases, the samples may be randomly paired,
or paired based on balance with regard to potentially confounding variables
such as the age of the specimens.

In some cases a reference design is used in which the primary objective
is comparison of classes of the nOlleference samples but comparison to the
internal reference is a secondary objective. For example, there may be several
types of transgenic mouse breast tumors for comparison and the internal ref-
erence may be a pool of normal mouse breast epithelium. Because the primary
interest is comparison among multiple tumors models, a reference design may
be chosen. The use of a pool of normal breast epithelium as the internal refer-
ence, rather than a mixture of cell lines, reflects some interest in comparison
of expression profiles in tumors relative to normal breast epithelium. Compar-
ison to a pool of normal breast epithelium is somewhat problematic, however,
for reasons described previously in Section 3.5. The conclusions derived from
comparison of the tumor samples to the internal reference will apply to that
pool of normal epithelium, but it wil not be possible to evaluate how repre-

sentative that pool is. Nevertheless, the comparison may be of interest.
In order to ensure that the comparison of tumor expression to that of the

reference is not distorted by gene-specific dye bias when using a reference
design, some reverse-labeled arrays are needed. One can then fit a statisti-
cal analysis of variance model to the logarithms of the intensities for each
channel as described in Section 7.9. Not all arrays need to be reverse-labeled;
5 tolO reverse-labeled pairs of arrays will generally be adequate. Except for
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this purpose of comparison of experimental samples to the common reference
in a reference design, however, Dobbin et al. (2003a,b) recommend against
reverse-labeling of the same two RNA samples.

3.8 Number of Biological Replicates Needed

As indicated in Section 3.3, it is not generally meaningful to compare expres-
sion profiles in two RNA samples withòut biological replication. The number
of independent biological samples needed depends on the objectives of the ex-
periment. We describe here a relatively straightforward method for planning
sample size for testing whether a particular gene is differentially expressed
between two predefined classes. Such a test can be applied to each gene if we
adjust for the number of comparisons involved (Simon et al. 2002).

This approach to sample size planning may be used for dual-label arrays
using reference designs or for single-label oligonucleotide arrays. For dual-
label arrays the expression level for a gene is the log ratio of intensity relative
to the reference sample; for Affetrix GeneChip ™ arrays. it is usually the
log signal, discussed in Chapter 4. The approach to sample size planning
described here is based on the assumption that the expression measurements
are approximately normally distributed among samples of the same class. Let
cy denote the standard deviation of the expression level for a gene among
samples within the same class and suppose that the means of the two classes
differ by 8 for that gene. For example, with base 2 logarithms, a value of
8 = 1 corresponds to a twofold difference between classes. We assume that
the two classes wil be compared with regard to the level of expression of
each gene and that a statistically significant diference wil be declared if
the null hypothesis can be rejected at a significance level a. The significance
level is the probabilty of concluding that the gene is differentially expressed
between the two classes when in fact the means are the same (8 = 0). The
significance level q will be set stringently in order to limit the number of false
positive findings inasmuch as thousands of genes wil be analyzed. The desired
statistical power wil be denoted 1 - ß. Statistical power is the probabilty of
obtaining statistical significance in comparing gene expression between the
two classes when the true difference in mean expression levels between the
classes is 8. Statistical power is one minus the false negativity rate (ß).

Under these conditions, the total number of samples required from different
individuals or different replications of the experiment approximately satisfies
the equation:

4(ta/2 + tß)2n = (8jcy)2 '

where ta/2 and tß denote the (100)aj2 and 100ß percenties of the t distri-
bution with n - 2 degree of freedom. Because the t percentiles depend on

n, however, the equation can only be solved iteratively. When the number of

(3.1)
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samples n is sufciently large, Equation (3.1) can be adequately approximated
by

4(Za/2 + Zß)2n = (8/a)2 ' (3.2)
where Za/2 and zß denote the corresponding percentiles of the standard nor-
mal distribution (Desu et aL. 1990). The normal percentiles do not depend
on n, and hence equation (3.2) can be solved directly for n. For example, for
a = 0.001 and ß = 0.05 as recommended below, the standard normal per-

centiles are Za/2 = -3.29 and zß = -1.645, respectively. Expressions (3.1)

and (3.2) give the total number of biologically independent samples needed
for comparing the two classes; n/2 should be selected from each class.

The fact that expression levels for many genes will be examined indicates
that the size of a should be much smaller than 0.05. The 0.05 value is only
appropriate for experiments where the focus is on a single endpoint or sin-
gle test. If a = 0.05 is used for testing the differential expression of 10,000

genes between two classes, then even if none of the genes is truly differentially
expressed, one would expect 500 false discoveries; that is, 500 false claims of
statistical significance. The expected number of false discoveries is a times the
number of genes that are nondifferentially expressed. This is true regardless
of the correlation pattern among the genes.

In order to.' keep the number of false discoveries manageable with thou-
sands of genes analyzed, a = 0.001 is often appropriate. For example, using
a = 0.001 with 10,000 genes gives 10 expected false discoveries. This is much
less conservative than the multi-test adjustment procedures used for clinical
trials where the probabilty of even one false discovery is limited to 5%. We
recommend ß = 0.05 in order to have good statistical power for identifyng
genes that really are differentially expressed. If the ratio of sample sizes in
the two groups is k:l instead of 1:1, then the total sample size increases by a
factor of (k + 1)2/4k compared to formula (3.2).

The parameter a can usually be estimated based on data showing the de-
gree of variation of expression values among similar biological tissue samples.
a wil vary among genes. For log ratio expression levels, we have seen the
median values of a of approximately 0.5 (using base 2 logarithms) for human
tissue samples and similar values for Affetrix GeneChips TM. The parame-
ter 8 represents the size of the difference between the two classes we wish to be
able to detect. For log2 ratios or log2 signals, 8 = 1 is corresponds to a twofold
difference in expression level between classes. This value of 8 is reasonable be-
cause differences of less than twofold are diffcult to measure reproducibilty
with microarrays. Using a = 0.001, ß = 0.05, 8 = 1 and a = 0.50 in (3.2)
gives a required sample size of approximately 26 total samples, or 13 in each
of the two classes. The more accurate formula (3.1) gives a requirement of 30
total samples, or 15 in each of the two classes.

The within-class variabilty depends somewhat on the type of specimens;
human tissue samples have greater variabilty than inbred strains of IIce or
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than cell lines. In experiments studying micro arrays of kidney tissue for inbred
strains of mice, the median standard deviation of log ratios for a normal kidney
was approxiately 0.25, with little variation among genes. For cell lie data

on Affmetrix GeneChips TM, we have seen similar standard deviations for
log2 signals. Using a = 0.001, ß = 0.05, 8 = 1 and (j = 0.25 in formula (3.1)
gives a required sample size of 11 total samples. Because we cannot have 5.5
samples per class, we should round up to 6 samples per class. If this were
a time-series experiment with more than two time points, then one should
plan for 6 animals per timepoint in order to enable expression profiles to be
compared for all pairs of time points.

The discussion above applies either to dual-label arrays using a reference
design and log ratio as the measure of relative expression, or to single-label ar-
rays such as the Affmetrix GeneChipTM arrays using log transformed signals
or another measure of expression. When dual-label arrays are used with the
block design to compare either naturally paired or independent samples from
two classes, then the same formulas apply but the definition of (j changes.
For the block design, (j represents the standard deviation of vaiation across
arrays of the log ratio computed with one sample from each class (Dobbin et
al. 2003). Preliminary data are generally needed to estimate (j.

Many of the considerations for comparing predefined classes also apply
to identifying genes that are significantly associated with patient. outcome
(Simon et al. 2002). When the outcome is survival and not all patients are
followed until death, the analogue of expression (3.2) is

E = (Za/2 + Zß)2
(Tln(8))2

(3.3)

E denotes the number of events (e.g., deaths) that need to be observed in
order to achieve the targeted statistical power. For survival comparisons, the
statistical power often depends on the number of events, rather than the num-
ber of patients. For a given number of patients accrued, the number of events
wil increase as the duration of followup increases. There is a tradeoff between
number of patients accrued and duration of followup in order to achieve a
targeted number of events. In expression (3.3), T denotes the standard devia-
tion of the log ratio or log signal for the gene over the entire set of samples. 8
represents the hazard ratio associated with a one-unit change in the log ratio
or log signal and In denotes the natural logarithm. Note that we are assumg
that the log ratio or log signal values are based on logarithms to the base 2,
so a one-unit change in the expression level represents a twofold change.

If T = 0.5 and 8 = 2, then 203 events are required for a two-sided signifi-
cance level of 0.001 and power of 0.95. This makes for a large study in most
cases because to observe 203 events in a group of patients with a 50% event
rate requires 406 patients. The large number of events results from assuming
that a doubling of hazard rate requires a two standard deviation change in log
ratio. Hence most patients would have expression levels that had very limted
effects on survivaL. Therefore it may be more reasonable to size the study for
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detecting statistically significant differences in only the more variable genes,
for example, T = 1 and 8 = 2, which results in 51 required events. Genes that
have small standard deviations across the entire set of samples are diffcult to
use for prognostic prediction in clinical situations.

The multivariate permutation tests described in Chapter 7 are a more
powerful method for finding differentially expressed genes than the univariate
parametric test that is the basis for formulas (3.1) and (3.2). Nevertheless,

the sample size formulas given here are useful for planng purposes and pro-
vide control of the number of false discoveries in a reasonable manner. Other
methods have been described by Black and Doerge (2002), Lee and Whit-
more, (2002), and Pan et aL. (2002). Adequate methods for determining the
number of samples required for gene expression studies whose objectives are
class prediction or class discovery have not yet been developed. Hwang et aL.

(2002) provide a method of planning sample size to test the hypothesis that
the classes are completely equivalent with regard to expression profile. The
sample size formulas given above provide reasonable minimum sample sizes
for class prediction studies. Often, however, developing multivaiate class pre-
dictors or survival predictors involves extensive analyses beyond determining
the genes that are informative univariately. Consequently, larger sample sizes

are generally needed for class prediction studies (Rosenwald et aL. 2002).
In class prediction studies it is important to estimate the misclassification

rate of the identified multivariate predictor. There is a problem using the same
data to develop a prediction model and to estimate the accuracy of the model,
particularly when the number of candidate predictors is orders of magnitude
larger than the number of cases (Simon et aL. 2003). Consequently, special

methods of analysis must be used to provide unbiased estimates of predic-
tion accuracy. One approach is to split the data into a training set and a
validation set (Rosenwald et aL. 2002). Other approaches involve more sophis-
ticated methods such as cross-validation or bootstrap resampling (discussed in
Chapter 8). Cross-validation and bootstrap resampling can be used when the
derivation of the prediction rule can be clearly defined as an algorithm with
no subjective elements. In many cases, the derivation of the prediction rule is
more complex and involves numerous analyses that cannot be easily specified
in a manner that can automatically be applied to resampled datasets. In these
cases, it is necessary to use the split sample approach to obtain an unbiased
estimate of the accuracy of the class prediction rule. Initially the data are
divided into a training set and a validation set. This division may be done
randomly or may be balanced by factors such as an institution contributing
the specimens. The validation set is put aside and not analyzed at all until
a completely specified prediction rule is defined based on analyses conducted
using the training set. The prediction rule resulting from the analysis should
be completely specified, including the estimation of parameters and the es-
tablishment of threshold values for class prediction. After the analysis of the
training set is completed, the validation set is unocked and the completely
specified prediction rule is applied to the cases in the validation set. The pre-
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diction accuracy is determined based on the performance of the predictor on
the validation set. Usually about one third to one half of the total dataset is
reserved for the validation set. Therefore in planing the size of a class pre-
diction study that will use the split sample approaèh, it should be recognized
that perhaps only half of the data will be available for development of the

multivariate predictor.
Often investigators use validation sets that are far too small to provide

meaningful validation. Table 3.1 shows the upper 95% confidence limit for the
misclassIfcation rate as a function of the observed proportion of misclassified
specimens and the number of specimens in the validation set. Suppose that
the true misclassification rate is 10% and you are lucky enough to observe
no misclassifications in the validation set. With only 10 specimens in the
validation set you would be able to bound the true misclassification rate to
be no greater than 26%. But it is just as likely that you would obtain 20%
of the validation set misclassified. In this case, even with 50 samples in the
validation set, you would only be able to bound the true misclassification rate
to be no greater than 32%. Consequently, a substantial validation set is needed
in order to adequately estimate the true misclassification rate.

Table 3.1.

Number of Upper 95% Confidence Liuut for Misclassification Rate
Validation Samples

None Misclassified in
I 20% Misclassified inValidation Set (%) Validation Set (%)

5 45 66

10 26 51

20 14 40

50 6 32
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Image Analysis

After hybridization of fluorescently labeled cDNA molecules to the microar-
ray, the array is stimulated with a laser and the intensity of fluorescence is

measured at a dense grid of pixel locations on the array. An image file is cre-
ated that stores all of the pixel-level intensities. There are many more pixels
than probes on the array. Image analysis is the procedure by which pixel level

data are processed and converted to measures of intensity for the arrayed
probes. There are several image analysis methods available and it is useful for
the investigator to have some understanding of the approaches used.

We begin with a brief description of how images of gene expression arrays
are created. Then we describe the main steps of image analysis: gridding, seg-
mentation, background correction, feature (signal) intensity extraction, and
flagging spots for exclusion. Because the methods used for cDNA microarrays
and Affmetrix GeneChip ™ arrays are different, we discuss the above steps
for the two types of arrays separately.

4. i Image Generation

A scanner (laser scanning confocal microscope) or a charge-coupled device

(CCD) camera is used to quantify the intensity of fluorescence at each pixel
location on the microarray. These intensities are saved in a file formatted as
a 16 bit tagged image file (TIFF). The fluorescent dye molecules hybridized

to the probes emit photons when stimulated by a laser. Emission wavelengths
differ for the two dyes, thus the emitted photons can be selectively filtered
to allow quantification of the amount emitted by each dye. For cDNA mi-
croarrays, the dyes Cy3 and Cy5 have emission wavelengths in the 510 to 550
nm and 630 to 660 nm ranges, respectively. With commonly used scanners,
the emitted light is captured by a photomultiplier tube (PMT) detector in
the scanner and converted into electric current. The PMT's voltage can be
adjusted in each channel to maxmize the dynamic range of the scanner with
minimal saturation of pixels and also to get balanced intensities between the
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two channels. Pixels are saturated when more photons are detected than the
PMT can process or when the output of the PMT exceeds the range of the
analogue-to-digital converter. Saturated pixels are displayed as white pixels
in the image. The differences in amplification resulting from PMT voltage
adjustment will lead to changes in signal intensity, but this should not affect
results for the majority of genes (except for the saturated spots) after proper
normalization (see Chapter 6). The intensity for each probe is proportional to
the number of molecules of the fluorescent label in DNA bound to the probe.

4.2 Image Analysis for cDNA Microarrays

4.2.1 Image Display

Figure 2.2 shows a typical cDNA microarray image. It has two rows and two
column of blocks called subgrids, which are uniformly spaced. Each subgrid
consists of several rows and columns of spots. An enlarged image of one spot
patch is shown in Figure 4.1, and the smallest discernable element in that en-
larged image is called a pixeL. The raw intensities for each of the two channels
are saved as 16 bit binary integers. They can be displayed as images with pixel
values ranging from 0 to 65,535 shades of grey. The darkest black pixels rep-
resent low-intensity vslue and the bright white pixels represent high-intensity
value. For purposes of visual display, the two separate 16 bit TIFF fies are
frequently combined and saved as a 24 bit composite RGB (red-green-blue)
image. In this RGB composite, each of the three color channels is composed
of only an 8 bit image. In order to be displayed as a 24 bit composite RGB
overlay image, the raw images must first be reduced from 16 bits to 8 bits
using an image compression method. Then the image from Cy3 is placed in
the green channel, the image from Cy5 is placed in the red channel, and the
blue channel is set to O. For image analysis the original 16 bit TIFF files are
used.

4.2.2 Gridding

The first step in array image analysis is to overlay a rectangular grid onto the
pixels in a manner that isolates each spot within a cell. Gridding is usually a
semi or fully automated process that takes advantage of the fact that robotic
spotting is performed in a regular predetermined manner. Most software sys-
tems begin by estimating the overall position of the array in the image, the
separation between rows and columns of grids, the spacing of spots within each
grid, and translation of individual grids or spots. For example, GenePix (Axon
2001) automatically generates grids using tlie printing information (grid con-
figuration), and then provides a manual fine-tuning option.
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4.2.3 Segmentation

Gridding establishes the location of a rectangular patch that contains the spot.
The second step, segmentation, involves identifying the pixels within the patch
that are contained in the spot. Thi set of pixels is called the foreground region

or spot mask. Several different segmentation algorithms are in common use
for this purpose.

Fixed or adaptive circle segmentation is based on approximating the fore-
ground region by a circle. Fixed circle segmentation uses the same circle di-
ameter for all spots. Adaptive circle segmentation uses the intensity data to
estimate the best diameter separately for each spot. However, both approaches
are of limited accuracy inasmuch as real spots have irregular shapes (Figure
4.1) because of printing, hybridization, and slide surface chemistry factors.

Fig. 4.1. An enlarged spot patch shown at pixel leveL. The spot is noncircular
shaped, with a circular mask placed for segmentation.

To address the problems caused by spot irregularities, adaptive segmenta-
tion methods such as watershed and seeded region growing have been applied
(Beucher and Meyer 1993; Adams and Bischof 1994). The watershed algo-
rithm is applied separately to each spot patch. The pixels in a spot patch are
partitioned into disjoint watershed sets. All the pixels in the same watershed
set "drain" into the same local mjnimum with regard to the distribution of
pixel intensities. The definition of watersheds is as follows. For each point in
the spot patch, a path is determined by choosing the direction of the steep-
est descent with respect to intensity. These paths lead to local minima. All
pixels that have a path leading to the same minimum belong to the same
catchment basin and together constitute one segment. The borders between
touching segments are the watersheds. The average intensity in each segment
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is computed, and the segments with largest average intensities are taken as
the foreground region. This region need not be contiguous or regular.

The seeded region growing (SRG) algorithm is another method for repre-
senting irregular foreground regions. SRG is based on choosing a small number
of high-intensity pixels as the initial seeds. The region defined by each seed is
enlarged contiguously to contain other relatively high-intensity pixels. When
a region cannot be further enlarged without introducing pixels with intensity
below some specified threshold criterion, growth of that segment ceases. The
resulting segments of high-intensity pixels are taken as the foreground region.

Histogram segmentation is another commonly used method. It does not
rely on spatial information. Instead, the histogram of intensities for pixels
within each spot patch is computed. Threshold percentiles are then used to
define the foreground and background regions; for example, pixels in the 5th
to 20th percentiles of the intensity ditribution are often chosen for the back-
ground, and pixels in the 80th to 95th percentiles are chosen for the fore-
ground. A non-spatial segmentation method based on the Mann-Whitney test
has also been proposed (Chen et al. 1997).

4.2.4 Foreground Intensity Extraction

Once the foreground and background regions are determined for each spot,
the pixel values are summarized to give a single measurement for each region.
Common summary values for the foreground include the mean or median
value of the pixel intensities. The mean pixel intensity has the appeal of being
directly related to the total (sum) of pixel intensities in the foreground. If

spots are irregularly shaped and fixed or adaptive circle segmentation is used,
the foreground region could include pixels not part of the probe leading to an
underestimate of the true foreground intensity. However, this downward bias
is corrected when the ratio of the two channel background-adjusted intensities
is calculated.

Occasionally, spots contain a few aberrantly high pixel intensities due to
artifacts and these may tend to distort the mean value. For this reason, some
investigators prefer to sumarize the foreground pixels by the median pixel
intensity. Although more robust to aberrant pixels, the median has the dis-
advantage of not being directly related to the total intensity. Also, if spots
are very elongated ovals or have large "holes" covering more than 50% of the
pixels in the circular mask applied in fied or adaptive circle segmentation,
the median value may be equal to background intensity, totally missing the
signaL. The trimmed mean may be a better alternative than the median. A k%
trimmed mean is the mean calculated after excluding the largest (or smallest)
k percentage of the pixel intensity values.

Methods that allow flexibilty in spot shape such as histogram or adaptive
methods have the potential of better estimating total intensity of bound labeL.
Nevertheless, calculating the mean foreground with fied or adaptive circles is
relatively simple and seems to work well ,in practice. Comparisons performed
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by Yang et aL. (2002c) indicated that the differences among the algorithm
had very small impact on foreground intensity values.

4.2.5 Background Correction

Considering nonspecific binding and auto-fluorescence, it seems clear that the
foreground intensity would be more properly proportional to abundance of
bound labeled cDNA if an accurate adjustment for background fluorescence
could be performed. Currently, there are different approaches to background
adjustment, and studies have shown that the choice of background adjustment
method can have a large impact on the final output such as log ratios (Yang
et al. 2002c; Jain et al. 2002).

Global background correction uses the same constant to represent the
background for all spots. This constant can be calculated by using a set of
negative control spots. Alternatively, one can use a low percentile (e.g. third
percentile) of all the pixel intensities as the background leveL. Brown et al.
(2001) computed a global background estimate as part of their normalization
procedure to make the average ratio across the array as close to one as possible.
However, global estimation does not take into account the local background
variations that exist in many cases.

Regional background correction provides greater flexibilty than global cor-
rection (Axon 2001; Yang et aL. 2001; Jain et aL. 2002). For example, the
algorithm used by GenePix is based on a circle centered on each spot. The
region from which the background is calculated for any spot has a diameter
that is three times the diameter of the circle used to defie the foreground
for that spot. Pixels contained within the large circle that are not within any
foreground region and are not wholly inside a two-pixel wide ring around the
foreground circle of the current spot are used to compute the background for
the current spot.

Yang et aL. (2001) applied an algorithm called morphological opening

(Soile 1999) for background adjustment. Morphological opening is a method
for obtaining a regionally smoothed estimate of the background for each spot
without having to. estimate the boundaries of the foreground regions of the
spots. The algorithm is based on virtually moving a square structural element
(SE) over the face of the array. The stfuctural element is a window that is
much larger than the size of any spot, but smaller than a grid of spots. When
the SE is centered on a particular pixel, the intensity of that pixel is replaced
by the minimum intensity of pixels covered by the SE. This is called the "ero-
sion" step. After the erosion step is completed, the SE is again virtually moved
over the face,:of.:the array in a "dilation" step. When the SE is centered on
a pixel, the intenSity of that pixel is replaced by the maximum of the values
created during erosion for the pixels covered by the SE. The morphological
opening fiter removes all features that are not big enough to contain the struc-
ture element. By choosing a square structuring element much larger than the
spot size, the operation removes all the spots and generates an image as an
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estimate of the background for the entire slide. Background for each spot is
then calculated by sampling the estimated background image at the nominal
centers of the spots. Compared with other background correction methods,
morphological opening showed a low withIn- and between-slide variabilty in
ratios in the study by Yang et al. (2002c), but there was no gold standard by
which to evaluate whether the resulting estimates were more accurate.

Local background estimation may provide a poor estimate of nonspecific
fluorescence because it may be highly variable if it is based on too small a
region. Consequently, it is not uncommon for spots to have higher values for
the background than for the foreground. Log ratios of background-adjusted
signal values in the two channels are imprecise estimates of relative abundance
of transcripts in the two samples for probes in which both of the background
adjusted signals are extremely low. It may be better to exclude such probes
from subsequent analysis. This is discussed further in Chapter 5.

4.2.6 Image Output File

For each spot and channel, the output file sumarizes quantities such as fore-
ground mean, median, and standard deviation of pixel intensities; background
mean, median and standard deviation of pixel intensities; and the number of
pixels in the foreground and background. The log bas 2 ratio for each spot
is: FR-BR

10g2 FG - BG' (4.1)

where F R and FG denote the foreground mean or median intensities of the
red and green chanels, and BR and BG denote the corresponding back-
ground mean or median intensities. Mean foreground intensities and median
background intensities are recommended in most cases. The log ratio esti-
mates the relative abundance of the corresponding gene trancripts in the two

samples that were cohybridized. to the array. Using the log ratio instead of
the ratio makes the distribution more symmetrical and the vaiation less de-
pendent on absolute signal magnitude. Most investigators use log ratios to do
subsequent analysis. However, some methods such as ANOVA methods work
on the log signal directly rather than on log xatios (Kerr and Churchil 2001a;
Wolfiger et al. 2001; Dobbin et aL. 2002, 2003).

Problematic spots should be flagged and omitted from the subsequent

analysis. Image analysis packages provide the abilty to flag individual spots

automaticaly and manualy, and flags are exported to the output file. Those
spots include the ones not at the expected location, ones with a negative red
or green signal afer background subtraction, ones with too many saturated
pixels, and ones with no hybridization.
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4.3 Image Analysis for Affmetrix GeneChipTM

GeneChipTM software analyzes the image data fie (.dat) and computes a sin-
gle intensity value for each probe cell on the array. The intensity data are
saved to another fie (.cel). Figure 4.2 represents a feature-level view of a
high-density Affymetrix GeneChipTM. Each gene has 16 to 20 probe pairs

Fig. 4.2. Feature view of Afetrix GeneChipTM.

that are scattered on the chip. Newer chips such as the Human Genome U133
Set, the Rat Expression Set 230, and Mouse Expresion Set 430 have only
11 probe pais per gene. For each probe pair, the upper perfect match (PM)
probe usually gives a greater hybridization signal than its mismatch (MM)
counterpart (Figue 4.3). However,' it is possible that the MM probe sequence
has high homology with another unown sequence. Consequently, the mis-

(
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match probe may have even a greater signal than the perfect match probe.
Control probes located at the corners of the probe array are used to align a
grid to delineate the probe cells.

..

Fig. 4.3. Enlarged view of Affetrix GeneChipTM. Probe pairs appear as two

bright stripes, with the upper stripe representing a perfect match (PM) probe and
the corresponding mismatch (MM) probe directly beneath. Each grid represents a
small region of the chip (typicaly 24 ¡im by 24 ¡im for thé high density arays and
50 ¡im by 50 ¡iID for the low density arrays) containing 106 to 107 copies of a given

probe.

GeneChip ™ software defines a feature intensity as the 75th percentile of
the pixel intensities for that feature afer removing the boundary pixels (Lock-
hart et al. 1996). Sometimes the bright intensities tend to blur the PM/ MM
boundar and result in an upwar bias for the MM intensity. Schadt et aL.
(2001) proposed triming pixel intensities more than three standard devia-
tions from the mean pixel value within a feature.

Background correction is also necessary for the GeneChip ™ arrays. A

high background implies that impurties, such as cell debri and salts, are
binding to the array in a nonspecific manner and that these substances are
fluorescing at 570 DI (the scanng wavelength). The GeneChipTM softare
uses a regionalized method to do background subtraction. The array is first
split into N rectanguar zones (default 16). Withi each zone, bacound in-
tensities are calculated by averaging the lowest 2% of probe cell intensities, and
background vaues are smoothed across the zones to obtain the cell-specific
background estimates.

For the GeneChip ™ arrays, the average difference was the origial way
to produce gene-level sumaries:

1
- ".(PMi-MMi),n~i (4.2)

where n represents the total number of probe pairs for the gene, and PMi
and. MMi indicate the corresponding perfect match and mismatch probe in-
tensities after bacground. correction for the ith probe pair for the gene. In
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contrast to the relative quantification of hybridization represented by cDNA
array-based ratios, the intensity vaues derived from GeneChipTM arrays are
considered to measure absolute hybridization. Any hybridization to the MM
probe represents the level of nonspecific binding. Therefore it was thought
that the intensity measured from the MM probe could be used as an estimate
of cross-hybridization.

Since the above average difference measure frequently produced negative
values, AfetrIx modified the algorithm in its Microarray Suite User Guide

version 5. If the MM value is larger than the PM vaue for a probe pair, then
the MM vaue is replaced by a smaller contrast vaue (CT). The CT value is
based either on the average ratio between PM and MM for all of the probe
pairs of that probe set, or (if that measure is too small) a value slightly smaller
than PM. If the MM vaue is smaller than the corresponding PM value,-then
the CT value equals the MM value. The absolute expression value for probe
set k is called the "signal log valui=" (SLV) and is defined as

..

SLVk = Biweighttlog2(PMi,k - CTi,k) : i = 1,... ,nH, (4.3)

where Biweight stands for the one-step Tuey biweightfuction operating
on the logs of the pairwie intensity differences between the PM and MM
probe pairs for all of the n probe pairs in probe set k. The Tuey biweight
algorithm (Hoaglin et al. 1983) is a method of robusly averagig values so as
not to be heavily afected by outliers. It uses the median to define the center
of the data. Then it uses the distance of each data point from the median to
determine how much each value should contribute to the average. The signal
value reported by the MAS software is a normalzed signal and is described
in Chapter 6.

Alternative methods for estimating the probe set sumar signal are under
active investigation (Efron et al. 2001; Li and Wong 2001a; b; Naef et al. 2001,
Irizarryet al. 2003). Efron et aL. (2001) proposed using parial MM values
(half or one third) as rough estimates of cross-hybridization. A model-based
approach for calculating gene sumaries from probe level data wa proposed
by Li and Wong (200la, b). For each gene k, they model the average dierences
in probe pai i for array j as PM;j - MMij = OJlPi + êij. We have supresed
use of the subscript k for eas of notation but separate models are fit for
each gene k. The term OJ represents an average expreson index for the gene
on array j, and the lPi terms represent probe-specific sensitivities for probe

pair i. The e term represent random experimental error. The probe-specific

sensitivities. are estimated using the data from all arrays in the experiment.
These sensitivities indicate which probes of the probe set for gene k detect
variations acros the arrays and which do not. The array-specifc expression

index OJ for a given gene k is estimted as a weighted liear combination of the
PM - MM diferences for that probe set, with the probe sensitivity estimates
being the weights. The Li and Wong method al provides confdence intervs
for the expression index of each gene on each array and these interv can be
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.

used for quality control puroses to distinguish the genes whose expression

index is well determined from those in which it is not.
The issue of how to combine the PM and MM pairs to estimate an ex-

pression index for each gene on each array is stil under intensive academic

research. Some investigators even recommend using only the PM values and
not the MM values in estimating the expression indices (Naef et aL. 2001).
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Quality Control

5.1 Introduction

Microaray signal intensities inherently contain a significant amount of noise.
Usually the amount of noise in the signl is manageable and reliable conclu-
sions can be made about the level of expression of a given probe. However, in
certain cases there may be no reliable signal avalable or the noise dominates
the signaL. In these cases, it is advisable to either replace these values with an
imputed value or else elinate the probe from the analysis. In tlus chapter
we discuss the circumstances under wluch an observation or set of observ-
tions should be excluded as well as methods of imputing vaues for excluded
observations.

Determination of the acceptable amount of nois requires judgment on
the part of the investigator. Many of the quality control suggestions in tlus
chapter are of the form: Exclude a measured value should its quality fall below
a certain threshold. We provide gudelines as to what reasonable thresholds
might be, but these should not be considered the only acceptable thresholds.

. If the use of a particular set of thresholds leads to an unacceptable number
of mising vaues, it might be reasonable to consider weakenig the quality

control standards. If, on the other hand, large numbers of outlier observtions
seem to be corrupting the analysis, it may be necessary J;o requie greater
stringency of quality control and raie the thresholds.

There are three levels at wluch qualty control may be warranted: the probe
level, the gene level and the array leveL. By poor probe quality, we mean poor
quality of one particular gene expression measurement on one paricular array.
By poor gene quality, we mean poor qualty of the expression measurement
for a sinle gene across all arrays. By poor array quality, we mean poor quality
of all spots on one particular glass slide or gene chp.

Sections 5.2 through 5.4 address quality control issues for two-color cDNA
arrays. In section 5.5, we dicuss wluch of these issues apply to the quality
control of Afetri data.
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5.2 Probe-Level Quality Control for Two-Color Arrays

In the case of two-color cDNA arrays, the probes will be the individual spots
printed on the slide. Poor quality at the spot level on a given array can
occur for a varety of reasons, some of which are technical such as a faulty

printing, uneven distribution of the sample on the slide, or contamination
with debris. Other reasons are related to the size of the signal relative to
the noise. Because there are many ways in which a poorly measured spot
can occur, there are multiple methods of detecting poorly measured spots.
We recommend considering all of the following criteria, and eliminating or
imputing any spot that fails any of them.

5.2.1 Visual Inspection of the Image File

Sometimes it is possible to notice anomalies on a slide by visually inspecting
the array image file. Some arrays wil have thin streak of very high intensity
that may cross through a number of spots (see Figure 5.1(a)). This may be
caused by hairs or fibers being trapped on the slide, or scratches on the slide
surface leading to a collection point for the sample that does not wash away.
Any spot that comes in contact with such a streak will be of unusually high
intensity, making its value highly suspect. All such spots should be flagged for
exclusion or imputation.

A second common occurrence is the presence of air bubbles between the
slide and cover slip. Because the sample never reaches these air pockets, they
appear as dark regions on the image plot (see Figue 5.1(b)). Many of the
spots inside the bubble will be excluded at the image analysis phase because
no signal will be detected, but spots on the border of this region may be
detected yet give a fale reading. Therefore, we recommend that all spots that
contact such a bubble be excluded

Another anomaly that may exit is a general green or red haze that covers
an area of the slide (Figure 5.1(c),(d)). Many of these spots will 

likely be

excluded for low signal-to-background ratio (discusd later in thi section),

and background subtraction may allow the remaig spots to be usable.
As an added precaution, however, we recommend performig location-based
nOlJalization (Setion 6.4) to adjust for any additional effect that may not
be picked up by the background subtraction. If the haze is extremely bright
and covers a large area of the slide (as in Figue 5.1(d)) it may be best to
simply exclude the aray. Along the top of Figure 5.1(c) there alo appears to
be an edge effect of bright red. Because this is very stron& but only afects a
limited number of spots, we would exclude those spots along the top, keeping
the rest of the array for analysis.

5.2.2 Spots Flagged at Image Analysis

Spot quality may deteriorate to the point that the image analysis softare
canot identify the location of the particular spot and wi flag the spot as
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Fig. 5.1. Examples of aray anomales that can be detected through examination

of the image file (a) Bright streak indicating the presence of a fiber on the aray;
(b) dark patch indicating the presence of a bubble on the aray; (c) Background
subtraction may be able to correct for the unform green haze covering slide, but
spots covered by red haze along top should be excluded; (d) Background subtraction
alone may not be able to account for strong green haze on right side of slide. Location
normalization is recommended.

not found. Because no spot is identifed, it is clear that any values reported
should not be used. Many image analysis softare packages also provide their
own systems for evauating spot qualty. These wi often encompas some of
the suggestions outlined below, so it is a good idea to elimnate spots that are
flagged as poor quality by the software. Qualty metrics that include several

of the quality features discussed below are described by Wang et aL. (2001).
and Chen et aL. (2002).

5.2.3 Spot Size

Most image analysis software report the number of foreground pixels used
to determie the signal of a detected spot. Signal based on a very small
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number of pixels are likely to be poorly measured, and should be excluded. A
reasonable threshold is to exclude spots whose foreground intensity in either
channel was based on fewer than 25 pixels.

5.2.4 Weak Signal

In Chapter 4, we recommended converting the array signal intensities to log
ratios prior to analysis. This conversion has an unfortunate side effect of in-
creasing the effect of additive noise for small intensity values. As an example,
consider that we have a gene that has equal expression in both channels; we

would expect to find a log ratio equal to zero. Now suppose on one array we
have good hybridization and find that the intensity in the channels is around
500, but that there was an additive error of ::10. For example, suppose 510
was measured in the red channel and 490 was measured in the green channel
so that we would obtain a log ratio of log2(510/490) ~ 0.057, In this case,
we would correctly conclude that there was little difference between the chan-
nels. However, if the true signal in the red and green channel was around
20, then the same additive measurement error would lead to a log ratio of
10g2(30/10) = 1.58, indicating that the gene had a higher expression in the

red channel than in the green chaneL. FUrthermore, the error could be in the
opposite direction, and we would incorrectly conclude the gene had higher
expression in the green chaneL. For this reasn, it is generally inadviable
to make any conclusions about spots that have low signals in both channels;
such spots should be excluded. In practice, the va majority of spots that are

excluded from analysis are excluded for this reason.
If one channel has a strong signal and the other channel has a weak signal,

then the situation is somewhat more complicated. Consider a spot that has a
true intensity of 500 in the red channel and only 20 in the green channeL. The
true log ratio in thi case will be log2(500/20) = 4.64. If there were an additive
error of ::10 then we would observe a log ratio between 10g2(51O/10) = 5.67

and 10g2(490/30) = 4.03. Although there is a large amount of variabilty in
the magntude of such a signal, in both cases it is clear that there is much
larger expression of the gene in the red channel than there is in the green

chanel and so there is usefu inormation contained in the expression level of
the spot. On the other hand, it would be a mistake to conclude that the same
gene on two separate arrays had different levels of expression just because the
control on one array was 10 and on the other aray was 30. One solution to
this is to increas the lower expressed vaues to a fied value when there is
abundant expression in the other channeL.

These ideas lead to the recommendations in Table 5.1 as a modication
of the formula presented in Equation (4.1). In this table FR and BR denote
the foreground and backgound intensities in the red channel and FG and BG
denote the correspondig intensities in the green chaneL. Table 5.1 involves
two threshold vaues ÀLow and ÀHigh. The value ÀLow represnts a threshold
below which the signal are in danger of being heavily infuenced by additive
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Table 5.1. Recommended Filtering for Low Intensity Spots on Dual-label Arrays

Red Signal Green Signal Description Recommended
log ratio

Red signal too low,

FR - BR.( ÀLow FC - BC .( ÀHi9h Green signal not EXCLUDE
high enough to be
conclusive
Green signal too

FR- BR.( ÀHigh FC - BC .( ÀLow low, Re signal not EXCLUDE
high enough to be
conclusive
Red signal too

FR- BR.( ÀLow FC - BC ~ ÀHigh low, but Green

( ÀLow )signal conclusively log2 FC - BC
higher than green
Green signal too

FR-BR~ÀHigh FC - BC .( ÀLow low, but Red
1 (FR-BR)signal conclusively og2 À

higher than green
Low

Both Red and

FR- BR ~ ÀLow FC - BC ~ ÀLow Green are high

(FR- BR)enough to be used log2 . FC - BC
directly

noise. The value ÀHigh represents a value above which we are sure we have a
strong signaL. Values of ÀLow = 200 and ÀHigh. = 500 are reasnable and will
result in a fairly conservtive selection of well-measured spots.

5.2.5 Large Relative Background Intensity

Although background subtraction helps to adjust for the effect of background
lumnescence, the effect of the background on the signal may not be strictly
additive. If the background is weak relative to the signal, thi nonadditivity
wil have only a minor effect on the final signal value. However, if the observed
background is almost as large as the foreground, thi nonadditivity, as well
as the noise in the background measurement, will heavily infuence the signal.
Therefore cases in which the intensity of the background is large relative to
the foreground should be viewed with some suspicion.

Many of the spots for whicli the background is large relative to the
foregound wi also have low background-adjusted signal, and are correctly
dealt with in the previous section. It is, however, possible for a spot to
have foreground and background of comparable intensity and yet stil have
a background-adjusted signal greater than the ÀLow threshold discusse in
the previous section. For example, this would be the cae if F R = 2250 and
BR = 2000. Such spots should be excluded from analysis.
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There are several ways in which to identify spots as having a large relative
background. The simplest is to require that in each channel of a given spot,
the ratio of foreground intensity to background intensity is larger than a set
threshold. A reasonable threshold to use would be to exclude spots for which
the mean foreground was less than 1.5 times that of the median background
in either of the channels. Jenssen et al. (2002) describe an adaptive method
for establishing the threshold for spot exclusion based on having a subset of
the clones printed in duplicate on each array.

A second method is to exclude those spots for which there is a substantial
overlap in the distributions of the intensities of the foreground and background
pixels. For example, one might exclude spots for which more than 50% of
foreground pixels have vaues less than one standard deviation above the mean
of the intensity of the background pixels. This method requires quite specific
information about the pixel level data, but some software packages (such as
GenePix) produce this percentage automatically.

Brown et aL. (2001) provide a formula for the standard deviation of the
ratio of background-adjusted mean red intensity to mean green intensity in
terms of the vaiation of intensity among pixels in the foreground region in

each channel and the correlation of red and green pixel intensities in the
foreground region. Brown et aI. recommend that their formula be used for
flagging problematic spots. The formula is simiar to that derived by Chen
et aL. (1997); Brown et aL. (2001) note that the problematic spots tend to
be those for which the correlation of red and green pixel intensities is not
suffciently high.

5.3 Gene Level Quality Control for Two-Color Arrays

Not all probes (clones or oligonucleotides) wi perform equally well in eval-
uating the expression of a given gene. In some cases, a clone supply may be
contamnated or may be milabeled and, in fact, correspond to a different
gene altogether. Furthermore, even if the clone is correct, some clones may
not hybridize to the sample as well as others. Additionally, there may be
techncal problems that lead to poor printing of a given probe. At best, mea-
surements from poorly behaving clones are unormative and including them
in the analysis will act to exacerbate the problem of multiple comparisns (see
Chapter 7); at worst, they can lead to erroneous conclusions.

Most of the diffculties with poor qualty probes will afect the entire print
set of arays. Therefore, most of the tests of poor probe quality should be
done by the experimenter over all arrays in the entire print set. Tests of
poor hybridization in the reference chanel (Section 5.3.1), however, should

be performed over all experients with the same common reference. Tests for
exclusion of low vaance genes (Section 5.3.3) should include all of the arrays
in the experiment.
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Most of the tests of gene quality involve making comparisons of gene ex-
pression across multiple arrays. In order for such comparisons to be relevant,
it is necessary that they be done after normalization (Chapter 6).

5.3.1 Poor Hybridization and Printing

Some probes wil not hybridize well to the target RNA. These probes will
give very weak signals and are of little value in the analysis. Additionally, it
is possible that there wil be an error in printing that results in all spots of a
given inventory well havig poor quality. Either of these problems wil result
in large numbers of spots printed from a given well being excluded according
to the methods of Section 5.2. If spots for a given well are excluded due to
poor quality in more than 50% of the samples, then the well is likely to be of
little use and should probably be excluded from analysis.

Using a common reference design, it is diffcult to evaluate genes that
are not expressed in the reference sample. 'Therefore, those genes that have
consistently low signal vaues in the reference channel should be viewed with
suspicion. A reasonable cutpoint is to exclude those genes for which the median
background-adjusted spot signal in the reference channel (taken across all
arrays including those spots excluded for low signal) is less than 200.

5.3.2 Probe Quality Control Based on Duplicate Spots

If space allows, it is usefu to have duplicates of each gene on the array. This
can be done either by printing different probes that target a given gene or by

printing multiple copies of the same probe. Detection of poor or mislabeled
probes is possible by comparing expression levels for the duplicates.

A good metric to use in checking for agreement between probes is mean
squared difference between the log ratios. The formula for trus metric between
spots ki and k2 is 1 J 2JL(Xjki-Xjk2)' (5.1)j=i

where Xjk represents the log ratio for spot k on may j. If some of the obser-
vations were excluded due to weak signal or other reasons, this average can
be taken over the nonexcluded samples. A reasonable threshold would be to
say that the multiple probes from the same gene disagree if this mean squared
difference is greater than 1.0 on the' 10g2 scale.

If expression levels for replicate probes of an identical clone fail to agree,
it is likely that the problem is techncal in nature and one of the probes was
poorly printed, contamiated, or mislabeled. It then nee to be determined
wruch of the probes is faulty. If there are three or more replicates, then it may
be a matter of identifng the outlier. If only duplicates are avalable, then
identify the faulty one is more complicated. One can exame the signal
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intensities and background levels of the two spots and look at the correlation
between each duplicate and genes on the array with similar biology.

When there are probes printed from different clones of the same gene,
then differences in expression level may be biological in nature. Because dif-
ferent clones may come from different regions of the gene, they may hybridize
differently to the same transcript. In addition, mutations or deletions of the
gene or post-trancriptional modifications may lead to real differences in the
abundance of target transcripts for the clones.

Jenssen et aL. (2002) describe an adaptive method for establishing the
threshold for spot exclusion based on a sufcient number of clones printed in
duplicate on each array. The mean squared difference between duplicates is
computed for each gene, and averaged over the genes with duplicate spots.
Thi variance is computed as a function of filter thresholds. A threshold level
is selected so that 90% of unfiltered duplicate spots on the same array differ
by less than twofold.

5.3.3 Low Variance Genes

Although not necessarily of poor quality, probes that have low variance of log
ratio expressions across samples are of questionable utilty. For such genes, the
observed variabilty is more likely to be due to measurement noise than actual
biological variabilty. Although these such genes are very useful in tasks such
as normalization, it may be best to exclude them from analyses that com-
pare samples or groups of samples, or that cluster samples; they are likely to
be uninformative and their inclusion can exacerbate the problem of multiple
comparisons (see Chapter 7). Also, computations are faster if there are fewer
genes involved, particularly computations involving hierarclucal clustering of
genes. Potentially, there exists a gene or genes that exlubit a very narrow
range of vaiation but whose tiny fluctuations are exquisitely inormative of
important biological distinctions. Unfortunately, the abilty to obtain suff-

ciently precise measurements for such genes might be beyond the techncal
capabilties of curent microarray technologies.

To screen out genes exhibiting little variation across microarray experi-
ments, sometimes referred to as nondijJerentially exressed genes, a number
of different approaches are us. Probably the most common approach is to

." set a threshold for fold-change. For example, for each gene take the highest
expression measurement for the gene (across the series of arays) and divide
it by the lowest expression measurement for that gene. Any genes for wluch
tlus fold-change is less than a threshold such as two or fourold are deleted
prior to analysis. A litation of tlus approach is that it does not account

for the number of microarrays in the experiment or the number of genes that
are examned. As either the number of microarrays or the number of genes
increases, the number of truly nondifferentialy expressed genes that exceed
any fied threshold will increase.
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To account for the number of microarrays, one can take a more statis-
tically based approach such as using the ratio of the 95th percentile to the
5th percentile rather than a maxImin ratio-based criterion. Taking percentiles
removes the dependence of the expected maxmum and minimum on the num-
ber of microarrays, and it is more robust to the infuence of a few extreme
observations.

Alternatively, a variance-based criterion can be used. The variance of the
log ratios for a gene across multiple samples is calculated, and all of those
genes whose variance falls below a particular threshold are excluded. There are
several ways to choose a threshold. One could choose an arbitrary number, for
example, exclude all genes whose variance is less than 0.5 on a 10g2 scale. One
could choose a threshold so that a specified percentage of genes is included,

for example, include only genes with variance in the top 30th percentile; the
choice of percentile wil depend on the composition of the genes included on
the array. A similar approach is to compute the proportion of the arrays for
which the expression level of the gene is at least twofold diferent from the
median for that gene. Genes for which that proportion is too low, say less
than 10%, may be excluded.

5.4 Array-Level Quality Control for Two-Color Arrays

An individual array can fail in many ways. Array fabrication defects, problems
with RNA extraction, failed labeling reaction, poor hybridization conditions,
and faulty scanning can all lead to an array that is of poor overall quality. In
general, it is better to discard or redo such arrays rather than to risk polluting
the good data avalable on the other arrays.

One indicator of poor array quality is the number of spots on the array
excluded due to poor qualty. A certain number of excluded spots is to be
expected given the multitude of diffculties that can lead to a spot being

poorly measured. Many of the excluded spots will correspond to clones that
failed to hybridize in any of the arrays. Even afer the poor clones have been
removed, it is not unusual to fid arrays on which as many as 30% of the spots
are excluded due to weak signal or other reasns. However, if the experimenter
finds that one of the arays has an unusually high number of excluded spots,
a number well outside the range of the other arrays, then that sample should
either be rearrayed or excluded from analysis.

Another indicator of overall array qualty is the ratio of the average of the
foreground intensities of the spots on the aray, and the average of the back-
ground intensities of the spots on the array. Higher-quality arrays generally
will have relatively large vaues for this ratio. A value of three or more in both
chanels can generally be considered a good array, and a ratio less than two
in either channel is likely to indicate an array of poor quality.

A thid indicator of poor array quality is very low vaiance of red or
green intensities across the spots represented on 'the array. Generally, there
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should be a substantial range of intensities for each channeL. Assersohn et

al. (2002) recommended that if the standard deviation of the lOglO channel-
specific intensities did not exceed 0.25 (corresponding to a standard deviation
of 0.83 for 10g2 intensities), then one should suspect the quality of the arrays.

A fourth indicator of array quality is the number of saturated pixels. As
mentioned in Section 4.1, photon intensities may reach a range beyond the
limits of analogue-to-digital converters. In these cass a signal is reported that
is equal to the largest value that can be represented. This necessarily leads to
an underestimation of the true output signaL. A few spots with saturated pixels
are to be expected. However, if significant numbers of spots with saturated
pixels are observed (e.g. if more than 2% of the spots on the array have more
than half of their pixels saturated), then it may be best to rescan the array
with a lower PMT voltage.

One final indicator of array quality is the amount of adjustment required
for the array. Data normalzation, discussed in Chapter 6, is used to correct
for biases between different arrays on the same experiment. If it is found
that the observed signals on a given array nee to be substantially changed
to make the array comparable to the other arrays, it is likely that there is
a problem on that array that may not be correctable by normalization. A
reasonable criterion would be to be suspicious of any array for which a linear
normalization of more than threefold (:11.6 on the log2 scale) is required. For
cases in which the normalization factor varies between genes within an array
(location-based or intensity-based normalization) it is reasonable to require
that no more than 10% of the points require normalization by more than
foùrfold (:12 on the 10g2 scale).

5.5 Quality Control for GeneChipTM Arrays

The above discussion was directed primarily to two-color cDNA microarrays.
Some of the techniques can be applied to Affetrix arrays, but many are

diffcult to implement because the measure of expression of a single gene
is based on multiple probe pair measurements. Some useful quality control
measures are implemented in softwae such as Afetrix's Micro Array Suite

(MAS), or the dChipl softare created by Li and Wong to aid in quality
control. In this section we describe several of the MAS and dChip quality
control measures and make some additional suggestions.

As with two-color arrays, an initial visual inspection of the array image is
an important first step. From the viual inspection of the array image one can
check the overall quality of the array, check to be sure that the gridding was
succesfu, and identify any obvious anomalies (bright or dark patches, edge

effects, debris, etc.). Probe pairs in regions that are contaminated by such
anomalies can then be flagged and excluded from the analysis.
1 http://biosun1.hard.edu/complab/dchipf.
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Each gene in a GeneChipTM array is represented by multiple probe pairs,
which are scattered across the array, therefore, gene-level quality control for
individual arrays is more complex than for cDNA arrays. Fortunately, a num-
ber of software packages can assist in this quality control. The algorithm
MAS uses will down weight individual outlying probe pairs in forming its sig-
nal measurement for a given gene. The dChip software (Li and Wong 2001a)
attempts to model the relative sensitivity of different probe pairs with regard
to their abilty to measure gene expression and then discards as poor quality

those probes that do not fit the modeL.

A number of other quality control indices are available through MAS..
MAS report the average background of the array. As with two-color arrays,
Affmetrix arrays with high background are more likely to be of poor quality.
A reasonable cutoff would be to exclude arrays with a vaue more than 100.
A second measure of array quality is the raw noise score, which is referred to
as Q by the MAS software. Thi is a measure of the variabilty of the pixel
values within a probe cell averaged over all of the probe cells on an array. This
value will vary from scanner to scanner, so it is diffcult to provide a unversal
cut point. A reasonable approach would be to exclude those arrays that have
an unusually high Q-value relative to other arrays that were processed with
the same scanner.

Along with a measure of gene expression, the MAS software produces a
call as to whether the gene transcript is present or absent in the sample, and
provides a p-vaue for this cal. This p-value is based on a Wilcoxon signed-
ranked test between the perfect match and the mismatch probe intensities.
If most of the perfect match probes have larger intensity than the mismatch
probes, then this is an indication that the gene is present. On the other hand,
if the distributions of the perfect match and mismatch probes largely overlap,
then this would indicate the gene is absent from the sample. Because there may
be correlations between probe intensities, the p-value reported is not strictly
valid and should not be diectly used as a measure of statistical signficance.
Stil, the present/absent call may be a useful tool for screening genes and

detecting problems with the array.
Any gene that is absent from the sample should have a true expression of

zero. Any fluctuation in the signal of such genes is therefore due to noise rather
than any true expression difference. Unle spots on cDNA arrays that have
low expression in both channels, these probe sets are informative because their
low signals do represent low gene expression. However, comparing expression
levels across multiple arrays in which the gene is absent is not liely to be

fruitfu. Therefore, if a gene is called absent on alost al of the samples,
it may be of little use and should probably not be included in the analysis.
Nevertheless, an exception should be made if those few arrays on which the
gene is present have a very strong signal. In this case the gene may make
a clear distinction between the two sets of arrays (one in which it is clearly
present and one in which it is absent) and so should be retained in the analysis.
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The number of genes that are declared absent on a given array will clearly
depend on the type of tissue being analyzed and the type of array being used.
However, if one of the arrays has an unusually large number of absent genes
relative to the other arrays in the experiment, then the array may have failed
to hybridize well.

In addition, there are several spiked controls (bioB, bioC, bioD, and cre)
that are included in the sample as part of the GeneChipTM protocol. BioB is
included at a concentration that is close to the level of detection of the array,
and so should be indicated as present about 50% of the time. The remaining
spiked controls are included at increasingly greater levels of concentration.
Therefore, they should all be indicated as present, and also should have in-
creasingly large signal values:

Signal(bioB) ~ Signal(bioC) ~ Signal(bioD) .: Signal(cre).

If these spiked controls are declared absent by the MAS software, or have
values that are not ordered as above, there was either a problem with the
hybridization of these controls or a failure to follow the prescribed protocol.
In either case, it would probably be best to exclude the array.

As with two-color arrays, the amount of normalzation required is an in-
dicator of array quality in GeneChipTM arrays. Unlike two-color arrays, there
are several ways in which to choose a baseline against which to normalize
a GeneChipTM array; see Section 6.4. For this reason, we canot suggest an
upper limit to the amount of normalization that is acceptable. What is impor-
tant is that all arrays have approximately the same amount of normalization.
If one array has a normalization factor that is more than three times as large
as other arrays in the experiment, then the array may be poorly measured.

In the case of GeneChipTM arrays, much of the gene quality control has
already been done by Affetrix. They have done their best to weed out
oligonucleotides that have failed to reliably correlate' with gene expression.
Stil, if there are genes for which multiple probe sets are available, it is worth-
while checking to see whether the expresions for the different versions of the
gene agree. As with two-color arrays, thi can be done by checking the mean
squared difference of the signal value for the duplicates; refer to Section 5.3.2
for details.

5.6 Data Imputation

Mter performng the filtering described previously, there wil generaly be a
large number of missing values in the datast. If the analyses that are bein

performed are done on a gene-by-gene basis, then it is best simply to ignore
the samples on which the gene has miing values and analyze each gene basd
solely on samples for which vaues are present. However, some analyses, wi
be performed' using multiple genes. In such analyses, excluding all samples

"'.:'_"'~""._""'_.;'~.""~..~~"C~"""'..~=.:""
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missing anyone gene results in few, if any, samples left to analyze. Some
of these analyses can be modified to handle missing data, but others may
require that the dataset contain no missing values. For such analyses, one

could restrict the analysis to only those genes that are present on all samples,
but doing so may eliminate important genes that have missing values on only

a few of the arrays. Under these circumstances, it may be necessary to impute
values to replace missing data. Because imputation involves comparing gene
expression across arrays, it should be done afer normalization (Chapter 6).

Thère is a large statistical literature concerned with the problem of missing
data imputation. Little and Rubin (2002) give a good overview of general

methods of dealing with missing values. We present two relatively simple
methods of data imputation that have been applied successfully to microarray
data.

The simplest method of imputing missing values is to replace all missing
values for a gene with the median value of the observed values for that gene.
For two-color arrays, one imputes log ratio vaues. Median vaue imputation
has the advantage of providing a relatively neutral result for the missing data,
and so these imputed vaues will not heavily influence conclusions drawn from
the data. However, inasmuch as there is no biological connection between the
sample and the imputed array value, including these imputed vaues in the
analysis will tend to dilute any real effect observed in the other samples. This
method may also have the disadvantage of creating a potentially large subset
of samples all of which share identical values for a gene. This could cause
diffculties for certain analyses that make use of the distribution of a gene's
values.

A second method of imputation uses the inherent correlation between ex-
pressions of different genes on the array to provide an educated guess as to
the correct value for missing genes (Troyanskaya et aL. 2001). This method
is a vaiation of K-nearest neighbor prediction and is implemented as fol-

lows. Assume that we wish to imput,e a value for a gene in sample m and
let Y = rYi,..., YJ J represent the vector consisting of the normalized log

ratios for thi gene across all arrays in which its vaue is present. Let Ym

be the missing value we wish to impute. Calculate the mean squared difer-
ence (MSD) distance between Y and every other gene X. In this calculation
you utile every sample that is not missing vaues in either Y or X. Iden-

tify the N genes most simar to the gene whose vaue you need to impute
with respect to this distance. For Ym we impute the weighted average of the
expression for these genes on sample m. The weights are the reciprocals of
the distances. Troyanskaya et al. (2001) found that a value for N between 10
and 20 worked well for their data. Software for thi method is avalable at

http://smi-web.stanord.edu/projects/heli/pubs/impute.
Thi method has the advatage that it alows the imputed vaue to be

infuenced by the biology of the sample and so may be less likely to dilute
true effects than the us of the median for the gene. In addition, because the
imputed values wiU differ from sample to sample, this method wi not lead to
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many samples sharing the same values for a gene. 'Ioyanskaya et al. (2001)
showed that the imputed values generated by this method are more accurate
than using the median when samples are missing at random. Therefore, this
method will work well for spots that were excluded due to bubbles, scratches,
or other array anomalies that are caused more by the location of genes on the
chip rather than signal quality. It is not so clear that this method performs
as well when samples are missing due to low signal intensity. If a spot on an
array is missing due to low signal, it is likely that many other samples wil
also be miing vaues for this same gene that may make it more diffcult to
identify other genes with similar expression. Fuhermore, those genes that
share similar expression may als have low signals and be missing for that
sample. As a result, the genes that are averaged to form the imputed value
may not be very close in expression to the gene for which the value was
imputed and may themselves not be of good quality.



6

Array Normalization

6.1 Introduction

Before comparing the gene expression values between arrays, the arrays must
be normalized. This step is necessary because there is likely to be an observed
intensity imbalance between RNA samples, which wil afect all genes. This
imbalance has nothig to do with the biology of the samples, but instead
occurs for a variety of technical reasns, such as differences in the setting of the
PMT voltage, imbalance in the total amount of RNA available in each sample,
or differences in the uptake of the dyes. The amount of normalization required
will vary from array to aray. The objective of normalization is to adjust the
gene expression values of all genes on the array so that the genes that are not

really differentially expressed have similar vaues across the arrays. There are
two decisions that nee to be made: which genes to us as the normalization
genes and which normalization algorithm to use.

6.2 Choice of Genes for Normalization

Ideally, we wish to normalize using genes that have similar expression across
our samples. If this is not the case, we ru the risk of confin true biolog-
ical diferences in which we are interested with the artifacts we are tryg to
elimiate by normalization. Several strateges can be used to obtai a set of

genes on which to base the normalzation.

6.2.1 Biologically Defined Housekeeping Genes

Housekeeping genes are genes that are involved in the essential activities of
cell maintenance and surva, but which are not involved in cell fuction or
proliferation. Because all cell nee to expres these genes to surve, it is rea-
sonable to expect that such genes wi be similarly expressed in all samples in
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the experiment. Therefore, such housekeeping genes make perfect candidates
to use in normalization.

Unfortunately, it is often diffcult to identify housekeeping genes. In ad-
dition, genes that are housekeeping genes for one type of tissue may not be
housekeeping genes for a different type. Therefore, unless carefully controlled
experiments have been performed demonstrating that the expression of the
gene is high and approximately constant for the type of tissue being studied,
it cannot be known for sure whether the gene can be appropriately considered
a housekeeping gene.

The GeneChipTM arrays contain genes that AffetrIx claims to be house-
keeping genes. These genes were tested on a large number of different tissue
types and were found to have quite low variabilty in the tested samples. These
are certainly good candidates to use as housekeeping genes, but because it is
impossible to test all possible tissue types, there is stil no guarantee that the
genes wil be biologically invariant in every experiment. Therefore, if it is de-
cided to use these housekeeping genes to normalize the data, it is worthwhile
checking to be sure that, after normalization, all of these housekeeping genes
have low variabilty across the set of samples used in the experiment.

6.2.2 Spiked Controls

A second method of array normalization is to include in both the reference and
the control samples some RNA that is generally not found in either sample,
for example, putting some yeast RNA into human samples. By placing the
same relative amount of RNA into both samples hybridized to a two-color
array, it is possible to create an artificial housekeeping gene that wil have
equal expression in both channels. If these artifcial genes are spotted on the
chip, we will be able to detect bias and be sure of the fact that it was not due
to biological dierences.

The diffculty with thi method is that in order for it to provide the correct
normalization, it is necessar that the proportion of sample RNA to spiked
control be the same in both chanels. This implies that the experienter must
be able to determine the actual amount of RNA included in each channel,
and then be able to add the foreign ;R A proportionally. Doing so may be
techncally challenging.

The Affetri GeneChipTM protocol includes the spikig of control
oligonucleotides into each sample. These controls are included to aid in mea-
surng the effectiveness of hybridization and to aid in the griddig of the

slide by the image analysis softe. There is no fied relationship between

the amount of control used and the amount of available RNA in the sample,
therefore these controls should not be usd for normalation. FUthermore,
the investigator should not be concerned if, even after normalization, the ex-
pression of these controls vaies from slide to slide.
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6.2.3 Normalize Using All Genes

The simplest approach is to use all of the adequately expressed genes for nor-
malization. The underlying assumption for this approach is that the majority
of the genes on the array are housekeeping genes. In fact, for the simplest
normalization methods we present (Section 6.3, and 6.4), all that is required
for a set of normalization genes is that the proportion of genes that are over
expressed in a given sample be approximately equal to the proportion of genes
that are under expressed. These assumptions wil hold for most randomly se-
lected sets of genes. Therefore, this method works well in cases where there
are a.large number of genes included on the array and when the majority of
the genes were not specifically selected to be differentially expressed between
the experimental and reference samples. However, if the genes on the array

were carefully selected to be genes of specific biological interest that are highly

variable across the samples, then it will be necessary to include a separate set
of either housekeeping genes or spiked controls to us in normalization.

6.2.4 Identification of Housekeeping Genes Based on Observed
Data

There are several technques for using the observed data to identify housekeep-
ing genes. For two-color arrays, Tseng et aL. (2001) recommend designating as
housekeeping genes those genes that have similar rans in the red and green

channels. We find that such techniques often choose those genes that are in the
center of the distribution of all log ratios on the array. Therefore, the result
of normalizing with respect to this subset is vitually identical to the result
obtained by normalizing with respect to the complete list of genes. Wang et
aL. (2002) present an iterative method for selecting normalization factors and
simultaneously identifyng genes with low variation across the arrays after
normalization.

6.3 Normalization Methods for Two-Color Arrays

Normalization of two-color arrays involves determiation of the amount by
which the genes on the red chanel are over- or underexpressed relative to the
green chaneL. This bias wi difer for diferent arrays and, dependig on the
form of the bias, may vary by gene. Once the siz of the bias is estimated,
we obtain oUl final signal value by subtracting thi normalization factor from
the,observed log ratio. Thus the normalze signal value for clone k on array
j will be

(R-k)
Xjk = log -i - Cjk,

Gjk

where Rjk and Gjk denote the background-adjusted red and green signal as
in Equation (4.1) and Cjk is the normalation factor.



56 6 Array Normalization

There are several ways of calculating Cjk. These methods differ in their
modeling of the systematic bias to be corrected by normalization. They can
be divided into three categories: linear or global normalization in which the
normalization factor is the same for all genes on the array, intensity-based

normalization in which the normalization factor used depends on the signal
intensity for that spot, and location-based normalization in which the normal-
ization factor depends on the location of the spot on the array. Determining
which type of normalization method to use requires examining the observed
unnormalized log ratios and deciding what kinds of systematic effects are
present. The amount of normalization requied wil vary by array. Therefore
each array should be normalized separately. However, the type of normaliza-
tion used (linear, intensity, location) should be the same for all arrays in the
experiment.

\
6.3.1 Linear or Global Normalization

The simplest method of normalization uses a single normalization factor ap-
plied to all genes on the array, but thi vaue varies from array to array. It
is called linear normalzation because it assumes that the red and green in-
tensities have an approximately linear relationship through the origin for the
normalization genes on a given array. The slope of thi linear relationship will
determine the amount of normalization required, and will become an additive
effect on the log scale.

For this normalization method, all genes on a given array will have the
same normalization factor. The formula for linear normalization is

Cjk = Cj = m~dian (iog (GRjk)),iES jk (6.1)

where S is the set of normalzation genes. We use the median rather than the
mean because it is less likely to be infuenced by outlyig values. Als, if we
are normalizing with respect to all genes, then accordig to our assumptions
regarding the distribution of up-and down-reguated genes (see Section 6.2.3)
the center of the distribution of log ratios should consist of those genes that
are not differentially express between the red and green channels. By using
the medan, we focus attention on these center genes. ,

This method works well for most applications. It wil be usable even when
there are a relatively smal number of normaliation genes (e.g. 50 to 100
genes), as is often the case when housekeeping genes or spiked controls are
used. Thi method also has the advatage that it is les Ìiely than other
methods to over fit the normalation to the data. Other methods in which
the normalization vaies from gene to gene are more sensitive to chanes in the
observed exression of individual genes, and so may produce bias results.
For thi reasn, we recommend linear normalization uness there is compellng
evidence that a substantial number of arrays in the experiment require a more
complicated normalization method.
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6.3.2 Intensity-Based Normalization

In some arrays, it appears that the overall magnitude of the spot intensity
may have an impact on the relative intensity between the channels. In order
to determine if this is the case, it is recommended that the experimenter
look at so-called M-A plots (Yang et aL 2002a) in which for each array j the
quantity

Mjk = log (~~:)

is plotted against the RNA abundance

1
Ajk = '2 (log(Rjk) + 10g(Gjk))

over all normalization genes. In the above equations Mjk represents the log
ratio of background-adjusted intensities for gene k on array j. Ajk represents
the average of the red and green channels with regard to background-adjusted
intensity for gene k on array j.

If no normalization is required, the spots will appear symmetrically scat-
tered around the horizontal line M = O. If only a linear normalization is
required, then the spots wil stil be scattered around a horizontal line, but

the line will be shifted up or down away from 0 by an amount equal to the
required normalization. Figure 6.1(a) shows such a plot. If the spots follow a
line with nonhonzontal slope, or a nonlinear curve, then it may be necessary
to perform a nonlinear intensity normalization. Figure (6-1 (b)) shows such a
M-A plot. In this case, the spots with lugh intensity (high A values) have a
relatively smaller red signal than green signal (negative M vaues).

The techncal caus of this nonlinearity in normalization is not immedi-
ately obvious. It may have to do with a component of background lumines-
cence that acts in a nonadditive way with the foreground, or it may have to do
with some aspect of signal saturation in the detector. Whatever the cause, the
form of the normalization curve can va markedy between arrays. Therefore
it is necessary to fit a separate normalization cure to each array.

If it has been determined that intensity-based normalization is necessar,
the next step is to fit a curve to t~e M-A plot for the normalization genes.
Locally weighte regresion curves (also known as loes curves) are most fre-
quently usd, but other smoothig fuctions such as splines should produce

similar results. The lines in Figues 6.1(a) and (b) show the loess normaliza-
tion curve fitted to the data.

Once the cure is fitted, we defie

Cjk = h(Ajk),

where h is the smootlung fuction fitted to array j, and Ajk is the abundance
value for clone k on array j.

In order to perform intensity-bas normalization, it is necessary that
there be normalization genes across al intensity vaues. Therefore if there are
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Figure 6.1a M-A plot with Loess fit
Linear Normalization acceptable

7

5
.~ -':-.' :- y

3

. ,::

.'! ,~~... . , ..

-1 "-. .

-3

-5
o 2 4 6 8

A

(a)

10 12 14 16

Fi~uré;6.1b M.,AplötWith loeSS fit
,Iïiíeïis¡' ,basédN'oalfiaiòn"rEiiiired

10

5

:2 Ö

,5

-10

o :2, 4 'l¡' 8 10 12 14 16

A

(b)

Fig. 6.1. (a) Loess fit to M-A plot of aray data. Horiontal 
loes line indicates that

consant normtion should be sufcient. (b) Lo fit to M-A plot of aray data.
Clea nonlnearity of loes fit indicates that intensty-bas normalation should be
us.



6.3 Normalization Methods for Two-Color Arrays 59

only a small number of identified housekeeping or spiked control genes, or
if the expressions of these genes do not span the range of expression levels,
this normalization method cannot be used. Furthermore, even if all genes are
being used to normalize the data, there is the implicit asumption that at each
intensity level there are equal numbers of up- and down-reguated genes. If all
the high- (or low-) intensity genes share similar biology, it is possible that this
assumption could be violated and it would be best to avoid thi normalization
method.

Another danger of using intensity-based normalization is that at intensities
for which there are few spots the normalization could be based on a rather
small number of points, and as a result could overfit to those particular values.
Thus, by normalizing the data, the experimenter could subtract away exactly
the effect he or she was tryng to measure if the normalization was performed
using all genes.

6.3.3 Location-Based Normalization , /
Another artifact that is sometimes observed is that the background-subtracted
log ratios on the array va in a predictable manner based on their position on
the array. Figure 6.2(a) shows the dependence between log ratios and position
on a sample array. The spots along the top and right side of the array appear
to be very red, and the lower left corner appears much less red.

One factor that may contribute to location-specific differences in the ob-
served log ratios are differences in the print tips used to create the slide.
Because there may be subtle diferences in the degree of wear on a print tip,
it has been suggested that normalzation should be performed separately for
each print tip (Yang et al. 2002a).

Figure 6.2(b) shows the median log ratio for each of the 24 grids in the
array presented in Figure 6-2a. The lower left grid has a lower median log
ratio, as do those around it, and the grds on the top and right side have
larger vaues. Each print tip generates a grid that is located at a separate
place on the array. By normalizing with respect to the print tip, we effectively
normalize with respect to many of the location differences as well.

To normalize within the grid we apply Equation (6.1) but take the median
only over the normalzation genes withi the grid. Figue 6.2(c) shows the

results afer location normalzation. There is now no clear location dependence
for the log ratios.

In order to perform location-based normalization, it is necessar that there
be significant numbers of normalization genes withi each grid. Therefore this
technque will not be applicable for normalizing with respect to a small number
of spiked controls or housekeeping genes. In addition, inasmuch as there are
fewer genes in each grd than there are on the entire array, there is the same

danger of overftting as there was in the intensity-based normalization.

It is possible that normalizing with respect to the print tip wil not com-
pletely account for all location effects. Although more complicated methods of
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location-based normalization exist, many involve the estimation of numerous
parameters, and may introduce artifacts by overfitting the data.

6.3.4 Combination Location and Intensity Normalization

If it appears that both location and intensity-based normalization are re-

quired, there are two ways to procee. One possibilty is to perform linear
normalization separately for each grid and then apply intensity-based nor-
malization to the resulting normalized log ratios on the entire array. Alterna-
tively, the intensity-based normalization can be performed separately within
each grid. Yang et aL. (2002a) reported that the shape of the loess curves fit
to the M-A plots could vary from grid to grid, suggesting that the second
alternative might be best. However, the number of available spots within each
grid may be relatively low, makng the fitted curve dependent on the values
of a few points. This is particularly a problem at intensities where data are
sparse. Thus there is a danger that true biological variabilty of an individual
spot may be absorbed by the normalization factor and eliminated. Therefore,
unless it is very clear that the patterns of the M- A curves va significantly
between grids on the array, we recommend using a single M-A plot fitted to
all spots on the array.

6.4 Normalization of GeneChipTM Arrays

As with two-color microarrays, the overall magntude of the signal for all genes
on a given Affetrix array can vary for techncal reasons unrelated to bi-
ology. Therefore normalization is necessary. Unlike two-color arrays, there is
only a single channel in oligonucleotide arrays. This mean that some tyes of
normalization on Affetrix data must be done between arrays rather than

within a single array. Stil, many of the same issues that confronted us in
two-color array data carryover to Affetrix data. Both linear normalization

methods and intensity-based algorithm have been applied to GeneChipTM ar-
rays. However, location-specific normalization is generally not used. Although
location-based intensity imbalances may exit, such imbalances are generaly
less severe for Affetrix arrays because the sample is circulated over the sur-

face of probes. Also, because the probe pairs for a gene in Affetrix arrays
are scattered across the array, location-bas imbalances wil have a smaler
effect on the mean diferences of individual genes than they did in the case
of two-color arrays. As with two-color arrays, the normalzation vaues should
be calculated separately for each array, but the normalation method used
to calculate these values should be the same for al arrays.

6.4.1 Linea or Global Normalzation

As with two-color arrays, the simplest method of normalzation is to use a
single normalization factor for all genes on the array. Thi method is used by
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Affymetrix's MAS software. This software gives the user the abilty either to
choose a particular target signal value or to choose a particular baseline array
against which to normalize. Based on this choice, the normalization signal log

values are calculated as follows.

(normalized signal 
log value)jk = SLVjk -log2(s!i), (6.2)

where SL V denotes the signal log vaue for gene k on array j given by expres-

sion (4.3) and sfj is the scaling factor for array j. The signal vaue reported
by the MAS software is 2 raised to the power of normalized signal log value.

Affmetrix software computes the scaling factor as

sfj = log2(Sc) -log2 (Trim,lean(2SLV;k)) , (6.3)

where Se is the target constant used for normalzing all arrays. The "Trim-
Mean" notation denotes the mean of the signal values on array j for the
housekeeping genes, excluding outliers in the upper and lower 2% of the dis-
tribution. Affetrix computes the trimmed mean on the absolute intensity

scale. Because SL V is a log2 tranformed value, the value is raised to the

power 2 before taking the trimmed mean. If no housekeeping genes are iden-
tified, then the trimmed mean uses the signals for all of the genes on the
array. If arrays are normalized to a fied constant, then Se is that constant.
If a baseline array is chosen for normalization, then Se is taken as the 2%
trimmed mean of the signals for the housekeeping genes on the baseline array.

As we can see from Equations (6.2) and (6.3), changing the target constant
or baseline array only results in a different constant being added to all normal-
ized signal log values. Thus it wil have no effect on any comparative analyses
between arrays provided Se is the same for all arrays being compared. For
this reason, we recommend that if the MAS normaliation algorithm is used,
the experimenter normalize to the default value of 500 as this will faciltate
comparisons between experiments by different investigators.

When considering other normalization methods it should be noted that
the MAS software performs its own normalization automatically. Therefore,
the signals that are obtainable from the MAS softare have aleady been
normalized with their algorithm. Because the MAS normaliation is linear,
applying a new normalization to signal that were aleady normalized by

MAS will produce the same results as applyig the new normalzation to the
raw signals. Thus, for the purposes of considering alternative normalization
methods, the MAS output vaues can be treated as the taw signal.

6.4.2 Intensity-Based Normalation

Nonlnear intensity-based normalation may alo be required in GeneChipTM
arrays. To determne whether it is necessar, graphs simlar to the M - A plots
can be generated. However, rather than comparing dierent chanels from the



6.4 Normalization of GeneChipTM Arrays 63

same array, pairs of arrays are compared. Let Xk denote the normalized signal
log value for gene k on one array and Yk the normalized signal log value for
the corresponding gene on a second array; we plot

Mk = Xk - Yk against Ak = !(Xk + Yk)'
2

Because most genes are not expected to vary significantly from array to array,
the spots on the plot should be scattered around a horizontal line at 0 if no
normalization were needed. If only linear normalization were required, the
spots would lie on a horizontal line at a value other than O. If the spots
are scattered around a nonhorizontal line or a nonlinear curve then this wil
indicate the need for an intensity-based normalization. Unfortunately, because
the form of the graph depends on which arrays are paired, a choice must be
made as to which array to normalize against. Li and Wong's dCHIP software
chooses a single array of medium intensity and then normalizes the probe-level
intensities of all other arrays to resemble this one.

Other methods of normalization of Affmetrix data at the probe intensity
level are described and compared by Bolstad et al. (2002). They found that
a method known as quantile normalization worked best. This method relies
on the assumption that even though there may be dífferences between arrays

in the expression of individual probes, the distribution of the expression val-

ues should not change dramatically between arrays. Futhemore, they assume
that within a single array there is a monotone relationship between the gene
expression level and probe value. Therefore they adjust each array in a mono-
tone manner so that all arrays have the identical distribution. The method is
as follows. Compute the kth smallest signal value on each array and average
them over the arrays. Let Xj(k) denote the kth smallest signal on the jth array

and let X(k) denote the average over the arrays oftheir kth smallest signals.
Replace Xj(k) with X(k) on al of the arrays. Do this for each k = 1,2,... ,
up to the number of probe sets on the array. Thus, afer normalization, all
arrays will share the same set of probe signal vaues, but which probe is asso
ciated with which vaue will vary from array to ar,ray depending on the ran
ordering of the gene expressions. That is, the lOOt~ smallest value on array

1 wil be the same as the lOQth smalest vaue on array 2 but they may rep-
resent two different probes. This method of normalization is implemented in
the Bioconductor softare avaable at http://ww . bioconductor. org/.

Even if software that processes probe-level data is not used, an intensity-
based normalization can be penormed at the sigal leveL. First, a baseline
array is chosen to use as a reference; we recommend using an array whose sf
vaue is closest to the median of the sf vaues of the arays being analyzed.
The Affetrix MAS5 softare includes the sf vaue for each aray as part
of the output. The M-A plots can then be generated as was done in Section
6.3.2, using the signal for the array being normalized as if it were the test
chanel and the signal from the baseline array as if it were the reference. If it
appears that intensity-dependent normalization is neeed, then either quantile
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Class Comparison

7.1 Introduction

One of the most important goals in microarray studies is to identify genes that
are diferentially expressed between prespecined classes. Identifyng differen-
tially expressed genes with known functions can lead to a better understanding
of the biological differences between the classes. Identifying differentially ex-
pressed genes with unknown functions can lead to a better understanding of
the fuctions of those genes. The goal of this chapter is different from that
of Chapter 9; the goal there is to create classes of specimens for which gene
expression is different. Class comparion methods are superved in the sense
that they utilze the information of which specimens belong to which classes.

This is in contrast to methods such as cluster analysis discussed in Chap-

ter 9 which utilze only the expression profiles and are unsupervised by any
information about class membership.

We begin in Section 7.2 by examining whether a particular gene is differ-
entially expressed between classes. This provides the statistical background
for the more realistic problems involving thousands of genes addressed in the
remainder of the chapter. Section 7.3 describes how to identify whiCh genes

are differentially expressed while controlling for the large number of genes be-
ing examed. Section 7.4 describes some methods of analysis of experiments
when there are very few specimens in each clas avalable for microarray anal-
ysis. Section 7.5 presents global tests of whether there are class dierences
in gene expression without trying to identif which genes are dierentialy

expressed. Section 7.6 addresses the special !lituation in which there is only
one specimen in each clas. A natural generalzation of clas comparion is to

ask whether gene expression is associated with a continuous characteritic or

a surva time for the individual from whom the specimen was obtained; this

is discused in Sections 7.7 and 7.8, respectively. Section 7.9 ends the chapter
with a dicusion of statistical models for analysis of nonreference design for
two-color aray experients.
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7.2 Examining Whether a Single Gene is Differentially
Expressed Between Classes

We begin by considering the case of two classes, in which case we wish to
discover whether a gene has higher expression in one clas as compared to
the other. As discussed in chapter 4, analyseS of expression data typically use

logarithmically transformed levels; we use logarithms base 2 for most of our
analyses. Suppose one has available Ji specimens from class 1 and J2 speci-
mens from class 2. Consider a particular gene, with (transformed) expressions
ip class 1 given by Xu, X12, . . . , X1J¡ and in class 2 given by X21, X22, . . . , X2J2'
One can summarize the average expressions in classes 1 and 2 by the _ means
of the class 1 and class 2 values, Xl and X2. If Xl is larger (smaller) than X2,

this would suggest that gene is expressed more (less) in clas 1 than class 2.
There are several things to note about this type of comparison. First, this
comparison makes sense even if each expression value is relative to a refer-
ence standard (as would generally be the case for cDNA arrays), provided
that the same reference standard is used for the specimens in both classes.
Second, assuming that the processing of the microarrays is done in the same
manner for both classes of specimens, one does not need to be too concerned
about sources of systematic bias that are present in the microarrays of both
classes; these biases wil tend to cancel out when comparing the expressions
between classes. For example, with cDNA arrays if the reference specimen is
labeled consistently with say, Cy3, then there may be gene-specific dye bias

not removed by normalization, but it wil not be of concern in comparing the
classes. It would only be of concern if we wished to compare either class to
the internal reference. Third, only one microarray per specimen is required.
If there are replicate arrays on a specimen, we recommend averaging the log
expression vaues to form a single Xij to be used for that specimen, or choosing
the array with the best quality; see Chapter 5. Issues concernng whether to
design a study with replicate arrays are discussed in Sections 3.4 and 3.7.

Because it is unikely that the mean expression levels Xl and X2 will be

exactly equal, how does one know that any difference observed between Xl
and X2 is not due to chance? Clearly, a larger rather than smaler diference
between Xl and X2 suggests that the difference is not due to chance. But how
large a difference is requied? One possibilty would be to choose a certai fold
difference, for example a twofold diference that corresponds to IXi - x21 ;: 1
when base 2 logarthmc tranformations are used. Thi was the approach

used by Lee et al. (1999) when comparing gene expresion in 5-month versus
30-month-old mice. A problem with thi approach is that it can lea to a

high probabilty of declarig that a gene is differentially expressed when it

truly is not (Miler et aL. 2001). The approaches described in this section use

elementary statistical methods to guard against such chance findigs; readers
with a statistical background may wih to skip all but the examples in the
remainder of this section.
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In order to guard against chance findings, one must characterize what one
means by chance. One notion is as follows. There is a very large population of
class 1 and class 2 specimens, and the distributions of the expressions of the
class 1 and class 2 specimens are the same in the population. This is referred
to as the null hypothesis. The Ji clas 1 specimens and J2 clas 2 specimens
under investigation are assumed to be (completely) random samples from the
class 1 and class 2 specimens, respectively. St~tistical theory allows one to
estimate the probabilty that one would see a diference as large as observed.
There are different methods to do this. The most commonly used involves a
two-sample t-statistic,

where

and for i = 1, 2,

Xl - X2t= ,
V s2 (i. + i.)p Ji J2

(7.1)

S2 _ (Ji - l)s¡ + (J2 - l)s~P - Ji + J2 - 2

1 J,s~ = J- -1 L)Xij -Xit
i j=1

The variance estimator s~ estimates the (pooled) within-class variabilty of
the gene expressions; its square root is known as the within-class standard
deviation. An alternative t-statistic uses V sV Ji + s~/ h in the denomiator
of (7.1). This alternative t-statistic is referred to as the t-statistic using the
separate-variance formula, whereas (7.1) is referred to as the t-statistic using
the pooled-variance formula.

One interpretation of the t-statistic is that it is the ratio of between-clas to
within-class vaiabilty of the gene expression. Another interpretation is that
the denominator of the statistic is an estimator of the vaiabilty of Xi - X2
one would see if one repeatedly sampled Ji class 1 and J2 class 2 specimens
from the very large population. With either interpretation, large positive or
negative values of the t-statistic suggest that Xi and X2 are difering more
than by just chance. The t-statisic is converted to a probabilty, known as a
p-value, which represents the probabilty that one would observe under the null

hypothesis a t-statistic as large or larger (in absolute vaue) than the t-statistic
calculated from the observed data. For example, one would observe p-vaues
less than 0.01 under the null hypothesis only 1% of the time. The p-value
is also sometimes referred to as the statistical significance of the data (with
respect to the null hypothesis) obtaied from a t-tet of the nul hypothesis.
All of our hypotheses tests and p-vaues wil be two-sided, representing the

fact that we are interested in either class having more expression than the
other.
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Example 7.1 (Differences in prostate - cancer versus benign prostatic hyper-
plasia (BPH) gene expression for clone 139331 in the Luo Prostate Cancer
dataset). The data are from cDNA microarrays done on 16 prostate cancer
specimens and 9 BPH specimens; see Appendix B for details. The gene expres-
sions for clone 139331 for 9 prostate cancer specimens and 8 BPH specimens
with available data for this clone are displayed in Figure 7.1. We note that

Clone 139331

l
0 0 00' 0 00 0 0

.
x x . *ic x

I I I I I

1/8 1/4 1/2 1 2

Fig. 7.1. Gene expression relative to the reference sample for clone 139331 for 9

prostate cancer specimens (circle) and 8 BPH (x). Geometric mean expression levels
are designated with arrows. (Data are from the Luo Prostate Cancer Datast.)

the expression levels are on average lower for the prostate specimens than
the BPH specimens, with geometric means being 0.39 and 0.70, respectively.
(A geometric mean can be defined as 2 raied to the power of the arithmetic
mean of the logarithmcally (bas 2) tranformed vaues.) The p-vaue from
the t-test is p = .038. If thi had been the only clone studied, then thi p-vaue
would suggest that the diferences seen in the distributions in Figure 7.1 are
not due to chance. However, inasmuch as thousands of clones were examned,
this conclusion might be unwarranted; see Example 7.4.

7.2.2 Permutation Tests

The calculation of the p-vaue from the t-statistic implicitly assumes that the
statistical ditribution of the numerator of (7:1) is approximately normal (Le.,
Gaussian). Because the normal distribution can be completely characterized
by its mean and standard deviation parameters, t-tests are examples of what
are known as parametri tests. The normal distribution approximation may
not be good if one is interested in extremely small p-vaues (as will sometimes
be the case in Section 7.3). An alternative approach to estimating p-vaues
that does not depend on approximate normal distributions is via permutation
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tests. One example of a permutation test, the permutation t-test, is given as
follows. First, the t-statistic is calculated using (7.1). Then the class labels of
the Ji + h specimens are randomly permuted, so that a random Ji of the

specimens are temporarily labeled as class 1, and the remaining J2 specimens
are labeled as class 2. Using these temporary labels, the t-statistic (7.1) is
calculated, say, t*. The labels are permuted many times with a calculation of
t* each time. The (two-sided) p-value from the permutation t-test is estimated
by

I 1 + # of random permutations where Wi ~ It 
Ip-va ue = . (7.2)

1 + # of random permutations

With small sample sizes or in some special cases, one can actually enumerate
all

(Ji + h) = (Ji + J2)!Ji - (Ji!J2!)

permutations and use

al _ # of permutations where Wi ~ It 
I p-v ue - (Ji ~ J2 ) (7.3)

rather than the estimator (7.2). (The symbol J! mean J x (J -1) x (J - 2) x

. .. x 2 x 1.) A schematic example of the calculation using hypothetical data
is given in Figure 7.2: With 5 observations in one clas and 4 in the other,
there are a total of (;) = 126 possible permutations for the data. For the data
shown, the absolute vaue of the t-statistic is 3.64 which is less than or equal to
3 of the permuted dataset absolute t-statistics; the t-statistics corresponding
to these 3 datasets are shown in bold tye. (Note that the original dataset
is considered to be one of the permuted datasets for this calculation.) The
permutation p-vaue is therefore 3/126 = .024.

Example 7.2 (Permutation t-test for differences in gene exression for clone
139331 in the Luo prostate dataset.). This is a continuation of Example 7.1.
The gene expressions for clone 139331 for 9 prostate cancer speimens and 8
BPH specimens with av.lable data for this clone are diplayed in Figue 7.i.
Because there were missing data in thi example (7 prostate cancer specimens

and 1 BPH specimen), there are two different ways to permute the clas labels.
One possibilty is to ignore the missing data and randomly assign 16 of the
original specimens to be class 1 and the remainder to be class 2. Note that,
if done in thi way, the numbers of class 1 specimens with avalable data can
change from permutation to permutation. The other possibilty is to restrict
the permutations to the non-missing specimens and to randomly assign 9 of
the 17 specimens with non-mising data to be class 1 and the remainder of
the 17 to be class 2. In this case, each permuted dataset wi have exactly 9
class 1 specimens. We recommend using the first method, that is, permuting
the class labels for al the specimens regardless of whether expression data
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Fig. 7.2. Schematic of caculation of permutation t-test p-vaue for unpaired two-

clas comparson (hypothetica data with five observtions in class 1 and four ob-
servations in clas 2).
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are available for tms clone for the specimen. (This method has the practical
advantage of only having to look at one set of permutations when multiple
genes with different patterns of missing data are examied as in Section 7.3.)
In the present example, there are (~~) possible permutations, of which 9,999
are randomly chosen. Of these random permutations, 378 had It*1 ;: Itl.
Therefore the permutation p-value is 0.0379, almost identical in this case to
the parametric t-test p-value.

An alternative permutation test to the permutation t-test is the Wilcoxon
rank-sum test (Hollander and Wolfe 1999). The original J1 + J2 expression
levels are replaced with their ranks. That is, the largest x value of the com-
bined set of J1 + J2 values is given the value 1, the second largest, the value
2, and this rankig is continued until the smallest is given the value J1 + J2.

The sum of the rank for only those observations in class 1 is then calculated.
This sum is compared to specially constructed tabled values to calculate the
p-value (large or smal values of the sum indicate class diferences). The p-
value from the Wilcoxon ran-sum test is the same as would be obtained by
performing the permutation t-test on the ranks of the data. The advantages of
the Wilcoxon rank-sum test over the 'permutation t-test are that the permu-
tations do not have to be constructed (becaus the p-vaue depends only on
the rank sum and J1 and J2) and, inasmuch as ranks are used, the rank-sum
test will be relatively insensitive to extremely large or small values. The use
of the rank, however, makes the rank-sum test less sensitive to some real dif-
ferences in the data. Because of this disadvantage and because with modern
computing the calculation of the permutations is not diffcult, we recommend
using the permutation t-test.

When there are a very small.number of specimens available from each
class, the inferences available from àny of the permutation tests are limited in
the sense that the obtaiable p-vaues canot be very smal. For example, with
3 specimens in one class and 2 In the other, the smallest obtainable p-vaue
is 0.10 because there are only 10 possible permutations (some defiitions of
two-sided p-values for permutation tests would consider the two-sided p-value
0.20). The p-vaues from parametric t-tests can be small even with very small
numbers of specimens, but these tests may not be very effcient in detecting
true class differences in this situation because the estimates of the within-class
variabilty may be poor. As there are more options for addresing the problem
of smal numbers of specimens when multiple genes are being considered, we
postpone futher discussion of thi topic to Section 7.4.

1.2.3 More Than Two Clases

For some applications, there wi be more than two classes of specimens to
compare. For example, specimens may be available from three different ms-
tologic subtyes of cancer. The question addresse here is whether there are
any diferences in the gene expression among the classes. In particular, the
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null hypothesis is that the distribution of gene expression is the same for all
the classes. The alternative hypothesis is that at least one of the classes has
a distribution of gene expression that is different from the other clases. The
statistic analogous to the t-statistic appropriate for more than 2 classes is the
F-statistic (in obvious notation):

F = ¡Ji(Xi - X)2 + h(X2 - x)2 +... + J¡(X¡ - x)2Jj(I - 1)S2 'P

where 1 ¡ J,2 ¿ ¿( - )2S = Xij - XiP J1 + J2 + . . . + Ji - i. .
i=1 3=1

and 1 ¡ J,X = "" "" Xij
Ji + J2 + .. . + J¡ ~ ~i=1 3=1

are estimators of the within-class vaiabilty and overall mean of the gene
expression. Because the F -statistic is the ratio of between-class to within-
class variabilty of the gene expression, large values of the statistic suggest

observed differences in mean expression among the classes are not due to
chance. The F-statistic is converted into a p-value, which is approximately
correct provided that the within-clas means Xi are approximately normally
distributed. For I = 2, the p-value obtained from the F-statistic is identical
to the p-value obtained from the pooled-vaiance t-statistic.

Analogously to the permutation t-test, one can calculate the p-value for
the permutation F -test: The class labels are randomly permuted so that
J1 of the specimens are temporarily labeled class 1, J2 of the remain-

ing specimens are temporarily labeled class 2, and so on. The numera-
tor of the F -statistic is calculated on this temporary dataset. There are
(Ji + J2 + ... + JK)!j(Ji!J2!... JK!) different permuted datasets possible,

and they are randomly sampled or completely enumerated if there are not too
many of them. Then formulas analogous to (7.2) or (7.3) are used to calcu-
late the p-value. Alternatively, the ran of the x values can be used in the
permutation analys, yieldig the Krukal-Wallis test (Hollander and Wolfe1999). '

The inerence avaable from a small p-vaue from the analyses just de-
scribed is somewhat limited: the distributions of expressions from the differ-
ent clases are not all the same. In many applications, one wil be interested
in which clases are different from which other clases for the gene expres-

sion, not just that there is some difference in the classes. One can follow the
calculation of the p-value from the F-statistic with post hoc comparisons to
assess which classes have diferent exression levels (Snedecor and Cochran,
1989). However, a simpler approach, which also generalizes more easily to the
situation of testing many genes with permutation tests discussed in Section
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7.3, is to compare classes two at a time. For example, with three classes, one
could compare (using the methods previously described for two classes) class
1 versus class 2, class 1 versus class 3, and class 2 versus class 3.

There are two situations in which this pairwise analysis approach may not
be advisable. The first is when there are very small numbers of specimens in
each class. In this situation, there may be more of a possibility of detecting
true differences in expression among the classes using a single test than being
able to detect a difference between any two given classes. This situation may
arise when there are many classes and one is interested in whether there is any
asociation of class and expression at all; for example the classes may represent
many different timepoints (after a manipulation) at which specimens of a cell
line are taken for microarray analysis. The other situation in which pairwise
analysis may not be appropriate is when the classes are naturally ordered, for
example specimens from normal tissue (class 1), benign tumor tissue (class
2), and malignant tumor tissue (class 3). In this situation one might expect
the gene expression, if not the same in the classes, to be ordered, for example
most-less-least or least-more-most..In thi case, a test that takes into account

the ordering of the classes would be more appropriate than either the F-test
or all pairwse tests. The Jonckheere test is a generalization of the Wilcoxon
rank-sum test for thi circumstance (Hollander and Wolfe 1999). Another

approach treats the clas indices (e.g., 1,2,3) as an independent variable in a
regression model; see Section 7.7. '

7.2.4 Paired-Specimen Data

Sometimes the specimens avalable for analysis are paired by some characteris-
tic, with one specimen of each pair belonging to clas 1 and the other specimen
belonging to class 2. If, as is usually the case, the gene expresion of speci-
mens within a pair is expected to be more alike than the gene expression from
specimens in different pairs (except for the class diferences), then the analysis
should incorporate the pairing. Let (Xl1,X21), (X12,X22),..., (XlJ,X2J) be the
J pairs of (log-transformed) expressions, where the first member of each pai
is from class 1, and the second member is from class 2. The analogous statistic
to the two-sample t-statistic is the paired t-statistic

Xl - X2t-
- vi s~/ J '

(7.4)

where
J

s~ = J ~ 1 L((X1j - X2j) - (Xl - X2)) 
2.

j=l
Large absolute vaues of the statistic suggest any observed diferences between
the two classes are not due to chance, and the paied t-statistic can be con-
verted to a p-value to quantify thi. Becaus paired data superficially look
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like unpaired data with sample sizes of J in each class, it is important when
doing the analysis to specify paired data when using a computer program that
accommodates both paired and unpaired data.

The analogous test to the (two-sample) permutation t-test is the permu-
tation paired t-test. The formula for the p-value is identical to (7.2) with the
important exception that the permutations usd respect the pairing of the
data. That is, a permutation of the dataset represents a relabeling of the class
1 and clas 2 labels within each pair of specimens; each pair will always consist

of the same two numbers as in the original dataset, but the labeling of those
two numbers as belonging to class 1 versus class 2 will be permuted. Thus
there are 2J possible permuted datasets that can be randomly sampled. If J
is small, then it is reasnable to evaluate the t-statistic on all the permuted
datasets and use the analogous formula to (7.3) to calculate the p-value:

va # of permutations where it I 2: It 
I p- ue = 2J . (7.5)

The Wilcoxon signed-rank test (Hollander and Wolfe 1999) is another permu-
tation test for paired data, which uses the rank of the differences between

the expression levels from the paired specimens.

Example 7.3 (Differences in pre and postchemotherapy gene expression for
clone AA133129 in the Perou dataset). The data are from cDNA microar-
rays performed on 20 matched pairs of breast cancer specimens obtained be-
fore and after chemotherapy; see Appendix B for detail. As compared to
the reference sample, the geometric mean for the prechemotherapy expression
levels is 0.68, and for the postchemotherapy is 1.37. Thus there is an average
twofold increase in expression associated with the chemotherapy. Figue 7.3
shows for each matched pair the ratio of the postchemotherapy expression to
the prechemotherapy expression. We see that thi ratio is greater than 1 for
19 of the 20 matched pais. Applying the paired t-test formula (7.4) on the
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Fig. 7.3. Ratio of postchemotherapy to prechemotherapy gene expresion for clone

AA133129 for 20 matched pairs of breast cancer specimens. Geometric mea of the
ratio is designated with an arow. (Data are from Peron Dataset.)
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logarithms of the expression data, the p-value obtained is 1.19 x 10-5. The
resulting difference is highly statistically significant with such a small p-value.
However, as mentioned previously, the exact value of such a low p-value may
not be accurate with a parametric test. Using a permutation test with a ran-
dom selection of permutations wil also yield a small p-value, but to get an
accurate estimate with a p-value this small would require an inordinately large
number of random permutations. However, because of the extreme nature of
the pre and post differences for this particular example, one can calculate
(7.5) and find the permutation paired t-test p-value is 4/220 = 3.81 x 10-6
(details not shown).

7.3 Identifying Which Genes Are Differentially
Expressed Between Classes

In Section 7.2 we considered the case of one gene and asked whether it was
differentially expresse between classes. In this section we consider the more
realistic situation in which there are thousands of genes and we wish to identify
which, if any, are differentially expressed between classes. One might consider
applying the methods of Section 7.2 to each gene, one gene at a time, and iden-
tifying all genes with p-values less than 0.05. The problem with this approach
is that under the null hypothesis that no genes are differentially expressed,

one wil stil find on average 5% of the genes with p-values less than .05. For

example, with 10,000 genes, one wil find on average 500 genes that have p-
values less than 0.05, that is, 500 false positives. This is known as a multiple
comparions problem. One approach to this problem would be to repeat the
study with new sets of specimens from each class and focus on only the genes
found to be differentially expressed in the first study. However, using this
approach with p-values less than 0.05, one would stil find 25 (= .05 x 500)

false positives at the end of the second study. The problem of multiple com-
parisons is somewhat mitigated if the investigator has a prespecified set of a
small number of genes to be studied. It is important that thi set of genes be
explicitly stated before the experient is conducted and not chosen on the
basis of the gene expression results. Otherw, al of the genes on the array
must be considered toward the multiple comparisons.

In this section we discuss various approaches to controi.the number of
false positives in one study when examining many genes for dierential ex-
pression. These approaches are of three tyes: one tye controls for no false
positives, another tye allows some, ,but not too many, false positives, and stil

another keeps low the proportion of identifed genes that are false positives.
We consider these approaces in turn.
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7.3.1 Controllng for No False Positives

Most often, one is willng to allow for a small number of false positives as
described in Sections 7.3.2 and 7.3.3. In that case, this section can be viewed
as an introduction to the methods described in those sections.

7.3.1.1 Bonferroni Methods

Suppose one desired an identification procedure such that one could be 95%
confident that all of the genes identified as being differentially expressed were
truly differentially expressed, that is, no false positives. (This is sometimes
referred to as control of the familywíse errr or exerimentwíse error.) A very
simple procedure to do this is as follows. Obtain the p-values for testing class
differences for one gene at a time. If K ge,nes are examined, then multiply each
of the K p-values by K to obtain the Bonferrni-adjusted p-values. Identify
as being signficantly differentially expressed those genes whose Bonferroni-
adjusted p-vaues are less than .05. (To distingush these p-vaues adjusted
for multiple comparisons from those calculated on a single gene with no ad-
justments, we refer to the latter as unadjusted univariate p-values.) Note that
because the Bonferroni-adjustment depends on the number of genes being
examined, it is more diffcult to identif truly differentially expressed genes

when thousands of genes are being examned. (There is a subtlety here in
what constitutes examining a gene. Clearly, if one performs a t-test and cal-
culates a p-vaue for differential expression for a gene, then that gene has been
examined. But what if one eliminates from consideration genes whose data
are mostly missing or whose vaiabilty over all the specimens (regardless of
class) is less than some constant (as described in Section 5.3.3). Ha¡ve these
genes been examed? Although the answer is partly, we would not consider
these genes examined for the purposes of the Bonferroni adjustment because
their differential class expression was not checked.)

Example 7.4 (Genes showing differential exression in prostate cancer versus.
BPH in the Luo Prostate Cancer dataset: Bonferroni adjustment). The data
are from cDNA microarrays performed on 16 prostate cancer specimens and
9 BPH specimens; see Appendi B for details. In Example 7.1, we considered
differential expressions for clone 139331, and obtaied a p-vaue of 0.038 from
a t-test. Thi is one of 6500 clones on the microaray. If we restrict attention
to clones for which there were data from at least 3 prostate cancer specimens
and 3 BPH specimens, thi reduces the number of analyzed clones to 5854.
The Bonferroni-adjusted p-vaue for clone 139331 is p = 0.038 x 5854 :; 1,

so with control for the multiple comparisns there is no evidence that this
gene is differentially expressed. Fort-seven genes have unadjusted p-values
-0 .05/5854 = 8.54 x, 10-6, so their Bonferroni-adjusted p-values are -0 0.05.

Example 7.5 (Differences in pre- and postchemotherapy gene exression in the
Perou dataset: Bonferrni adjustment). The data are from cDNA microarays
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performed on 20 matched pairs of breast cancer specimens obtained before and
after chemotherapy; see Appendix B for details. Genes for which data were
missing from more than half of the 20 paired specimens were eliminated from
consideration. This left 8029 genes for analysis. In Example 7.3, we noted that
the unadjusted univariate p-value for clone AA133129 was 1.19x 10-5 from the
parametric paired t-test. This corresponds to a Bonferroni-adjusted p-value

of 0.096. Although this gene does not have an adjusted p-vaue .( 0.05, there
are 11 genes that do have adjusted p-values .( 0.05 based on the parametric
paired t-test.

There are two problems with the Bonferroni approac. The first is that
in order to be able to decide whether the adjusted p-value is less than a rea-
sonably small number (e.g., 0.05), one has to be able to determine whether
the unadjusted univaiate p-value is less than an extremely small number
(e.g., 0.000005). This is problematic when using either parametric t-tests or
permutation tests: p-vaue~ from parametric t-tests as described in Section
7.2 are not very accurate in this low range unless the data are exactly nor-

mally distributed (an unlikelysituation) or the number of specimens (sample
size) is very large (another unlikely situation). Although the p-values from
the permutation t-tests are valid no matter how small, one canot obtain ex-
tremely small p-values using them with small sample sizes. For example, with
8 specimens in one class and 10 in the other, the smallest possible obtainable
unadjusted p-vaue is 0.00002285 because there are 43,758 possible permuta-
tions of which one yields the most extreme t-statistic. Therefore the smallest
Bonferroni-adjusted p-value obtainable with 10,000 genes is 0.2285 using a

permutation t-test.
The other problem with the Bonferroni approach is that it is conserv-

tive in the sense that other approaches may be able to identify more genes
that are truly differentially expressed. 1:( the expression data from the differ-
ent genes were not correlated, this conservtive behavior would be mial.
However, because one would expect correlation among the expression levels,
the Bonferroni approach can be quite conservtive.

Various simple improvements to make the Bonferroni procedure less con-
servtive are based on stepping through the genes and using dierent adjust-

ments for each one (Holm 1979; Hochberg 1988). Unfortunately, these methods
offer little benefit in the situation here where only a smal percentage of the
genes are differentialy express.

7.3.1.2 Multivaiate Permutation Methods

Fortunately, there are multivariate permutation approaches that avoid the
first problem with the Bonferroni approach and are less conservtive as well.
One such approach fist calculates the unadjused unvaiate p-values for each

gene using a parametric approach, for example, based on a parametric two-
sample t-statistic (7.1). Let Pi,P2,... ,PK be these p-vaues. The specimen
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labels are then permuted many times, with the method of permutation de-
pending on the structure of the experiment. Recall from Section 7.2 that with
an (unpaired) two-class comparison with Ji specimens in one clas and h

specimens in the other, there are eiiiJ2) permutations, whereas for a paired

two-class comparison with J pairs of specimens, there are 2J permutations.
For each permuted dataset, the unadjusted univariate p-values are calculated,

pi, P2, . . . , P'K, and then ordered, PCi) :: P(2) :: . . . :: PCK)' For example, if the
tenth gene produces the third smallest p-value, then P(3) = pio' The p-value
for the kth gene adjusted for multiple comparisons is then given by

1 + # of random permutations where PCi) :: Pkadjusted p-valuek = (7.6)
1 + # of random permutations

or where it is possible to enumerate all permutations,

# of permutations where PCi) :: Pkadjusted p-valuek = (7.7)
# of all possible permutations

The idea behind this approach is that to decide whether an unadjusted p-value
is small enough to be real, one needs a reference distribution of the smallest
p-value of K p-values under the nul hypothesis. This reference distribution
is provided by the permutation distribution of PCi)' A schematic example
of the method to identify differentially expressed genes in order to have 95%
confidence that there are no false positives is given in Figure 7.4. Identification
of such genes is equivalent to finding genes whose adjusted p-values are:: .05.
Note that to identify such genes, one computationally does not actually have
to calculate the adjusted p-vaue for each gene. Operationally, the procedure

reduces to finding the sixh smallest of the 126PCI) (6/126 .( .05 .( 7/126) and
identifying all genes whose univariate p-vaues are less than or equal to thi

value.
Thi approach implicitly uses the correlation structure of the data and

therefore will be less conservtive than the Bonferroni approach. In addition,
inasmuch as it is generating the reference distribution of the quantity of in-
terest directly from the permutations, it does not requie either a normal
distribution asumption or the calculation of extremely smal permutation
p-values. An early application of multivariate permutation methods to gene
expression data is given by Callow et al. (2000).

Example 1.6 (Genes showing differential expression in pre- and postchemother-
apy gene expression in the Perou dataset: multivariate permutation adjust-
ment). This is a continuation of Example 7.5. A sample of 100,000 permuta-
tions from 220 possible permutations was used. Seventeen genes were identi-
fied as havig differential expressions with adjusted p-vaues .( 0.05. (These

17 genes are the 17 genes with the smallest unadjusted unvaate p-values,
and therefore contain the 11 genes identified by the Bonferroni procedure.) A
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cluster analysis of these data did not suggest pre- and postchemotherapy dif-
ferential expression (Perou et aL. 2000), which shows the importance of using
an appropriate statistical method for the goal at hand (Korn et aL. 2002).

The multivariate permutation method can be made slightly less conser-
vative by considering a stepwise modification; see Westfall and Young (1993,
pp. 113-121) for a complete description. For the present application in which
we expect that only a small percentage of a large number of genes will be
identified as differentially expressed, this modification will have only a trivial
effect on the adjusted p-values.

7.3.2 Controllng the Number of False Positives

The criterion of being confident that there are no false positives among the
genes identified as being differentially expressed is generally too stringent.
After all, genes identified through a microarray analysis would tyically be
studied further, resulting in later elimination of the false positives. However,

with no control for the multiple comparisons, one could easily falsely identify
hundreds of genes, a number too large for effcient further study. This suggests
using methods that allow for some, but not too many, false positives. One
such method is to use a cutoff for the unadjusted p-values that is lower than
the conventional 0.05, but not as low as would be implied by the Bonferroni
approach. For example, if one identified all genes with univariate unadjusted
p-values ~ 0.001 as being differentially expressed, then one would have on
average 0.001 x K false positives. With K = 10,000, this would be 10 false
positives. Note that although a p-value of .001 is small, it is not extremely
small so that the problems associated with using the Bonferroni approach to
control for no errors do not arise.

Example 7.7 (Genes showing differential expression in pre- and postchemother-
apy gene expression in the Perou dataset: allowing for some false positives).
This is a continuation of Example 7.6. With 8029 genes analyzed, if we iden-
tify as differentially expressed all genes with unadjusted p-values -: 0.001, we
expect on average 8 false positives. There are 68 genes that are identified using
this criterion.

A potential problem with this simple approach is that although it controls
for the number of false positives on average, for any given analysis the actual
number of false positives may vary around this average. If this is of concern,
the following more complex approach, which is similar to the multivariate
permutation approach used to control for no errors, can be used (Korn et
aL. 2003). Suppose one wanted to be confdent that there were -: U false

positives. Set the adjusted p-value for the genes associated with the U smallest
p-values (P(1),P(2)"" ,P(U)) to be zero. For the other genes, the adjusted p-

value for the kth gene is given by the following formula based on permutations
of the specimen labels as described previously. For each permuted dataset, let
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P(l) :: P(2) :: ... :: P(K) be the ordered unadjusted p-values. The adjusted
p-value for the kth gene (not in the set whose adjusted p-values have already
been set to zero) is then given by

. 1 + # of random permutations where P(UH) :: Pk
adjusted p-valuek =

1 + # of random permutations

or where it is possible to enumerate all permutations,

. # of permutations where P(UH) :: Pk
adjusted p-valuek =

# of all possible permutations

If one wants to be 100 (1 - a) percent confident that there are no more than
U false positives, identify all genes with adjusted p-values :: a (e.g., a =

.05). A schematic example of the method to identify differentially expressed
genes to have 95% confdence that there are :: 10 false positives is given in
Figure 7.5. Slight improvements on the procedure are possible using a stepwise
modification; see Korn et aL. (2003) for details. For the present application in
which we expect that only a small percentage of a large number of genes is
differentially expressed, this modification wil have only a trivial effect on the
adjusted p-values.

Example 7.8 (Genes showing differential expression in pre- and postchemother-
apy gene expression in the Perou dataset: allowing for some false positives
using a multivariate permutation approach). This is a continuation of Exam-
ple 7.7. Allowing for at most two false positi;ves with 95% confdence, the
procedure identifies 28 genes.

7.3.3 Controllng the False Discovery Proportion

Rather than allowing for a certain number of false positives, suppose one
wanted to control, out of those genes that are identified as being differentially
expressed, the proportion that are false positives. We refer to this proportion
as the false discovery proportion. For example, if 95 genes were identified as

differentially expressed, of which 8 were false positives, then the false discovery
proportion would be 0.084 (= 8/95). This subsection discusses two types
of control of the false discovery proportion. First, we consider controllng
the average of the false discovery proportion to be less than some value, for
example, 0.10. (The average false discovery proportion is sometimes called
the false discovery rate.) Secondly, we consider controllng the false discovery
proportion to be less than some value with high confidence.

The methods described previously for controllng the number of false pos-
itives can be modified to control' approximately the average false discovery

proportion. Let P(l) :: P(2) :: . . . :: P(K) be the ordered unadjusted univariate
p-values for the genes. To keep the average false discovery proportion less than
'Y, one identifies as differentially expressed those genes that are associated with
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indices 1, 2,..., D, where D is the largest index satisfyng (p(D)K/D) ~ 'Y.
This procedure, based on the Bonferroni approach, has been studied by Ben-
jamini and Hochberg (1995). (Note that D is the number of identified genes
and p(D)K is an upper bound for the average number of false positives one
would expect to see if one identified all genes with p-values less than P(D)')

Rather than using p(D)K as the estimator of the average number of false
positives when estimating the average false discovery proportion, one could use

the following procedure suggested by the work of Tuher et aL. (2001). Consider
any specific continuous measure of how differentially expressed a gene is, for
example, the unadjusted univariate p-value. For a given cutoff on the measure,
one can identify all genes that satisfy the cut-off, for example, all genes with
unadjusted univariate p-values less than 0.001. One can estimate. the average
number of false positives using the same cutoff by permuting the specimen
labels as previously described and averaging the number of identified genes
over the different permutations. For a given cutoff, the average false discovery
proportion is then estimated as the estimated average number of false positives
divided by the number of genes identifed on the original (unpermuted) data.
One would then choose a cut-off yielding an acceptable average false discovery
proportion, and identify all genes satisfyng that cut-off. The SAM method
uses this procedure with a measure of differential gene expression that uses a
standardized mean difference in gene expression; see 'lsher et aL. (2001) for
details.

Example 7.9 (Genes showing differential expression in pre- and postchemother-
apy gene expression in the Perou dataset: controlling the false discovery pro-
portion). This is a continuation of Example 7-8. With 8029 genes analyzed,
allowing the average false discovery proportion to be 10%, 59 can be iden-
tified using the procedure studied by Benjamini and Hochberg (1995). The
59th smallest p-value is 0.00072 and (8029 x 0.00072)/59 = 0.098 ~ 10%, and
this is the largest p-value that has this property.

In order to keep the false discovery proportion less than 'Y with a certain

confidence, consider the genes in order from their smallest to largest p-value,
that is; gene (k) is the one associated with P(k)' For ¡¡kill / ¡¡(k,-lhll, set

the adjusted significance level of gene (k) to be 0, where the notation ¡¡xli
denotes the greatest integer less than or equal to x. For other values of k,

using the permutations of the specimen labels as previously described, let

. 1 + # of random permutations where PCI(k'YlIH) :: P(k)adjusted p-value(k) = .1 + # of random permutations

or where it is possible to enumerate all permutations,

. # of permutations where PCI(k'YlI+l) :: Pk
adjusted p-value(k) = . .

# of all possible permutations
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To be 100 (1 - a)% confident that the false dicovery proportion is no more
than "I, identify all genes with adjusted p-values ~ a. This procedure, and
slight modifications of it, has been studied by Korn et al. (2003).

Example 1.10 (Genes showing differential expression in pre- and postchemother-
apy gene expression in the Perou dataset: controlling the false discovery pro-
portion using a multivariate permutation approach.). This is a continuation of
Example 7.9. Constraining the fale discovery proportion to be less than 10%
with 95% confidence, we identify 28 genes as diferentially expressed, which
are the same 28 genes we identified in Example 7.8 when we allowed two false
positives.

Whether to control for the number of false positives or to bound the false
discovery proportion depends upon the investigation. For example, if one is
willng to contend with up to 10 false positives in order to identify even only
one or two truly differentially expressed genes, then controllng the number
of false positives to be ~ 10 is appropriate. On the other hand, if one desires
to have a high proportion of the identified genes to be truly diferentially
expressed, then one should bound the false discovery proportion.

7.4 Experiments with Very Few Specimens from Each
Class

As mentioned in Section 7.2, when there are few specimens avalable from
each class the permutation t-tests will not be able to achieve small p-values

and the parametric t-test may not be very effcient at identifng true class
differences. An approach to this problem is to borrow strength from the data
from other genes when examining class differences for a particular gene. One
possible model that does this is

Xijk = Ài+ßk+"Iik+eijk i = 1, . . . , I j = 1, . . . , Ji k = 1, . . . , K, (7.8)

where Xijk is the (log-transformed) gene expression value for gene k for spec-
imen j of class i. (We have in mind here two to five specimens per class.

The special case of one specimen per class is qualitatively different and dis-
cussed in Section 7.6.) The parameters Ài represent the overall effect of class
i, and would be estimated to be close to zero if a normalization procedure
were used that caused the average gene expression value to be about zero

for each array (see Chapter 6). The parameters ßk are overall gene effects,
representing that some genes are expressed more than others regardless of
class. The interaction terms "Iik are the ones of primary interest and represent
class differences for the genes. They are constrained to sum to zero for each
k, so that, for example, "11k + "12k = 0 with I = 2 classes. The error terms are
assumed to have mean zero and to be independent of each other, and to have
some additional distributional constraints. It is these additional constraints
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that allow one to pool inormation across the genes. For example, one might

assume that the error terms are normally distributed with the same variance

across all genes and specimens, or across all genes for specimens within a
class. (The Bayesian methods described below relax this assumption.) With
this tye of assumption, rather than estimating the variabilty for a given

gene only from the small number of observations for that gene from the differ-
ent specimens, thousands of observations (from all the genes) are used. The
within-class variance is estimated separately for each gene, and then these
gene-specific estimators are pooled. Analysis using model (7.8) then proceeds
by estimating the interaction terms for each of the genes and obtaining a uni-

variate p-vaue for each gene that it is differentially expressed. Because the

analysis depends on the normality assumption, control for no false positives is
problematic as described previously because the required accurate estimation
of extremely small p-values wil depend on the normality assumption holding
perfectly. One can control for the average number of fale positives as previ-
ously described, for example, by identifyng all genes with univariate p-values
.( 0.001, or control for the average false discovery proportion. A more serious
problem is the assumption that all genes have the same within-class variance
of the log expression leveL. Although this may be a reasonable assumption for
an analysis involving samples from a cell line in which the variabilty is mostly
due to assay experimental error, it would not be a reasonable assumption for
an analysis involving specimens from different patients in which the variabilty
is mostly due to biological differences.

A different approach to borrowing strength involves Bayesian methods

which relax the assumption that the variances of the genes are equal. Bayesian
methods require specification of prior distributions for the model parameters.
For example, one might assume that the log expression for a given gene and
class are normally distributed with unknown mean and variance parameters.
Then one specifes that these mean parameters come from a specified prior
distribution and that the variance parameters come from a different specified
prior distribution. In the implementation given in Baldi and Long (2001) for
the two-class case, a very broad noninformative prior distribution is used for
the mean parameters. The Baldi and Long approach yields unvariate statistics
for each gene that look like t-statistics except that the within-class vaiabilty
is estimated as a weighted combination of the within-class vaiabilty of the

gene under consideration and an estimate of the withi-class variabilty from

genes with expression levels similar to the gene under consideration; see Baldi
and Long (2001) for details. A Bayesian approach is also described by Broet
et al. (2002).

To avoid the requirement of specifying distributions on the parameters,
Efron et al. (2001) use an empirical Bayes approach (for the two-class case).
First, univariate statistics for each gene are calculated. These statistics look
like t-statistics except that the within-class standard deviation is estimated
as a weighted combination of the within-class standard deviation of the gene
under consideration and the 90th percentile of the within-class standard de-
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viations from all the other genes. The value of this statistic for each gene is
then assumed to be a random selection from a miure of two distributions:
one for genes that are, dierentially expressed, and one from genes that are
not differentially expressed; see also Lee et aL. (2000). Rather than specifyng
these two distributions, the empirical distribution across the genes is used as
an estimate of the mixture distribution, and the permutation distribution of
statistics for comparing specimens within classes is used as an estimate of the
distribution for genes that are not differentially expressed. The end result is
an estimate for each gene óf the probabilty that it is differentially expressed;
see Efron et aL. (2001) for details.

Wright and Simon (2003) developed a frequentist method for borrowing
strength across the genes without assuming that all genes have the same
within-class variance. They assume that the within-class variances for different
genes are random draws for the same distribution. They use the entire dataset
to estimate the, parameters of this distribution. For the comparison of two
classes, they derive a statistic that is very similar to the usual t-statistic
except that the denominator contains an estimate of the standard error of the
difference in class means based on a weighted average of the usual gene-specific
variance estimate and an estimate based on the overall distribution average
variance. They show that this statistic has a t-distribution, but with more
degrees of freedom than the usual t-statistic based solely on the gene-specific
variance. They also generalize this approach to the comparison of more than
two classes and for analyzing the regression models described in Section 7.7.

Whatever statistical method is used to accommodate small numbers of
specimens from each class, the abilty to detect differentially expressed genes
wil be quite limited unless the within-class variabilty of gene expression is

very small. Thus an analysis of a small number of arrays performed on samples
of a cell line before and after an intervention may be informative about the
effect of the intervention on gene expression because of the limited variabilty
of gene expression expected from samples of a cell line. On the other hand,
microarrays performed on a small number of breast cancers from patients who
relapse early and from patients who remain relapse-free would be less likely to
elucidate much about differences in gene expression between those two groups
because of large expected variabilty in gene expression among breast cancers;
see Section 7.6 for further discussion.

7.5 Global Tests of Gene Expression Differences
Between Classes

In Section 7.3, we examined which genes among many were differentially ex-
pressed between classes. In this section we address a less ambitious ques-
tion: Are the average gene expression levels different between the classes?
Obviously, if one identified genes that were differentially expressed using the
methods of Section 7.3, then one would have an affrmative answer to this
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question. But it is possible that one might be able to be confident that there
are expression differences between the classes even though one could not be
confident about which particular genes are differentially expressed. Thi could
happen, for example, if no genes were strongly differentially expressed but
many were modestly differentially expressed. In classical statistical applica-
tions where there are many more observations than variables, this type of
global assessment of class differences would be addressed with a Hotellng's
T2-test (Johnson and Wichern 1999). This test, which has some optimality
properties, requires calculating the inverses of the covariance matrix of the
variables within each of the classes. In the present situation where each gene
is a variable, there are thousands more variables than observations (speci-

mens) and so Hotellng's T2-test cannot be used. We instead consider some

other statistics and a permutation-based approach to calculating the p-value
for a global test.

Let T be a statistic calculated on the data from all the genes which has the
property that its value increases as the difference between the classes becomes
more pronounced. For example, T might be the sum over all the genes of
some measure of differential gene expression (Chung and Fraser 1958) such
as the square of the difference in class mean divided by the pooled within-
class variance estimator for that gene. Alternatively, T can be some other
statistic that reflects class differences, for example, the number of genes that
have unadjusted univariate p-values less than 0.01 based on a t-statistic. The
statistic T is calculated on the original data as well as on datasets from random
permutations of the specimen labels. Denoting the statistics calculated on the
permuted datasets as T*, the p-value is then given by

L 1 + # of random permutations where T* ~ Tp-va ue =
1 + # of random permutations

or where it is possible to enumerate all permutations,

I # of permutations where T* ~ Tp-va ue = .
# of all possible permutations

As with the other permutation tests described previously in this chapter, the
method of permutation of the specimen labels depends on the structure of
the experiment. For example, with an (unpaired) two-class compai'son with
J1 specimens in one class and h specimens in the other, there are eith)

allowable permutations, whereas for a paired two-class comparison with J
pairs of specimens, there are 2J allowable permutations. Although the choice
of T is up to the investigator, it has to be chosen before it is calculated on

the data in order for the p-value to be valid. In other words, one cannot try
a dozen different Ts and choose the one to report that yields the smallest
p-value.

As mentioned at the beginning of this section, the reason for considering
global tests of class differences is that they might have a greater abilty to
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find class differences than the methods described in Section 7.3 which identif
individual genes that distinguish the classes. However, investigators will rarely

be satisfied solely with a global assessment that there are differences between
classes but will want to know which genes are diferentialy expressed. In ad-
dition, frequently there are certain genes that are known a priori to be differ-
entially expressed between the classes, so that a global assessment that classes
differ in expression is not informative. These considerations suggest that ap-
plications in which global assessment will be useful are limited. One possible
application would be to apply a global assessment to the genes remaining af-
ter those identified as being differentially expressed (using the techniques of
Section 7.3) were removed from consideration. A positive global assessment
would then suggest that additional studies with larger sample sizes might
identify additional genes that were differentially expressed. Another possible
application would be when one is focusing on a set of genes involved in a par-
ticular pathway. There may be interest in this situation in a global assessment
of class differences in this set of genes.

7.6 Experiments with a Single Specimen from Each Class

Up to this point in this chapter, we have assumed that multiple specimens are
available from each class for microrarray analysis. These multiple specimens
allow one to estimate the null hypothesis variabilty in mean differences (e.g.,
by permutation distributions) and thereby obtai p-values as described in the
previous sections. In this section we review some methods that have been
proposed for comparing expression profiles when there is only one specimen
from each class. The valid information that can be obtained from such analyses
is, however, generally very limited for the reasons described in Section 3.3.
These methods all have the defect of supporting only a very narrow inference.
That is, the conclusions only apply to the two RNA samples being compared.
There is no way of estimating biological variabilty with only a single specimen
per class and the results may even reflect differences in specimen handling and
RNA extraction rather than biological effects.

Consider single microarrays done on a cell line before and after a manip-
ulation. (With cDNA microarrays, there is the possibilty of using one array
with the test and reference samples corresponding to mRA extractions from
the cell line before and after the manipulation, respectively.) A naive approach
would be to identify genes with a large diference in expression as being dif-
ferentially expressed. But how large is large? Is a threefold difference large
enough to be meaningful? Picking a fold cutoff too small wil result in many
genes being falsely identified as differentially expressed, especially considering
the multiple comparisons involved.

Another unsatisfactory answer would be to identify the 5% of the genes
with the largest differences; this would guarantee 5% of the total number
of genes examined being falsely declared differentialy expressed when there
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are actually no differences. If there is a set of predetermined housekeeping
genes on the array that are not expected to be affected by the manipulation,

then there is the possibilty of using their values as a reference distribution

(Chen et aL. 1997; Chen 2002). In its simplest implementation, the difference
in log-transformed expression values between the experimental conditions is
calculated for each gene. Using this set of differences and normality assump-
tions, genes are identified as differentially expressed. This approach depends
critically upon the normality assumption and the assumption that the house-
keeping genes have the same background variabilty as all of the genes of
interest.

Newton et al. (2001) suggest modeling the expression ratios from a single
cDNA array. A parametric distribution is assumed for the joint density of the
red and green intensities which are assumed to be statistically independent
of each other as well as across spots. The intensities from an array are used
to estimate the unknown parameters, which can then be used to estimate the
ratio for any given spot in an empirical aayes manner. This approach depends
upon the assumption that red and green intensities are independent, which
may be unealistic.

If there are multiple spots for each gene on the microarrays then there are
additional possible approaches, but they also are problematic. One approach
is to treat the expression levels for the multiple spots as if they had come from
different microarrays and then use the methods described previously in this
chapter. To the extent that the array normalization is successfu and provided
that the multiple spots are not in one small area of the array, this is doable.
(Multiple spots of the same gene on an array may be useful for other purposes
such as quality control; see Section 5.3.2.)

With Affetrix microarrays, there is the possibilty of using the multi-
ple probe pairs for each gene to examine specimen differences for that gene.
For a single array from each of two specimens, the Affymetrix software calcu-
lates a p-value for each gene based on a Wilcoxon signed-rank test using the
probe-pair-specific class differences between the perfect match and mismatch
intensities, as well as the differences between the perfect match and back-
ground intensities; see Affetrix (2001a) for details. Although the software

uses these p-values to produce change calls, they should not be interpreted as
p-values associated with hypothesis tests because there is no reason to assume
that the probe-pair differences are statistically independent of each other (a
requirement for the Wilcoxon signed-rank test to yield valid p-values). Instead,
the p-values can be viewed as another way to rank the genes in terms of their
differential expre¡:sion between the specimens, or, stated more precisely, the
differential expression between the two RNA extractions.
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7.7 Regression Model Analysis; Generalizations of Class
Comparison

The methods discussed up to this point in this chapter are for comparing gene
expression between two or more classes. This goal is equivalent to examnig
the association of gene expression with a categorical variable representing
the class membership of the specimen. A generalization of class comparison
using regression models examines whether gene expression is associated with
a continuous variable and/or multiple variables.

To define the models, it is convenient to change notation from that used
previously in this chapter. For a single gene, let Yj be the (log-transformed)
gene expression measurement for specimen j, j = 1, 2, . . . , J. Gene expression
would usually refer to either the normalized log signal for the Affmetrix array
or the normalized log ratio for the two-color array in which the expression

relative to a common, consistently labeled reference is used. We assume that
the genes are being analyzed one at a time and do not use a subscript for
the gene as this simplifies notation. A regression model corresponding to the
two-class comparison discussed in previous sections of this chapter is

Yj = a + ßZj + ej, (7.9)
where Zj is a binary (0,1) variable that is 0 if the jth specimen is in one class
and 1 if it is in the other, and ej is an error term; The regression coeffcient ß
represents the average difference in gene expression between the classes. More
generally, then independent variable Zj in model (7.9) could be a continuous
variable corresponding to a phenotypic characteristic of specimen j. For ex-
ample, Zj might be the systolic blood pressure of the individual from whom
specimen j was obtained. With a continuous Zj, the coeffcient ß represents
the average change in gene expression associated with a one-unit change in

Zj. The null hypothesis that ß = 0 represents no association between gene

expression and the variable z. Assuming that the distribution of error terms
is approximately normal or that the sample size is large, standard parametric
methods can be used to estimate ß and to calculate a test statistic and p-value
associated with the null hypothesis (Draper and Smith 1998). Regardless of
whether the error terms are approximately normally distributed or the sample
size is large, a modification of the permutation methods described in Section
7.2 can be used to obtain a permutation p-value. Rather than permuting the
class labels of the specimens, one permutes the values of the Z among the
specimens. That is, with J specimens, there are J! permutations. When con-
sidering many genes, the regression model can be applied to each of the genes
separately, and then the methods described in Section 7.3 (with J! possible
permutations) can be used to identify which genes are significantly associated
with the variable z.

The model (7.9) can be further generalized to incorporate several pheno-
typic characteristics of the specimen or of the patient contributing the speci-
mens. For example, the model could be
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Yj = a + ßiZj + ß2Wj + ej, (7.10)

where Zj is the first phenotye characteristic for specimen j, and Wj is the
second. Now there are two regression coeffcients ßi and ß2, one regression
coeffcient for each phenotypic characteristic. In this multivariate model, the
value of ßi represents the association between phenotype 1 and the gene ex-
pression for fixed values of the other phenotypic variable. This type of model is
useful for exploring the relation of gene expression to a variable while control-
ling for the effect of a confounding variable that also affects gene expression.
For example, if Zj is the cholesterol level and Wj is the body-mass-index of the
individual from whom the jth specimen was obtained, then ßi in (7.10) mea-
sures the association of gene expression and cholesterol level controlling for
differences in body-mass-index. As another example, one may want to know
whether gene expression is infuenced by the presence of a BRCAI mutation
(Zj) if one controls for the effect of estrogen receptor status (Wj). Because
BRCAI status is correlated with estrogen receptor (ER) status and gene ex-
pression is associated with ER status, thi type of multivariate regression may
be useful for determining whether the association between gene expression and
BRCAI is independent of the effect of ER status.

Multivariate regression models such as (7.10) can also be useful for inves-
tigating the association of two phenotypes with gene expression even if those
phenotypes are not correlated with each other. If phenotype 2 is strongly as-
sociated with gene expression, the multivariate regression model can be more
effective in studying the association of phenotype 1 and gene expression than
just a univariate analysis that ignores the effect of phenotype 2.

Multivariate regression models can incorporate more than two phenotypic
characteristics, by having more than two independent variables on the right
side of (7.10). However, as a rule of thumb, the total number of independent
variables should be less than the sample size divided by 10 or 20 (Harrell 2001,
p.61).

7.8 Evaluating Associations of Gene Expression to
Survival

In some studies it is important to identify the genes associated with survivaL.

Thi type of data is frequently acquired in cliiucal trials or long-term obser-
vational studies, in which some observed individuals have not experienced the
event (e.g., death) at the time of the analysis (Le., are censored). Regression-

type models, for example, the proportional hazards regression model, can be

used to measure the association between the independent variables and the
dependent variable survivaL. (Strictly speaking, the dependent "variable" is
the hazard of experiencing the event at various timepoints. The hazard at any
timepoint is the instantaneous rate of experiencing the event right after that
time point given that the event has not occurred up until that timepoint. This
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hazard is what is modeled as a function of the independent variables.) The haz-
ard function is not assumed constant over time. For the proportional hazards
model, the logarithm of the ratio of hazards for any two' individuals is as-
sumed to be proportional to the independent variable. In the present context,
the independent variable would be the gene expression. Standard statistical
methods can be used to estimate the association and calculate a test statistic
and ¡rvalue associated with the null hypothesis that the gene expression and
survival times are unassociated (Marubini and Valsecchi 1995). A unvariate
proportional hazards model can be fit for evaluating the association of each
gene to survival. Any of the multiple comparison methods described in Section
7.3 can be applied, using the ¡rvalues from the proportional hazards modeL.

The permutation tests are based on permuting the survival times associated
with the J expression profiles; again there are J! possible permutations.

The proportional hazards regression model can be extended to include
additional independent variables such as the stage of disease of the patients
from whom the specimens were taken. The purpose of the analysis might be
to identify genes that are predictive of survival independently of the stan-

dard disease staging system. The regression coeffcients in these models (and
more complex models) and ¡rvalues associated with these coeffcients being
zero can again be estimated by standard technques (Marubini and Valsecchi
1995). When considering many genes, the models can be applied to one gene
at a time. Some control for the multiple comparisons will usually be advisable

to lessen the number of false discoveries, for example, selecting genes with
unadjusted ¡rvalues .: .001 as described in section 7.3. With multiple inde-
pendent variables, however, it is not obvious how to adapt the permutation
methods of Sections 7.2 and 7.3; this is an area of active research.

7.9 Models for Nonreference Designs on Dual-Label
Arrays

Most of the analysis methods described in this chapter are applicable to ei-
ther single-label arrays (eg., Afymetrix GeneChipsTM) or to dual-label arrays
in which a common RNA reference specimen is consistently labeled with the
same color label on each array (common reference design). Other designs, such
as the loop and balanced block designs described in Chapter 3, are possible.
As noted in Chapter 3, the balanced block design, ilustrated in Figure 3.3, is
sometimes very effcient for comparing two classes. Special methods are nec-
essary for the analysis of such designs, however, because these designs involve
the comparison of expression levels for specimens labeled with different dyes.
With Affymetrix arrays, this obviously does not occur because only a single
label is used. With two-color arrays utilzing the common reference design
it also generally does not occur because all of the specimens of interest are
labeled with the same color, the other color is used for the common reference.
Although there may be some differential dye incorporation or differential dye
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detection effects not removed by normalization, they do not bias the compar-
ison of classes using common reference designs because they affect all classes
equally. This is not true of other tyes of designs for two-color arrays. Even

for reference designs it is sometimes of secondary interest to compare gene
expression in the experimental specimens to gene expression in the common
reference. Such comparisons can be distorted by dye bias not removed by nor-
malization and hence the methods presented in this section are useful for such
comparisons.

In presenting methods for the comparison of classes with two-color arrays
we have utilzed the term "arrays" synonymously with "specimens" with the
log ratio for a gene on an array being a measure of the expression of that
gene in the experimental sample associated with the array. With designs that
do not utilze common reference designs, this correspondence no longer exists
and the analysis must be based on channel-specifc intensities rather than log
ratios. Models of this type have been studied by Kerr and Churchill (2001a),
Wolfinger et al. (2001), Dobbin and Simon, (2002) and Dobbin et al. (2003).
We utilze one of the models of Dobbin and Simon (2002) because it incorpo-
rates the effects of variabilty among specimens from individuals in the same
class whereas many of the other models are designed to simply compare two
RNA specimens or ignore the substantial variabilty among specimens from
the same class. Dobbin et al. (2003) modeled background-subtracted channel-
specific intensities. They applied this model after normalizing the intensities
for each array. Their model is:

Yadejg = Gg + AGag + CGeg + FGjg + DGdg + eadcfg' (7.11)

Yadefg denotes the single-channel log intensity for gene 9 for a sample from
individual f of class c, labeled with dye d, and hybridized on array a. Although
we include the subscript 9 for gene, a model is fit separately for each gene.

The class-by-gene interactions CCeg are the terms of interest. The array-
by-gene interactions ACag are the "spot effects." These reflect the fact that
the intensity of corresponding spots on two different arrays may differ because
of differences in the sizes of the spots and the distribution of the samples
on the two arrays. These spot effects infuence both samples similarly. The
main advantage of a common reference design is that these spot effects are
eliminated by the calculation of the log ratios used to analyze such designs.

The balanced block design and loop design discussed in Section 3.6 also control
the spot effects. Spot effects can be quite large for cDNA arrays. Use of designs
for cDNA arrays that require the spot effects to be incorporated in the error
term is not recommended as it can substantially decrease the statistical power
for detecting differences in gene expression among classes.

The sample-by-gene interactions FC fg represent the variabilty among in-
dividuals of the same class with regard to expression of the gene. Without
the FC jg terms one would be ignoring the distinction between sampling of
individuals and subsampling of RNA for a single individuaL. The dye-by-gene
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interactions DGdg represent the gene-specific dye biases that may remain af-
ter normalization. Although such effects may exist for many genes, they are
usually small. As discussed in Chapter 3, however, if there is interest in com-
paring experimental samples to a common reference, the comparison must be
adjusted with regard to dye-by-gene interactions. The model (7.11) provides

an approach to producing such adjusted estimates.
These models are analyzed separately for each gene on the array using

standard analysis of variance or mied model statistical software. The objec-
tive is to determine which genes show statistically significant gene-by-class
interactions. In order to control for multiple comparisons, statistical signi-

cance at the p .( 0.001 level should be required or some other multiple test-
ing procedure implemented for controllng the number or percentage of false
discoveries. Some investigators have suggested fitting one large analysis of
variance model that combines all genes and to assume that the residual error
terms have a variance that is the same for all genes, but in our experience this
is not a good assumption. It is also computationally much simpler to fit the
models separately for each gene.
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Class Prediction

8.1 Introduction

In this chapter, we address statistical methods for class prediction and prog-
nostic prediction using microarray data. For class prediction, the goal is to
develop a multivariate class predictor for accurately predicting class member-
ship (phenotype) of a new individual (specimen). Similar to class comparison
studies (Chapter 7), it is required that supplemental class information be

available for each individual in the dataset from which the predictor will be
built. For example, breast tissue specimens may be classified as either nor-
mal or cancer. In some cases, prognostic prediction is encompassed by class
prediction. For example, to predict which patients will respond to a specified
treatment we can consider two classes consisting of responders and nonre-
sponders, respectively. There are other situations where prognostic prediction
based on gene expression profiles is not encompassed by the class prediction
paradigm. For example, in many cases outcome is measured by survival time
or some other time-to-event measurement, and it is desired to develop a prog-
nostic index based on gene expression measurements that will be related to
that outcome. Such predictors can aid in many types of clinical management
decisions such as risk assessment, diagnostic testing, prognostic stratification
for clinical trials, and treatment selection. Sometimes prognostic prediction
problems are converted to class prediction problems by creating prognostic
classes defined by applying cutpoints to the outcome variable, for example,
short-term (~ 5 years) survivors versus long-term (:; 5 years) survivors.

There is a large literature of methods for developing multivariate predictors
of class membership. These methods include logistic regression (Cox 1970), lin-
ear and quadratic discriminant analysis (Johnson and Wichern 1999), nearest-
neighbor classifiers (Hastie et aL. 2001), decision trees (Breiman et aL. 1984),
neural networks (Ripley 1996), support-vector machines (Vapnik 1998), and
many others. Unfortunately, none of these methods was developed in the con-
text of studies in which the number of candidate predictors is at least one
order of magnitude larger than the number of cases. Sophisticated methods
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that work well to uncover structure and provide accurate predictors when the
number of cases is large relative to the number of candidate predictors often
work very poorly in the opposite situation when the number of cases is small
relative to the number of predictors. Futhermore, in this latter situation, if
a predictor's accuracy is assessed by testing it on the same data from which
it was derived, it will virtually always show e~cellent prediction accuracy, but
it wil perform poorly 'on new data. Thi phenomenon is known as over-fitting,
and it occurs because too many parameters are being fit to too few datapoints,
resulting in fitting to random noise in the data. In Section 8.4 we discuss how
to obtain more accurate estimates of predictor performance.

Some investigators have tried to justif the use of cluster analysis for

class prediction as a way to avoid the overfitting problem because the class
information plays no role in deriving the predictor. However, ignoring the
class information that is avalable will often come at great expense to the
performance of the predictor. Genes that distinguish classes may be few in
number and their infuence may be lost in a cluster analysis that is based on
a distance metric utilzing information from the full set of analyzed genes.

In the following sections, we describe several class prediction methods and
apply them to some microarray data examples. To simplify the discussion, we
focus on the development of predictors for classifyng specimens into one of
two classes, for example, classifying breast tissue specimens as normal versus
cancer. We suppose that for each of J specimens there is a K -dimensional vec-
tor of gene expression measurements and an indicator of class membership. Let
Xj = (Xjl, Xj2,.. ., XjK) denote the K-gene expression profile for specimen j.
For Affetrix GeneChips ™ these expression measurements will usually be
log signal values and for two-color arrays based on common reference designs
they wil usually be log ratios (see Section 3.6.1). Let Yj be the class label for
specimen j. We assume that the expression data have already been appropri-
ately filtered and normalized (Chapters 5 and 6). Following presentation of
the various methods for building predictors in Sections 8.2 and 8.3, we dis-
cuss methods for obtaining accurate estimates of prediction accuracy and for
assessing "statistical significance" of a predictor in Section 8.4. In Section 8.5
we compare the methods and give a worked example. Finally, we discuss the
extension of class prediction methods to developing a gene expression-based
prognostic index for predicting surviva outcome in Section 8.6.

Some parts of Section 8.3 contain more mathematical notation than other
sections of this book. This is done in order to show the similarities among
several of the commonly used class prediction methods. This section should be
understandable to the nonmathematical reader, however, even if the formulas
are skipped.
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8.2 Feature Selection

Feature selection is a common first step when developing a class predictor
based on microarray data. It is a key step; often, selection of the important
genes for inclusion in the model is more important than the specific way that
their infuence is modeled. Most effective predictive models require a feature
selection step.

It is generally reasonable to assume that only some subset of the many
measured genes contribute useful information for ditinguishing the classes.
One approach to feature selection, therefore, is to select genes based on their
statistical significance in univariate tests of differences between the classes. For
this purpose, t-tests or Wilcoxon rank-sum tests described in Chapter 7 can
be used to assess univariate statistical significance. The most statistically sig-
nificant genes are selected for inclusion in the multivariate modeL. Increasing
the stringency of the significance threshold results in a simpler model con-
taining fewer genes, but risks missing important genes. It may require larger
sample sizes to identify the most important genes than to develop a model
that accurately predicts based on inclusion of a larger number of genes. One
strategy is to experiment with significance thresholds ranging from 0.01 to

0.0001 and determines the cross-validated misclassification rate (see Section
8.4.2) for the resulting models.

Missing data are a common occurrence in gene expression profiling studies
and data imputation is sometimes necessary (see Chapter 5). For class pre-
diction analyses, imputation should generally not be performed before feature
selection. For example, imputation is unnecessary prior to a two-sample t-test
for selecting differentially expressed genes. The t-statistic for a given gene can
simply be computed based on the available data. Imputation prior to feature
selection likely adds superfluous noise to the analysis and may even bias the
estimate of prediction accuracy.

An alternative to selecting individual genes is to utilze the first several
principal components (Section 9.3) of the genes (Khan et al. 2001; West et al.
2001). This would greatly reduce the number of predictors but the principal
components are not necessarily good predictors of class membership. Partial
least squares analysis is another method for identifying a small number of
linear combinations of individual gene expression vectors for use in the pre-
dictive model (Nguyen et al. 2002). Partial least squares analysis selects linear
combinations of the genes that maximize the covariance with the class label
variable. These types of dimension reduction methods have disadvantages,
however. For example, linear combinations of thousands of genes are diffcult
to interpret and using linear combinations as predictors does not reduce the
number of genes that need to be measured in subsequent studies. Also, these
methods cannot easily handle missing data, necessitating a data imputation
step prior to feature selection (see Chapter 5).
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8.3 Class Prediction Methods

Here we provide an overview of some of the many methods that have been
used for class prediction using gene expression profies. Many class prediction
problems involve two groups or can be reduced to a two-group classification by
combining similar groups or by performing a sequence of two-group classifica-
tions. Thus the methods are described in the contex of two-group prediction.

8.3.1 Nomenclature

We assume each of J specimens in the training set has a gene expression profile
containing expression intensity measurements for the G genes selected dur-
ing the feature selection step. Let xj = (Xjl, Xj2,. . . , Xjc)' represent the gene
expression profile for specimen j, and let Yj be the class label for specimen
j. (To simplif presentation of models, we assume that the feature variables
correspond to individual genes, but in general, the feature values could be
composites of gene values, for example, principal components or average ex-
pression values for gene clusters. The feature variables should not, however,
be computed based on the class labels.) The class labels are either 1 or 2
depending on the class of the specimen. A parenthetical superscript denotes
a class-specific parameter and a bar above a parameter denotes the arith-
metic mean of the parameter. For example, the mean expression profie for
training-set specimens with Y = 1 is denoted by x(1) .

8.3.2 Discriminant Analysis

The expression profile of a specimen may contain many genes even if the ex-
pression matrix is limited to contain only those genes that are individually

differentially expressed between classes. Trying to define complex prediction
regions in this high-dimensional space may require many specimens. An alter-
native is to create a function that summarizes the high-dimensional inorma-
tion on a one-dimensional scale and base prediction to one of the two classes
on the summary measure. Discriminant analysis is a method for doing this
(see Figure 8.1).

Fisher (1936) developed a method for the solution of the two-group clas-
sification problem known as linear discriminant analysis. In Fisher linear dis-
criminant analysis, the gene expression profie Xj of a specimen is reduced to
a single scalar value by computing a linear combination of its elements:

Zj = U1Xjl + U2Xj2 + .. . + UKXjC, (8.1)

where the U values are the weights for the specific genes in the linear combi-
nation. The same weights are used for all specimens. The linear combination
can be written in matrix notation as Zj = U'Xj, where u' = (Ul, U2,..., uc).
The objective of Fisher linear discriminant analysis is to find a set of weights
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Fig. 8.1. Discriminant analysis for prediction involving two classes. The multidi-

mensional gene expression profile of each specimen is sumarized by a linear combi-
nation of the individual expression measurements that compose the profile (weights
are chosen for the linear combination such that maximal separation between the
two classes is obtained). The sumary measures (known as discriminant values) for
specimens in class lor class 2 are indicated on the graph by a 1 or 2, respectively.
The classification threshold is based on the within-class distributions of the discrim-
inant vaues (here the midpoint of the class means is used as in linear discriminant
analysis). A new specimen is classified by computing its discriminant value and de-
termining on what side of the threshold it falls (assigned to class 1 if greater than
the threshold and to class 2 if less than the threshold).

(i.e., the elements of the weight vector u) so that the linear combination of
gene expressions maxmally discriminates between profies of the two classes
in the training set.

The criterion for maximal discrimination, as Fisher defined it, is to find
the linear combination that has the largest absolute difference in means be-

tween the two classes, relative to the within-class variabilty. Thus the target
sumary measure is one that possesses the largest difference, on average,
between specimens of class 1 and class 2 when standardized by the natural
variation in the summary measure. The value of u that satisfies this maxmal
discrimination criterion is

u' = d'S-I, (8.2)
where d = x(l) - x(2) is a vector containing the average differences in expres-
sion of all selected genes between the two classes and S denotes the pooled
within-class covariance matrix of the expression levels of the genes. A covari-
ance matrix is a multivariate generalization of a variance. In fact, the diagonal
elements of S are simply the pooled within-class sample variances of the genes.
So the value of the summary measure (also known as the discriminant func-
tion) for specimen j is

d'S-1Zj =; Xj'
Classification of a new specimen with expression profie x is a matter of

computing the value of the discriminant function for the new specimen and
determining to which class mean it is closer. The new specimen is assigned to
class 1 if z = d'S-Ix is closer to d'S-lx(1) than it is to d'S-lx(2); otherwise,
it is assigned to class 2. Equivalently, consider the statistic

(8.3)
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1
W = d'S-l (x - '2 (x(l) + x(2))) (8.4)

and assign the new specimen to class 1 if W ? 0 and to class 2 otherwise.
Fisher linear discriminant analysis is a nonparametric method: no distri-

butional assumptions are made concerning the gene expression profiles of the
two classes. In order to apply Fisher linear discriminant analysis, however,

one must compute S, the covariance matrix of the genes, and then invert it.
Thi means that the number of genes G passing the feature selection stage
must be less than the number of specimens available, or else the covariance
matrix wil not be invertible. Even if G is less than the number of specimens
J, there are G( G + 1) /2 varÌances and covariances to be estimated using the J
specimens in addition to the G expression means in each class. Hence Fisher
linear discriminant analysis requires estimation of a large number of parame-
ters for microarray studies. If there are only 20 genes selected for inclusion in
the model (G = 20), then there are 420 variances and covariances to estimate
in addition to the 40 means.

Other forms of discriminant analysis exist and may be used for class predic-
tion in place of Fisher linear discriminant analysis. Typically, the two classes
of gene expression profiles are assumed to have distinct multivariate Gaussian
densities with a mean vector ¡i(l) in class 1 and mean vector ¡i(2) in class
2. Similarly, there is a covariance matrix 17(1) for class 1 and a covariance
matrix 17(2) for class 2. For each class, the mean vector and covariance ma-
trix must be estimated from the training set: the sample estimates x(k) and /
S(k) are used in place of ¡i(k) and E(k), respectively. Using the parameter
estimates, the multivariate Gaussian probabilty density of the observation to
be classified is computed for each class. The specimen is classified into that
class for which the probabilty density is largest. The data in the training set
are utilzed only for computing the estimates of the class-specific mean vec-

tors and covariance matrices. This method is known as quadratic discriminant
analysis (Johnson and Wichern, 1999). If the covariance matrices in the two
classes are assumed to be equal, then the method is equivalent to Fisher linear
discriminant analysis.

Two other special cases of discriminant analysis are worthy of attention;
both assume that class densities have diagonal covariance matrices (Le., each
pair of genes has correlation equal to zero). Although the assumption of di-
agonal covariance matrices is surely biologically incorrect (gene networks and
coregulation are well-established principles of genetics), the assumption leads
to simplified analyses and, as discussed in Section 8.3.7, may result in bet-
ter prediction accuracy than standard discriminant rules. In one case, the 

two

classes have distinct covariance matrices and the method is known as diagonal
quadratic discriminant analysis. In the other case, known as diagonal linear
discriminant analysis, not only are gene covariances assumed to be zero, the
variances are assumed to be the same for the two classes. The new sample,
represented by a vector x of expression measurements, is assigned to class 1
if
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G l( . - _(1))2J G l( . - _(2))2J" Xi Xi ~ " Xi Xi
~ S~ - ~ S2i=l i i=l i (8.5)

and otherwise it is assigned to class 2. In thi formula, sl denotes the pooled
estimate of the within-class variance for gene i, x?) and x?) denote the mean
expression of gene i in classes 1 and 2, respectively, and Xi denotes the expres-
sion for gene i in the sample to be classified. This diagonal linear discriminant
rule can be based on the statistic W as was done for Fisher linear discriminant
analysis in Equation (8.4). For diagonal linear discrimination,

W = d'S-l (x - ~ (x(l) + x(2)) )

G (_(1) _ _(2))

_ L Xi Xi (. _ ! (_(1) + -'(2)))- 2 Xi X. X.s. 2 i ti=l i (8.6)

and the specimen is assigned to class 1 if W ? 0 and to class 2 otherwise.
Diagonal linear discriminant analysis requires only the estimation of G vari-
ances in addition to the 2G means. Hence for G = 20, only 20 variances must
be estimated instead of 420 elements of the covariance matrix as in Fisher's
linear discriminant analysis.

8.3.3 Variants of Diagonal Linear Discriminant Analysis

8.3.3.1 Golub's Weighted Vote Method

Golub et aL. (1999) developed a prediction method in which a fied number ns
of genes informative in the two-class distinction in a training set cast weighted
votes for classification of new specimens. Informative genes are defined as those
most highly correlated with the class distinction, where the correlation of gene
j with the class label is defined by

_(1) _(2)Xj - Xj
Pj = (1) (2) .

Sj + Sj
(8.7)

Pj is similar in form to the two-sample t-statistic (though the denominator of
Pj is not an appropriate form for the standard error of the mean difference).
An equal number of genes with high expression in class 1 relative to class 2
and low expression in class 1 relative to class 2 comprise the inormative gene
set. This is accomplished by including the ns/2 genes with largest values of
Pj and the ns/2 genes with largest values of -Pj in the informative gene set.
Each of the genes then casts a "weighted vote" for class prediction, with the
weighted vote of gene i equal to
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Vi = g (Xi - ~ (X~1) + X~2)) )

(_(1) _(2))
_ Xi - Xi ( 1 (_(1) _(2)))

- (1) (2) Xi - 2' Xi + Xi ,Si + si

where a positive value of Vi indicates a vote for class 1 and a negative value
indicates a vote for class 2. The sum of all votes is

(8.8)

n. _(1) _(2) (' 1 )_ "" Xi - Xi (_(1) _(2))
V - ~ S?) + S?) Xi - 2' Xi + Xi

with prediction to class 1 when V ? 0 and to class 2 otherwise. Comparison
to Equation (8.6) indicates that Golub's weighted vote method is a variant
of the diagonal linear discriminant rule, with the sample pooled variance sl
(the denominator in the sum) replaced by the sum of the two within-class
standard errors S~1) + S~2) .

(8.9)

8.3.3.2 Compound Covariate Predictor

Tukey (1993) proposed the use of compound covariates in clinical trials for
which for which there may be several dozen covaiates and a few hundred
patients. A compound covariate is a linear combination of the basic covariates
being studied, with each covariate having its own coeffcient or weight in the
linear combination. ,The microarray setting is far more extreme than what
Tukey envisioned, typically thousands of covariates and a few to several dozen
patients. Nonetheless, the compound covariate method has proven to be useful
for class prediction using microarray data when applied to genes differentially
expressed in the two-class comparison (Hedenfalk et a1.200l; Radmacher et
aL. 2002).

Selection of differentially expressed genes is based on a two-sample t-test of
gene expression measurements for the two classes of specimens in the training
set. Either a predetermined number of genes with largest t-statistics (in abso-
lute value) form the set of differentially expressed genes, or a variable number
of genes significant in the t-test at a predetermined significance level form the
set. With the differentially expressed genes determined, a single compound
covariate is formed with the two-sample t-statistic of each differentially ex-
pressed gene serving as its weight in the compound covariate. Thus the value
of the compound covariate for specimen j is

G

Cj =: L tiXji,

i=1
(8.10)

where ti is the t-statistic for the two group comparison with respect to gene i,
Xji is the log expression measurement in specimen j for gene i, and the sum
is over all selected genes.
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Once the value of the compound covariate is computed for each specimen
in the training set, a classification threshold Ct is calculated:

-(1) + -(2)

C _ c Ct - 2 ' (8.11)

where e(1) and e(2) are the mean values of the compound covariate for speci-
mens of class 1 and class 2 in the training set, respectively. In other words, Ct
is the midpoint of the means of the two classes. A new specimen is predicted
to be of class 1 if its compound covariate is closer to e(1) and to be of class 2
if its value is closer to e(2).

When there are no missing data, compound covariate prediction can be
performed based on the statistic

_(1) _(2) (1 )
C = "" Xi - Xi . _ _ (_(1) + _(2))~ Xi 2 xi xi ,

i Si
(8.12)

where (xP) - X~2))/ Si is the form of the two-sample t-statistic (ignoring a
factor in the denominator related to sample size that is constant with respect
to i and, hence, does not affect prediction). Prediction is to class 1 if C ? 0
and class 2 otherwise. Comparison of Equation (8.12) to Equation (8.6) indi-
cates that compound covariate prediction is another variant of diagonal 

linear

discriminant analysis with the sample pooled variance s~ (the denominator in
Equation (8.6)) replaced by its square root Si' The difference in Wand C in-
dicates that diagonal linear discriminant analysis gives higher weight to genes
with smaller within-class variance estimates given the same fold diference.

8.3.4 Nearest Neighbor Classification

Nearest neighbor rules are simple nonparametric methods for classifyng spec-
imens that can capture nonlinearities in the true boundary between classes
when the number of specimens is suffcient. Because the method does not in-
volve estimation of numerous parameters, it often is an effective method even
when the number of specimens is relatively small. A new specimen is classified
based on the class labels of specimens in the training set to which its gene
expression profile is most similar, or nearest (see Figure 8.2). A distance func-
tion or similarity measure is necessary for implementing the nearest neighbor
method; common choices are Euclidean distance, Mahalanobis distance, and
one minus the correlation coeffcient. These distance measures are computed
only with regard to the genes selected during the feature selection step.

The k-nearest neighbor method for classifyng a specimen with unkown
class label and expression profile vector x is as follows. Choose a distance
function and use it to compute the distance between x and the gene expression
profile of every specimen in the training set. Identify the k profies in the

training set closest to x. The class of x is predicted to be the majority class
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Fig. 8.2. Nearest neighbor analysis for prediction involving two classes. Specimens

are represented in two-dimensional space based on expression of two selected genes
of the profile (Le., gene A and gene B). A 1 or 2 indicates specimens in class 1 or
class 2, respectively. A new specimen to be classified is indicated by a 7. For k = 1,
the label of the nearest neighbor (using Euclidean distance) of the new specimen is
1, and this is the predicted class of the new specimen. For k = 3, the three nearest
neighbors of the new specimen have labels of 1, 2, and 2; a simple majority rule
results in the prediction of 2. In general, nearest neighbor classification is performed
in more than two dimensions (Le., using more than two genes).

label (or plurality class label ifthere are more than two classes) of its k nearest
neighbors.

The number of neighbors k is usually chosen a priori. For small sample
sizes, smaller values of k such as 1 or 3 are most appropriate. Li et al. (2001)
were able to successfully classify colon tissue samples as normal or cancerous
using a nearest neighbor rule with k = 3. Optimized values of k were generally

less than 7 in the studies of Dudoit et al. (2002). Using an odd-valued k ensures
no ties in two-class prediction.

8.3.5 Classification Trees

Classification trees have been used for classification of specimens using mi-
croarray gene expression profies (Zhang et aL. 2001; Dudoit et aL. 2002).
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Breiman et al. (1984) and Hastie et aL. (2001) give comprehensive descrip-

tions of classification tree methodology. Construction of a classification tree
or, more specifically, a binary treestructured classifer begins with a split of
the gene expression profiles into two subsets (or nodes) based on the expres-
sion level of one of the genes; that is, one subset consists of those samples with
expression level of the selected gene above a selected threshold value, and the
other subset consists of the remaining samples. Ideally, the split is chosen to
produce two subsets that are each homogeneous with regard to class labels.
That is, one of the subsets will consist of specimens of class 1 and the other of
specimens in class 2. Usually there will be no gene and threshold value that
produces such an ideal split, and the split will be selected based on optimizing
a function that measures class label homogeneity of the resulting two subsets.

After finding the gene and threshold value that optimally splits the set
of samples of the training set into two subsets, the process is then repeated
independently for each of the two resultant subsets. That is, for each of the
subsets, the gene and threshold value that best separates the samples in that
subset are determined. This process of binary splitting of subsets results in a
tree structure. Each node of the tree represents a set of samples. Each node
is split based on a gene and a threshold expression leveL.

The tree is grown in a hierarchical fashion until some stopping criterion
is attained. A variety of stopping criteria are in use. For example, splitting

of a node may cease if the samples represented by the node are suffciently
homogeneous with regard to class labels or if there are fewer than a specified
number of samples in the node. The root node at the top of the tree contains
all of the samples. Terminal nodes in the tree are assigned to a class. The
class assigned to a terminal node may be simply the class most prevalent in
the samples associated with that node. This majority rule may be modified to
take into consideration different a priori probabilties for class membership or
to take into account different costs of misclassifcation. For example, it may
be more serious to misclassify a sample as class 2 when it is really class 1,
than vice versa. The rule for assignng a class to each terminal node is the
basis for the classification of new samples. Classification of a new specimen is
then a simple matter determining in which terminal node the new specimen
would be contained. The class of the unknown specimen is predicted to be the
class assigned to that terminal node.

A simple classification tree is shown in Figure 8.3. Node 1 contains the
entire dataset (20 gene expression profies, 10 from each class). The first split
is based on expression of gene A: profiles with a log ratio less than or equal to
1.4 form node 2 and the other profies form node 3. Node 2 requires further
partitioning due to the heterogeneity of specimens in this subset. Node 3,

however, is suffciently homogeneous to be a terminal node, assigned the pre-
diction of class 1. A different gene (gene B) is used for the split of node 2 into
daughter nodes: one of these (node 4) only contains specimens of class 2 and
is thus a terminal node with a prediction of class 2, whereas the other (node
5) requires another split to reach satisfactory levels of purity for prediction.
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Fig. 8.3. A classification tree for prediction involving two classes: circles represent

internal nodes that are futher split; squares represent terminal nodes that are as-

signed a class prediction (indicated inside each square). The name under an internal
node is the gene used for splitting that node; the numbers beside the arrows indicate
the threshold value used for the split.

Perhaps the most important aspect of tree construction is the decision of
when to stop splitting nodes. It is, of course, possible to keep making splits
unti all terminal nodes are completely pure, contaiing only specimens of one
class. However, doing so is not recommended: continuing to split until abso-
lute purity is attained likely results in overfitting the classification tree to the

training set data. Trees created in such a fashion will have much poorer clas-
sification accuracy when applied to new specimens. To address this problem,
Breiman et aL. (1984) considered pruned versions of overgrown trees, select-
ing the best tree by a cross-validation approach. Another approach to lessen
overfitting is to aggregate classification trees constructed from perturbed ver-
sions of the training set; this has been shown to lead to gains in classification
accuracy (Breiman 1996, 1998).

8.3.6 Support Vector Machines

A support vector machine is a classification algorithm. Linear support vector
machines attempt to find a linear combination of the features that best sepa-
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rates the specimens into two groups based on their class labels. When perfect
separation is not possible, the optimal linear combination is determined by a
criterion to minimize the number of rnsclasifications. For microarray data,
linear support vector machie classification is based on a linear combination
of log gene expression values. In this way it is similar to linear discriminant
analysis, but the method of determining the weights of the linear combination
is different. There are also many types of nonlinear support vector machines
(Vapnik 1998), but to date there is little evidence that they are more effec-
tive than linear versions for gene expression data where the dimensionality
of the data is very large relative to the number of samples. Support vector
machines have alo been used for the categorization of genes into fuctional
classes (Brown 2000) and for the classification of ovarian tissue specimens as
normal or cancerous (Furey 2000).

8.3.7 Comparison of Methods

Published studies of new prediction methods applied to microarray data are
often of the proof-of-principle variety, using relatively easy classification prob-
lems (e.g., normal tissue versus cancer) and not making a comparison to es-
tablished prediction methods. The lack of comparison to standard prediction
methods is problematic: it is more interesting to see if the nèw method has
an advantage over established methods than to see that the new method per-
forms very well on an easy classification problem. This is not to say that an

exhaustive comparison of prediction methods should be undertaken in order
to determine the consensus best method for class prediction; no single method
is likely to be optimal in all situations. The relative performance of methods
is likely to depend on the biological classification under investigation, the
genetic disparity among classes, within-class heterogeneity, and size of the
training set.

Direct comparisons of class prediction methods can, however, provide valu-
able insight about which methods perform well under certain conditions. Du-
doit et al. (2002) compared several of the methods described in this section:
standard and diagonal discriminant analysis, Golub's weighted vote method,
classification trees with and without aggregation, and nearest neighbor clas-
sification. The methods were applied to three microarray datasets: adult lym-
phoid malignancies separated into two or three classes (Alizadeh et al. 2000),
acute lymphocytic and myelogenous leukemia (Golub et al. 1999), and sixty
human tumor cell lines divided into eight classes based on site of origin (Ross
et al. 2000). The genes selected for inclusion in the model were the G genes
with the best unvariate abilty to discriminate the classes. They used G = 30
for the 60 cell line data, G = 40 for the leukemia dataset, and G = 50 for the
lymphoma dataset.

Diagonal discriminant analysis and nearest neighbor classification had the
best overall performance in the study. Classification trees had intermediate
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performance. Aggregation of classification trees tended to improve perfor-
mance. Fisher linear discriminant analysis performed the worst. A distance
measure that does not account for correlations between genes was used for
nearest neighbor classification in the comparison performed by Dudoit et aL.

(2002). Thus the best performing metHods in the study were those that ignored
gene correlations and interactions. Moreover, the worst performing method
(Fisher linear discriminant analysis) is one that explicitly incorporates gene
correlation structure into class prediction. The authors did not select so many
genes (G) that the linear discriminant model could not bê fit, but stil the
number of correlation parameters that had to be estimated resulted in very
poor predictive performance. The performance of Fisher linear discriminant
analysis improved substantially when the number of included genes was lim-
ited to G = 10. The results of the comparison of methods do not necessarily
indicate that correlations and interactions between genes are not important
in the biological systems investigated. Rather, it is more likely that higher-

level structure does exist in the underlying biological systems, but not enough
information exits in the datasets studied to provide accurate estimates of

this structure (the largest of the three datasets contained only 81 specimens).
Class prediction methods that incorporate gene correlations and interactions
are likely to become more useful as much larger gene expression datasets be-
come available.

8.4 Estimating the Error Rate of the Predictor

8.4.1 Bias of the Re-Substitution Estimate

Using the same set of data for developing a predictive model and for evaluating
the predictive accuracy of the model can result in a very biased overestimation
of its predictive accuracy. The reason is that the parameters of the model are
optimized to fit the dataset and they will fit those data better than they
wil predict for independent data. This phenomenon is called overfitting. For
traditional kinds of statistical modeling with many cases and few parameters,
the degree of bias may not be severe. But when the number of parameters is
orders of magnitude greater than the number of cases (specimens), the degree
of bias can be huge. For gene expression data, each candidate gene might
be used in the predictive model and thus represents a parameter. As noted
above, even once a relatively small number of genes are selected in the feature
selection step for inclusion in the prediction model, the number of parameters
available for fitting that model to the data may easily exceed the number of
specimens.

Simon et aL. (2003) ilustrated the bias of the conventional resubstitution
estimate of misclassification rate for DNA microarray data. The resubstitu-
tion estimate is calculated by using the dataset to select variables and fit the
predictive model, then using the model to predict class membership for the
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same specimens, counting the number of errors made. Simon et aL. (2003)
generated simulated data for measuring expression levels on 6000 genes for
each of 20 specimens. The data were generated randomly, using the same

Gaussian distribution for each gene and each specimen. After generating the
random data, specimens 1 through 10 were arbitrarily considered to be from
class 1 and specimens 11 through 20 from class 2. They utilized the entire
20 specimens for feature selection to identify the 10 genes that were most
differentially expressed between the two classes, and then developed the sim-
ple compound covariate predictor described in Section 8.3.3.2 based on these
selected genes. Having developed the model, they predicted the class of each
of the 20 specimens and counted the number of misclassIfcation errors of this
resubstitution estimate. They repeated this procedure for 2000 randomly sim-
ulated datasets, and the results are shown in Figure 8.4. It was found that
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Fig. 8.4. The effect of various levels of cross-validation on the estimated error

rate of a predictor. Two thousand datasets were simulated as described in the text.
Class labels were arbitrarily assigned to the specimens within eah dataset, so poor
classification accuracy is expected. Class prediction was performed on each dataset
as described in the text, varying the level of leave-one-out cross-validation used

in prediction. Vertical bars indicate the proportion of simulated datasets (out of
2000) resulting in a given number of misclassifications for a specified cross-validation
strategy. Adapted from Simon et aL (2003).
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98.2% of the datasets resulted in a resubstitution estimate of zero errors, even
though no true difference exited between the two classes. Moreover, the max-
imum number of misclassified specimens using the resubstitution estimate was
only one.

8.4.2 Cross-Validation and Bootstrap Estimates of Error Rate

Ultimately, the goal is to construct a classifier that will accurately predict
class labels for new specimens not involved in the creation of the prediction
rule. Methods are available to estimate the true error rate of the predictor
(i.e., the probabilty of incorrectly classifying a randomly selected future case)
with much less bias than the resubstitution estimate. One commonly used
method is cross-valdation. Cross-validation is accomplished by leaving out
a portion of the specimens, building the prediction rule on the remaining

specimens, referred to as the training set, and predicting the class labels of
the left-out specimens. Leave-one-out cross-validation is a common choice
for the small sample sizes commonly encountered in microarray studies (see
Figure 8.5). Each specimen is left-out, one at a time. For each training set
with one specimen left out, feature selection is performed from scratch and
a predictive model is built. That model is then used to predict the class of
the left-out specimen. That prediction is then counted as being correct or
incorrect. The entire procedure is repeated for each specimen left out and the
total number of classification errors is determined (Hils 1966; Lachenbruch
and Mickey 1968).

There is considerable confusion about leave-one-out cross-validation. Many
investigators do not appreciate the importance of repeatedly performing fea-
ture selection for each leave-one-out trainng set. In fact, feature selection is
frequently the most important part of model development. With good fea-

tures, the particular form of the model is often not cruciaL. However, this

means that failng to cross-validate feature selection is a failure to remove a
major source of bias in the resubstitution estimate. In our simulations of class
prediction of random classes, we examined the bias in estimated error rates
for class prediction with various levels of cross-validation (Simon et al. 2003).
Two types of leave-one-out cross-validation were considered: one repeating
feature selection of differentially expressed genes for each leave-one-out train-
ing set, and one in which feature selection of univariately informative genes

is performed using the entire dataset before starting the cross-validation. In
the latter case, the same set of genes is used to build the model for each
leave-one-out step, although the weights of the genes vary from step to step.

Figure 8.4 shows the observed number of misclassifications resulting from
each level of cross-validation for 2000 simulated datasets. The true misclas-
sification rate should be 50% because the classes are random. As shown in
the figure, 98.2% of the simulated datasets resulted in a resubstitution esti-
mate of zero misclassifications. Improper cross-validation without repeating
feature selection for each training set led to very biased low estimates of the
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Fig. 8.5. A single step of the leave-one-out method of cross-validation. A single

specimen is removed from the ful dataset. The left-out specimen is the test set and
the remaining specimens comprise the training set for the step. Feature selection
is performed on the training set in a supervised fashion (Le., comparing class 1 to

class 2) and a prediction rile is built from the selected features. The prediction

rule is applied to the gene expression profie of the left-out specimen (which has
been stripped of its class label) and the correctness of this prediction is noted. A
leave-one-out step is performed for every specimen in the full dataset.

misclassification (Figure 8.4): 90.2 % of simulated datasets stil result in zero
misclassifications. When gene selection is also subjected to cross-validation,
then the prediction results match expectation: the median number of mis-
classified profiles jumps to 11 (the true misclassification rate is 50% or 10
misclassified profies).

Data imputation will frequently be necessary during cross-validation, as
missing data are common in microarray studies (see Chapter 5 for a discussion
of imputation methods). As mentioned in Section 8.2, imputation should be
avoided prior to the feature selection step, if possible. This means imputation
takes place after feature selection within each leave-one-out step of the cross-
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validation procedure. Imputation of mising values for the left-out specimen is
not suggested, or necessary. Instead, all selected features for which the left-out
specimen has a missing value should simply be omitted from the prediction
rule. Imputation is only necessary for a training set specimen that has a
missing selected feature that is not missing for the left-out specimen.

Bootstrap estimation of the true error rate is an alternative to cross-
validation. Bootstrapping is accomplished by selecting, with replacement, n
specimens from among the original set of n specimens. Sampling with re-
placement means that some specimens may be present multiple times in the
bootstrap sample. A predictive model is developed from scratch on the boot-
strap sample. "From scratch" means not forgetting to repeat the gene selec-
tion step for the bootstrap sample. The model is then used to predict what
class each of the specimens not in the bootstrap sample belongs to and each
prediction is recorded as correct or incorrect. This entire process is repeated
for many bootstrap samples and the average number of miclassifications per
prediction is used as an estimate of the misclassification rate. An advantage
of bootstrap estimates, especially for small sample sizes, is that they have
smaller variances than estimates derived from leave-one-out cross-validation.
These simple bootstrap estimates tend to have bias, but more complex boot-
strapping procedures with less bias have been proposed (Efron and Tibshirani
1997). More extensive descriptions of error rate estimation by bootstrapping
are given by Efron (1983) and Efron and TibshIrani (1998). Cross validation
procedures that omit more than a single observation at a time may also reduce
the variance of the estimated error rate.

8.4.3 Reporting Error Rates

Investigators should not report the resubstitution estimate of the misclas-

sification rate. It only serves to encourage misinterpretation. FUrthermore,
estimates of the error rate should incorporate results for all specimens exam-
ined. Some predictors allow a specimen to remain unclassified if the specimen
cannot confidently be assigned to any of the examined classes. For example,

the weighted vote method (Golub et aL. 1999) assigns a prediction strength
index to each sample. Specimens may be assigned to an uncertain class if the
absolute value of the prediction strength index for a specimen does not exceed
a specified threshold. Although "uncertain" may be a clinically important cat-
egory, it may also be seen as a failure of the classification procedure. Simply
ignoring unclassified specimens in the estimation of the true error rate gives

an overly optimistic impression. For example, a classifier that classifies one
sample correctly and calls the rest uncertain has 100% accuracy by disregard-
ing unclassified specimens but at the same time is of little practical value.
The correct classification rate (number correctly classified out of the total ex-
amined) and the misclassification rate (number miclassified out of the total
examined) seem the most pertinent statistics.
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8.4.4 Statistical Significance of the Error Rate

In addition to obtaining an unbiased estimate of the misclassifcation rate, it
is also possible to determie whether the estimate is statistically significantly
lower than what one would expect by chance for two classes that did not really
differ with regard to the gene expression profie. This can be useful because it
is possible in some cases to achieve a relatively small error rate estimate even
for random data. For example, in the simulation described above, more than
12% of the datasets resulted in five or fewer correctly cross-vadated misclas-
sifications (an error rate of:: 25%) even though expression profies for the two
classes were generated from the same ditribution. Radmacher et aL. (2002)
proposed the use of a permutation method to assess the statistical significance
of a cross-validated error rate. The probabilty of producing a cross-validated
error rate as small as that observed given no association between class mem-
bership and the expression profiles is estimated by a permutation test, and
this estimate serves as the achieved significance level (Le., p-value). Under
the null hypothesis that no systematic difference in gene expression profiles

exists between the two classes, it can be assumed that assignent of gene
expression profies to class labels is purely coincidental (Lehmann and Stein
1949). This situation is mimicked by randomly permuting labels among the
gene expression profiles. For each random permutation of class labels, the en-
tire leave-one-out cross-validation procedure is performed to estimate a cross-
validated misclassification rate. This is repeated for a large number of random
permutations of the class labels. Thus one estimates the distribution of the
cross-validated misclassification rate under the null hypothesis that there is

no relation between class and gene expression profile.
Ideally, an exact permutation test would be performed, examining every

possible permutation of the class labels. In practice this is burdensome due to
the large number of permutations for even modest sample sizes. Radmacher
et aL. (2002) suggest that using 2000 random permutations is suffcient.

8.4.5 Validation Dataset

Using cross-validation or bootstrap sampling to estimate the misclassification
rate requires that there be some defined algorithm for gene selection and

model building that can be automatically applied within each leave-one-out

or bootstrap sample training set. For some studies this is not the case because
many methods are tried during the analysis and some steps of the analysis
depend on findings in previous steps in a manner that is not easily specified in
an algorithmic manner. For such studies, it is best to separate the data into a
training set and a validation set before any analysis takes place. The validation
set is locked away and not used until a single completely specified predictive
model is developed on the training data. At that time, the completely specifed
model is applied to the specimens in the validation set to predict to which class
each of those specimens belongs, and the misclassifcation rate is computed.
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Rosenwald et al. (2002) used this approach for the development of a prognostic
index for patients with large B-celllymphomas.

In using the split sample approach, a plan for splitting the sample into
training and validation subsets is needed. Rosenwald et al. (2002) used two
thirds of their data for the training set. The training set is used for identi-

fying the genes to include in the predictive model and for developing a com-
pletely specified model, including the estimation of model parameters; the
validation set is used only to calculate the predictive accuracy of the modeL.

Consequently, it is reasonable to assign the majority of the specimens to the
training set. It is best to determine in advance how many specimens wil be
required for each set.

Very small datasets, containing 10 or fewer specimens, are often used for
validation of a predictor, but such small datasets are really inadequate. For ex-
ample, MacDonald et al. (2001) built a predictor from the gene expression pro-
fies of 23 medulloblastoma specimens that distinguished between metastatic
and nOlletastatic cases; the predictor had good cross-validated prediction

accuracy on the training set (72% correctly classified), An additional dataset
consisting of expression data for four tumors was analyzed and the predictor
correctly classified the four new tumors. This was interpreted as a preliminary
confirmation of the results. However, the 95% confdence bounds on the true
error rate derived from the independent validation study are 0 to 53%. Thus,
even with perfect classifcation of the independent specimens, it cannåt be
stated with confidence that prediction is better than a fifty-fifty guess. The
validation set should also contain a suffcient number of tumors of each class.

8.5 Example

To ilustrate several ofthe methods described in this chapter we use the 22 ex-
pression profiles of breast tumors reported by Hedenfalk et al. ( 2001). These
tumors were classified with regard to whether they were obtained from women
with germline BRCAI or BRCA2 mutations. The data are described in Ap-
pendix B. Seven of the tumors were from women with germline BRCAI mu-
tations, eight were from women with germline BRCA2 mutations, and seven
contained neither germlne mutation. We developed classifiers for ditinguish-
ing tumors from women with BRCA2 mutations from the other 14 tumors.
Data were available for the 3226 genes that were considered well measured
on the arrays by the original investigators. We developed classifiers based on
Fisher linear discriminant analysis (FLDA), diagonal linear discrimiant anal-
ysis (DLDA), compound covariate predictor (CCP), support vector machine
with linear kernel (SVM), k-nearest neighbor predictors with k equal to 1 and
3, and classification trees (CART). For feature selection we used the genes
that were univariately statistically significant at a stringent p .. 0.001 signifi-
cance level using the t-test to compare log expression ratios in the two classes.
Features were reselected for each leave-one-out cross-validation training set.
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For Fisher linear discriminant analysis we utilzed no more than five genes
in the feature selection set, however, because using the full set of significant
genes gave noninvertible covariance matrices. This is an inherent limitation of
Fisher linear discrimiant analysis.

We used leave-one-out cross-validation (LOOCV) to evaluate the misclas-
sification rate for each type of classifier. Consequently we developed classifiers
of each type for all of the 22 training sets obtained by omitting samples one
at a time. We computed the t-tests, selected the genes to be included in the
model, and fit the model from scratch for each of the 22 trainig sets. Ta-
ble 8.1 shows the results of prediction for each classifier and each of the 22
training sets.

Table 8.1. Cross-Validated Correct Classification Rates

Sample BRCA2 Correct Prediction?

Removed Mutation
DLDA CCP FLDA 1-NN 3-NN SVM CART

1900 + no no no yes no no no
1787 + yes yes yes yes yes no yes
1721 + yes yes yes yes yes yes no
1486 + no no no yes no yes no
1816 + yes yes yes yes yes yes yes
1616 + yes yes yes yes no yes no
1063 + yes yes yes yes yes yes yes
1936 + yes yes no yes yes yes no
1996 yes yes yes yes yes yes yes
1822 yes yes no yes yes yes yes
1714 yes yes yes yes yes yes yes
1224 yes yes no yes yes yes yes
1252 yes yes no no no no no
1510 yes yes yes yes yes yes yes
1572 yes yes no yes yes yes no
1324 no no no no no no yes
1649 yes yes yes yes yes yes no
1320 yes yes yes yes yes yes no
1542 yes yes yes yes yes yes no
1281 yes yes yes yes yes yes yes

1321 yes yes yes yes yes yes yes
1905 yes yes yes yes yes yes yes

Correct
Classification 86% 86% 64% 91% 77% 82% 55%

We begin with a discussion of the four related methods. Diagonal linear
discriminant analysis and the compound covariate predictor had 86% correct
cross-validated prediction. Each had three prediction errors, two for BRCA2
positive cases and one for a BRCA2 negative case. They predicted correctly
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and incorrectly for exactly the same set of cases. Fisher linear discrimnant
analysis did not do as well, having only 64% correct cross-validated predic-
tion. It predicted incorrectly for the same three cases as did DLDA and CPP,
but it predicted incorrectly for an additional five BRCA2 negative cases. The
support vector machine with linear kernel had four cross-validated misclassi-
fications for an 82% correct prediction rate.

Figure 8.6 shows the weights assigned to individual genes for the linear
methods DLDA, CPP, and SVM plotted against each other. There were 49
genes statistically signficant at the p -: 0.001 level by t-test for the complete
set of 22 samples and so the graphs in Figure 8.6 each contain 49 points. These
weights are based on fitting the models to the complete set of 22 samples.

(Although FLDA is also a linear method, it utilzed only 5 genes and so it
is not shown in the figure.) The figure indicates that the weights for the
different methods have the same sign but different values. The set of selected
genes varied for each leave-one-out training set, therefore we examined how
frequently each of these 49 genes had a p -: 0.001 in the 22 leave-one-out

training sets. If we rank these 49 genes based on their p values for the full set
of 22 samples, we find that the 24 genes with the smallest overall p-values had
p-values of less than 0.001 in all of the 22 training sets. The 9 genes with the
next smallest overall p-values had p-values less than 0.001 in 15 to 20 of the

training sets. The remaining genes had p-values of less than 0.001 in only 3
to12 of the training sets. This type of information is helpful in evaluating the
importance of individual genes in the final model fit to the full data.

The I-nearest neighbor classification method had only two cross-validated
misclassifications for a correct prediction rate of 91%. It classified all of the
BRCA2 cases correctly and misclassified two BRCA2 negative cases. The 3-
nearest neighbor method had five misclassifications, including three of the
BRCA2 cases, for a correct prediction rate of 77%.

The CART classification tree did very poorly, achieving a correct cross-
validated prediction rate of only 55%. Thi is approximately the rate one
would expect if one predicted randomly based on the proportion of BRCA2
specimens in the leave-one-out training sets. The tree classifier approach might
have done better had we employed some of the "bagging" and "boosting"
strategies for averaging different tree classifiers as described in Dudoit et aL.

(2002).
The classification tree approach tends to place great weight on expression

levels for single genes. This makes for nice interpretabilty and ease of clinical
implementation. Unfortunately, it tends to give inaccurate predictions when
there are limited numbers of cases. It is too easy to find single genes or pairs
of genes that are highly predictive of outcome for any training set but which
are useless for classifyng new specimens. In data-limited settings, methods
that base classification on averaging expression for larger numbers of genes
tend to perform better.

For ilustration, we applied the CART classification tree algorithm to the
complete dataset of 22 samples using the genes' statistically significant at
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Fig. 8.6. Scatterplot matrix of the relationship of linear classification methods in

the weights they placed on expression levels of individual genes for the example of
Section 8.5: CCP denotes the compound covariate predictor, DLDA denotes diago-
nallinear discriminant analysis, and SVM denotes the support vector machine with
linear kerneL. Each panel of the matrix shows a scatterplot comparing two linear
classification methods. Each point on a scatterplot represents a gene used for clas-
sification by the methods. For each method, the weights have been standardized to
have mean zero and standard deviation one.

the p -( 0.001 level for the complete data as candidate predictors. The tree
selected by the algorithm used only one candidate predictor and had only
two terminal nodes. The probe used had Image clone identifier 51209 and
an annotation of "Protein phosphatase 1, catalytic subunit, beta isoform."
The optimal threshold for classification based on that probe was a log ratio
value of 0.029. Samples with log ratios for thi clone of less than 0.029 were
classified as BRCA2 mutated; samples with log ratios for this clone greater
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than the threshold were classifed as not BRCA2 mutated. In the full dataset,
nine samples had log ratios less than the threshold and eight of them carried
germline BRCA2 mutations. Consequently, there is only one misclassification
in the complete dataset for the model developed using the complete data.

Obviously, this estimate of misclassification rate is highly biased, as seen from
the cross-validation results.

8.6 Prognostic Prediction

Some microarray studies are designed to determine whether there is a relation-
ship between expression profile and clinical outcome and to develop a prog-
nostic predictor of outcome based on the level of expression of selected genes.
Sometimes outcome is categoricaL. For example, some pharmacogenomic stud-
ies attempt to distinguish between patients who wil and wil not experience
toxicity to an effective treatment for a disease. The research objective in such
a study can be considered a two-group class prediction as discussed above. In
many studies, however, outcome is not categorical. One example is a study of
clinical outcome in patients with diffse large B-celllymphoma (Rosenwald et
al. 2002). In that study a prognostic model was developed for predicting du-
ration of patient survival, with continuous right-censored outcome data. The
prediction methods described previously in this chapter cannot be directly
applied to such data.

For survival studies one may evaluate the association of the expression

level of a gene i with survival by fitting a proportional hazards regression

model containing only the gene i expression vaues as described in Section
7.8. For such a model, the statistical significance test of the null hypothesis
of no association between survival and the expression of gene i can be based

,on a statistic Zi which under the null hypothesis has a standard Gaussian
distribution with mean zero and standard deviation one. These tests can be
performed for all genes, and those genes with their Zi values suffciently great
in absolute value can be selected for multivaiate modeling.

In analogy to the compound covariate predictor for class prediction, we
can form a prognostic index for survival as a weighted sum of expression

measures for genes with univariate prognostic significance in the dataset. The
prognostic index for specimen j is

G

Cj = L ZjXji,
i=l

(8.13)

where Zi is a standardized Gaussian statistic for selected gene i and Xji is the
log expression measurement of selected gene i in specimen j. The summation
is over only the genes selected based on the magnitude of their Z values.
The prognostic index has the same form as the compound covariate predictor
(Equation (8.10)), but with diferent weights.
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The prognostic index (8.13) can be used to classify the patients into good
and poor risk groups. Leave-one-out cross-validation can be used to estimate
the difference in surval distributions of the predicted risk groups. Prognosis

groups can be formed in the leave-one-out training set based on values of the
Cj. For example, having computed the Zi values for all genes and selected the
genes to be used for computing the prognostic index, compute Cj values for
all specimens in the training set and for the specimen left out. If the Cj value
for the specimen left-out is smaller than the median Cj value of the specimens
in the training set, then the left out specimen is predicted to be from a good
prognosis patient. Otherwie, the specimen left out is predicted to be from a
poor prognosis patient. This is because in the analysis of proportional hazards
models, large values of the regression coeffcients are associated with a poor
prognosis. This entire process of gene selection, prognostic index computation,
and prediction of prognosis for the left-out specimen is repeated for each leave-
one-out training set.

Having predicted a prognostic group for each specimen in a fully cross-
validated maner, the Kaplan Meier survival curves of these two prognostic
groups can be computed and graphed (Lawless 1982). The difference between
these survival curves is an unbiased estimate of the effect of prognostic clas-
sification using a gene expression-based prognostic index.

There wil often be interest in establishing whether the survival distribu~
tions for the prognostic groups are diferent. The usual statistical tests for com-
paring the Kaplan Meier survival cllrves are not valid because the groups were
not prespecified independently of the survival data. Consequently, a permuta-
tion analysis is needed to test statistical significance. We start by computing
a standard statistic for the two survival curves obtained from the analysis of

the data, for example, the log-rank statistic. Call this value LR*. We then
randomly permute the survival times (and associated censoring indicators)
among specimens. We then repeat the entire cross-validation procedure de-
scribed above, obtaining two new prognostic groups, two new Kaplan Meier
surviva curves, and a new value of the log-rank test comparing these two

new survival curves. By redoing this process with a large number of random
permutations of the survival times, we generate the distribution of log-rank
values under the null hypothesis that there is no association between survival

and gene expression profile. The proportion of these random permutations
that give good and poor risk groups properly ordered and a log-rank value at
least as large as the value LR* for the real data is the p-value associated with
a test of the null hypothesis.
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Class Discovery

9.1 Introduction

In this chapter we discuss methods usefu for discovering patterns in microar-
ray data. More specifically, we focus on methods of identifing groups of co-
expressed genes, and for finding patterns in the expression profiles of different
specimens when there is no predefined class variable to supervise the analysis.
Patterns may consist of a classification into subgroupings, or clusters, and
there may be multilevel structure within the classification. Cluster analysis
techniques can be applied to construct classifications of specimens or experi-
mental conditions (arrays), or they can be applied to construct classifications
of genes; sometimes they are applied to construct classifications on the two
dimensions simultaneously. For example, using a cluster analysis technique
known as hierarchical clustering, Alizadeh et aL. (2000) discovered new sub-
groups of lymphomas. Similarly, Bittner et aL. (2000) found structure among
otherwise morphologically indistinguishable melanoma tumors. Tamayo et aL.

(1999) used microarrays to study gene expression in HL60 cells and uncov-
ered several biologically interesting clusters of genes involved in hematopoi-
etic differentiation using a clustering technique known as self-organizing maps
(SOMs). For the analysis methods discussed here, no supplemental informa-
tion need accompany the specimens or genes to suggest existing structure or
classification; therefore, they fall into the category of unsupervised methods.

Visualization of microarray data by means of graphical disp1ays can be
very helpful in discovering patterns in microarray expression profies. Some
of the graphical displays we discuss are specific to certain cluster analysis
methods, and others are generic methods of representing high-dimensional
data in lower dimensions. Examples of displays linked to a specific clustering
algorithm include clustering trees called dendrograms and color image plots,
both of which are ways of representing results of a hierarchical clustering.
Multidimensional scaling is an example of a generic display method.

In the discussion and examples of this chapter, it is assumed that data
preprocessing has already been conducted along the lines described in Chap-
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ters 4 through 6. Definitions of distance and simiarity measures, which are
at the core of many cluster analysis algorithms, are covered in Section 9.2.
Generic graphical display methods are described in Section 9.3. Graphical dis-
plays linked to a specifc clustering algorithm are discussed in the section in
which the algorithm is defined. We discuss specific clustering methods in Sec-
tion 9.4. Cluster analysis methods can be powerful exploratory tools, but it is
important to bear in mind that clustering algorithms can detect clusters even
on random data. Therefore, an assessment of the validity of putative clusters
is essentiaL. The assessment should be based both on biological plausibilty
and level of statistical evidence for clusters. In Section 9.5 we discuss several
statistically based methods for assessing clustering results.

9.2 Similarity and Distance Metrics

Most clustering methods are based on some measure of simiarity or distance
(dissimilarity) defined between objects, with the goal being to group together
similar objects. When considering a distance or dissimilarity metric, it is un-
derstood that the larger the calculated value, the greater the difference be-

tween objects. Larger vaues of a similarity metric represent more simiar
objects. Euclidean distance, Manhattan distance, Mahalanobis distance, an-
gular distance, and Pearson corrlation are the bases for some of the most
common distance and similarity metrics. Several measures of similarity or
dissimilarity between two arrays are defined below. Let Xji denote a vector of
the log expression levels for all of the genes on the array numbered ji, that
is, Xji = (xiil' Xji2, . .., XjiK), where K denotes the number of genes on the
array. Similarly, let Xji denote the vector of log expression levels for the array
numbered j2, and thus Xji = (Xjili Xji2,.. . , XjiK). Similarity or dissimilarity
measures between two genes are defined analogously by reversing the roles
of arrays and genes in each of the calculations described below. To avoid the
laborious presentation of the measures for both arrays and genes, we present
them only for the case of measuring similarity or dissimilarity between arrays.

Euclidean distance between profies from two arrays is computed by cal-
culating for each gene the difference in its expression values between the two
arrays, sumng the squares of those differences over all genes, and then tak-
ing the square root of that sum. Sometimes weights are applied to the squared
differences by multiplying each squared difference by a weight prior to sum-
ming over the genes, and then the result is a weighted Euclidean distance. One
might wish to use a weighted distance when expression values are missing for
some genes on some arrays. If one pair of arrays has fewer gene expression
measurements available for both arrays than does another pair of arrays, then
the distance between the arrays of pair one and the distance between the
arrays of pair two are not directly comparable. To make the distances more
comparable, one might sum over the nonmssing genes and use a weight for
every gene that is the reciprocal of the number of genes for which expression
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values are available for both arrays. This weighted distance corresponds to a
root mean squared difference. (Alternatively, one could have imputed values
for the missing measurements instead of using a weighted distance.)

Mahalanobis distance is another type of weighted distance measure. The
idea behind it is to downweight contributions of genes with large variance

and contributions of genes that are highly correlated with other genes. A
diffculty in using it when clustering arrays is that it cannot be calculated
if the number of genes exceeds that number of arrays, a typical situation.
However, this distance measure could be considered when clustering genes.

Manhattan distance (sometimes called the city block metric) between pro-
fies from two arrays is computed by calculating for each gene the absolute
difference in its expression values between the two arrays and summing those
absolute differences over all genes. A weighted version can also be used. The
advantage of Manhattan distance over Euclidean distance is its robustness to
extreme observations. As a result of the squaring of the difference terms in
Euclidean distance, it particularly heavily weights large differences, whereas

the Manhattan distance will be less infuenced by these extreme differences.
In a comparison of clustering methods and distance metrics, Rahnenfuehrer
(2002) found the Manattan distance to be one of the best performers.

Pearson correlation computed between the expression measurements from
arrays j 1 and h is a simiarity metric that measures how well the expression
measurements obtained on one of the arrays can be expressed as a linear
function (Le., multiplied by some constant value and shifted by some constant
value) of the expression measurements on the other array. It is defined as

K
L (xiik - xii) (Xi2k - Xji)
k=1

( K 2 K 2) 1/2L (Xiiki - Xii) L (Xjik2 - Xji)ki=1 k2=1
where Xi is the mean expression measure over all genes on array j. Two
profiles can be very dissimilar by Euclidean distance, yet be very similar by
a correlation measure. For example, if the log expression level of each gene in
specimen j1 is exactly twice its expression level in specimen j2, the correlation
would take on its maxmum value of one, but the two specimens would be
very dissimlar by Euclidean distance because their absolute distance is large.
Commonly used conventions to convert a correlation similarity metric to a
distance metric are to take distance = 1 - correlation, or to take distance =
(1 - correlation) /2. The latter option produces a distance between 0 and 1.

A more robust measure of correlation, such as Spearman corrlation could
also be used. The Spearman rank correlation is defined like the Pearson cor-
relation except that withi each profile, each gene expression measurement is

replaced by its rank within that profile, and it is those ranks that are used
in computing the correlation. The Spearman correlation is less sensitive to
outlying observations and therefore tends to be more stable, but this stabil-
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ity can also come at the expense of some sensitivity to true patterns in the
data. Also, it is not clear how to handle assignment of rank if there are some
missing expression measurements.

The uncentered version of the Pearson correlation, sometimes called an-
gular distance, is

K
L XjikXhk
k=1

( K K ) 1/2L XJiki L XJ2k2
ki=1 k2=1

It differs from the Pearson correlation in that there is no centering by sub-
traction of Xji and xh from the expression measurements. It is called angular
distance because it equals the cosine of the angle formed by the vectors that
represent the arrays in K-dimensional space. Each array can be viewed as
representing a point in K-dimensional space, and its vector representation
is the vector that extends from the origin (all K coordinates equal to zero)

to that point. As with the Pearson correlation, it is always between minus 1
and 1, and it can be transformed in a similar fashion to produce a distance
between 0 and i.

One additional point to note is that similarity and distance metrics must
be interpreted in the context of any standardization or normalization that

has been applied previously to the data. For example, if arrays have been
normalized by subtracting the median across all genes, the angular distance
wil frequently approximate the Pearson correlation.

Another data preprocessing step that is often applied prior to clustering
microarray data is mean or median centering of genes. For cDNA microarray
data, this involves subtracting from each expression measurement for a given
gene, the mean or median for that gene across the arrays. This centering
removes the dependence of the ratios on the amount of expression of each
gene in the reference sample; Table 9.1 demonstrates a simple example.

Table 9. i.
Reference Test Test
Sample Sample 1 Sample 2

Gene 1 Expression intensity 200 400 800
Expression ratio 2 4LOg2 (ratio) 1 2
Centereda log2 (ratio) -0.5 0.5

Gene 2 Expression intensity 100 800 400
Expression ratio 8 4LOg2 (ratio) 3 2
Centeredb log2 (ratio) 0.5 -0.5

aMedian (or mean) log2(ratio) for gene 1 across two samples is 1.5.
bMedian (or mean) log2(ratio) for gene 2 across two samples is 2.5.
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(Assume that the intensity measures in the table have already been ad-
justed for dye effects.) The true expression of gene 1 in sample 1 (400) and
gene 2 in sample 2 (400) are the same, but because the two genes are rep-
resented in different amounts (200 versus 100) in the reference sample, the
log ratios associated with them are not the same. By median centering, the
(centered) log ratios are made the same for the two genes. In the example in
Table 9.1, the median and mean are equivalent. In general, the median is a
better choice than the mean because it wil be less sensitive to a few poten-
tially spurious extremely high or low expression measurements. Centering can
also be performed on expression measurements besides log ratios, for exam-
ple, expression levels from oligonucleotide arrays, because it serves as a type
of standardization. The centering puts all genes on an equal footing and does
not allow genes that tend to be very highly expressed to dominate distance

metrics, and hence the behavior of the clustering algorithms. Note that if one
is computing Euclidean distance between profiles for two specimens, this gene
centering has no effect on the distance, because it subtracts out in the calcula-
tion. However, if one were computing Euclidean distance between two genes'
profiles rather than between two specimens' profiles, this gene centering could
have a very large impact on the resulting distance.

We tend to think of correlation of patterns as biologically relevant, and
the absolute closeness required for small Euclidean distance often feels overly
stringent. For this reason, we have more often used correlation-based similarity
metrics or metrics that involve some scaling or standardization of expression

measures. In general, the choice of similarity or dissimilarity metric needs to
be made on a case-by-case basis.

9.3 Graphical Displays

9.3.1 Classical Multidimensional Scaling

The extremely high-dimensional nature of microarray data makes it impossible
to visualize plots of array profiles or gene profiles unless they are represented
in lower dimensions. Typically, two or three-dimensional displays are used.
Multidimensional scaling is a very useful display technique that has been

applied for the analysis of microarray data (see e.g, Khan et al. 1998 and
Assersohn et al. 2002). We describe it here in the context of producing a

display of J arrays. Classical multidimensional scaling addresses the following
problem. Given a set of J points in a K-dimensional space, find a set of points

( coordinates) in an s-dimensional space with s -( K such that the Euclidean
distances between those points in the new space provide a good approximation
to the distances between points in the original higher-dimensional space.

We begin with a simplified explanation of the related subject of principal
components analysis. For multidimensional data, principal components anal-
ysis is a method for expressing data in a new coordinate system by finding
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weighted combinations of the original variables that have maxum variance
and are constrained to be uncorrelated with one another (Hotellng 1933).

These optimal weighted combinations are called principal components. Geo
metricaly, if one viualizes a cloud of points in high-dimensional space, this

involves a rigid rotation and translation (shiing) of the cloud of points so
that the longest axis of the cloud is aligned with the first variable axs, and the
next ll~mgest ax perpendicCiar to that first axs is aligned with the second

variable ax, and so forth. It can be shown that the fist s principal com-

ponents satisfy the multidiensional scalig goal described above (Gordon

1999). It is also possible to calculate the proportion of the total variation in
the data that is explained by the s-dimensional representation, and thi pro-
portion is sometimes used as a measure of the adequacy of the s-dimensional
representation.

Figue 9.1 gives an example of a principal components transformation

of some hypothetical threedimensional data. The x and a symbols in the
figure represent so~e underlying subclasses. In the top plot (panel (a), there
is a single ellptical wafer with no thickness, oriented on an incline in three
dimensional space. Because this wafer has no thickness, it really occupies only
a two-dimensional subspace. When we consider the two-dimensional principal
components plot as shown in the lower plot (b), we see that no information
has been lost in reducing to two dimensions, and the proportion of variance
explained is 100%. Even if the wafer had had some uniform thickness, there
would have been no information loss in reducing to two principal compnents
regarding the comparison of the x symbols to the 0 symbols.

Figure 9.2 gives another example of a principal components transformation
of some hypothetical three-dimensional data with two subclasses denoted by
the x and 0 symbols. In the top of the figure (a), two thick ellptical wafers,
lying one above the other, are oriented on an incline in three-dimensional

space. The longest ("major") axs of the ellpse is length 8, and the short-
est ("minor") axis of the ellpse is 4. (The short axs cannot readily be seen
in the orientation of the axes pictured in Figure 9-2.) The thickness of each
wafer is 0.4. The middle figure (b) shows the principal components transfor-
mation, that is, the three-dimensional plot of the principal components. Now
the point cloud is centered at the intersection of the PCl, PC2, and PC3
axes. The major (longest) ax of the ellpse is aligned with the PCl ax, the
minor axs (perpendicular to the major axs) of the ellpse is aligned with the
PC2 axs, and the thickness of the layered ellpses is in the direction of the
PC3 axs. If we wanted a (lower) two-diensional representation of these~
apoints, e could consider plotting only the first two principal components

II e bottom figure (c). We would then completely lose the separation

of the x symbols (top wafer) from the 0 symbols (bottom wafer). Interest-
ingly, the proportion of variance explained by the two-dimensional projection
is an impressive-sounding 98%, but because the important information that

separated the wafers (each wafer corresponding to a subclass in this case)
happened to be on the dimension of smallest vaiance, all of the critical in-
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Fig. 9.1. (a) Three-dimensional scatterplot of hypothetical data arising from two

subclasses denoted by x and 0 plotting symbols, (b) two-dimensional principal com-

ponents representation of the data displayed in (a).

formation for distinguishing the two subclasses was lost when reducing from
three to two dimensions.

Figure 9.3 presents a threedimensional scaling display of log expression ra-
tio profiles obtained from cDNA microarray assays performed on 31 melanoma
tumors (Bittner et aL. 2000) using a common reference design. Used in this
analysis were the 3613 genes that were considered "strongly detected." Prior
to the multidimensional scaling analysis, ratios greater than 50 or less than
0.02 were truncated at 50 and 0.02, respectively. More details of the data are
provided in Appendix C. The Euclidean distances between the expression pro-
files of the tumors in the original high-dimensional space are approximated
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Fig. 9.2. (a) Threedimensional scatterplot of hypothetical data arising from two
subclasses denoted by x and a plotting symbols; (b) three-dimensional principal

components representation of the data displayed in (a); (c) two-dimensional princi-
pal components representation of the data displayed in (a). Observe that the clear
separation of the x and 0 subclasses has been lost in the dimension reduction.
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Fig. 9.3. Classical multidimensional scaling display of the gene expression profiles

obtained for 31 melanoma tumors (Bittner et aL. 2000). Distance metric used in orig-
inal high-dimensional space was Euclidean distance. Orange filled circles correspond
to 20 tumors belonging to an "interesting" cluster identified through hierarcrucal
cluster analysis.

by the distances between the points in this three-dimensional display. The

orange . plotting symbols denote tumors belonging to a cluster of interest
that had been detected using cluster analysis algorithms (see Section 9.4),
and the remaining tumors are plotted with blue x symbols. We discuss this
plot further in later sections of thi chapter.

Plotting symbol type, size, and color can be vaied to enrich the amount
of information conveyed in a multidimensional scaling display. For example,
Figure 9.4 is a multidimensional scaling display that shows the degree of simi-
larity among gene expression profiles (using cDNA microarrays with common
reference design) obtained from fine needle aspirate (FNA) samples and ex-
cised tumors from a group of breast cancer patients. The data are described
in detail in Assersohn et aL. (2002). In this plot, small circles represent FNAs,
large circles represent source tumor from which the FNAs were taken, and
each color denotes a different patient. The conclusion to be drawn from this
figure is that gene expression profiles from FNAs resemble the profile of their
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Fig. 9.4. Multidimensional scaling display of the gene expression profiles obtained
for a collection of breast tumor specimens (large circles) and fine needle aspirate
specimens (small circles). Data are from Assersohn et ,al. 2002. Diferent colors rep-
resent different patients. The distance metric used in the multidimensional scaling
was one minus the Pearson correlation.

source tumor. In this group of patients, any minor differences that did ex-
ist between FNAs and their source tumor were generally small enough that
the abilty to distinguish between patients was not impaired. Because the dis-

tance metric used by Assersohn et al. (2002) to produce this multidimensional
scaling display was one minus Pearson correlation instead of Euclidean dis-
tance, the display is slightly different than the principal components form of
multidimensional scaling.

The examples we have presented thus far have involved graphical displays
to examine relationships among specimens. In theory, multidimensional scal-
ing displays could also be used to visualize genes, that is, one plotted point
per gene. However, in practice the number of genes is usually very large and
therefore it could be diffcult to distinguish individual points and patterns

in the display. It may be necessary to screen out genes, to use special col-
ors or symbols for plotting the points, or to perform some preliminary data
reduction through clustering of genes, for example, prior to producing the
multidimensional scaling display. More is said in Section 9.4 about displays
for visualizing gene clusters.
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Here we have shown how the principal components can be usefu for creat-
ing graphical displays. We note, however, that usually principal components
wil not be individually biologically interpretable because they are a weighted
combination of a potentially large number of variables (combinations of ex-
pression measures for thousands of genes if examining classes of specimens).

9.3.2 NonmetrIc Multidimensional Scaling

Rank-based multidimensional scaling methods have also been suggested. The
method of nonmetric multidimensional scaling searches for a configuration of
points in s-dimensional space for which the rankings of the interpoint distances
in the original space are well preserved in the new space. Thus this method uses
only the ranks of the interpoint distances, and discards the magntudes. As
in other rank-based statistical methods, non-metric multidimensional scaling
wil be less sensitive to extreme observations and noise in the data. However,
this stabilty can come at the expense of decreased sensitivity for detecting

true patterns in the data.

9.4 Clustering Algorithms

The goal of clustering methods is to form subgroups such that objects (speci-
mens or genes) within a subgroup are more similar to one another than objects
in different subgroups. A major distinction among types of clustering algo-
rithm is the distinction between hierarchical methods and partitional meth-
ods (Jain et aL. 1999), and examples of both types are discussed. Partitional
methods aim to produce a single partition of the items, whereas hierarchical
methods aim to find a nested series of partitions. K-means clustering and
self-organizing maps are both partitional methods. Hierarchical agglomera-
tive clustering and hierarchical diviive clustering are examples of hierarchical

methods.

9.4.1 Hierarchical Clustering

HierarchiCal clustering algorithm derive a nested series of partitions of data
points. In the microarray context, each data point would consist either of
the expression profile for a specimen or of the expression profile for a gene.
Here we describe the methods in terms of clustering arrays, so data points are
expression profiles for specimens. Agglomerative hierarchical clustering begins
with each array as its own cluster and at each stage chooses the "best" merge
of two arrays or two clusters of arrays until, in the end, all arrays are merged
into a single cluster. Divisive hierarchical clustering proceeds in the opposite
direction. It starts with all arrays in a single cluster and at each stage finds the
best split. Diviive algorithms are less commonly 'ued, perhaps because they
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are more computationally demanding. However, for dividing the set of arrays
into relatively few large clusters, divisive methods may perform better than
agglomerative clustering. We discuss here, however, only the more commonly
used agglomerative hierarchical clustering. Eisen et al. (1998) were some of
the first to apply agglomerative hierarchical clustering methods to microarray
data.

9.4.1.1 Linkage Methods

The clustering procedure requires specification of both a similarity metric and
a linkge. The similarity metric is defined for pairs of specimens. In hierarchi-
cal agglomerative clustering, the two most similar specimens are merged first,
and then specimens or clusters of specimens are successively merged in order
of greatest similarity. Although the similarity metric reflects distance between
two individual specimens, additional specifications are required to define dis-
tance between two clusters. The specification of distance between clusters is
determined by the linkage method. Average linkage uses the average distance
between all pairs of items, one item from each cluster. Complete linkage uses
the maximum distance between a member of one cluster and a member of the
other cluster. Single linkage uses the minimum distance between a member of
one cluster and a member of the other cluster.

Single linkage has a tendency to produce long "string-like" clusters (a
phenomenon known as chaining). It is particularly sensitive to noise in the
data and is regarded by many as an undesirable method. Yeung et al. (2001 b)
found single-link hierarchical clustering to perform poorly for clustering genes
for the gene expression microarray datasets they considered. Complete linkage
tends to produce compact clusters of rougWy equal size. Average linkage can
be viewed as providing a compromise between the single linkge goal of wide
separation between clusters and the complete linkge goal of compact clusters.

Both single linkage and complete linkge use only the rankings of the pair-
wise distances, and the clustering results obtained when using them will be in-
variant to any monotone tranformation of the distance, for example, whether
distances or squared distances are used. In contrast, average linkge does not
have this invariance property, and some investigators find this an undesir-
able property. Gibbons and Roth (2002) examined the performance of several
clustering methods on four publicly available yeast microarray datasets. In
comparing the performance of single, complete, and average linkage hierar-
chical clustering for clustering genes, they found the performance of complete
linkage to be substantially superior to both single and average linkage for re-

covering known functional classes of genes. For clustering specimens, we have
found both complete and average linkge to be usefuL. We recommend against
using single linkge for clustering either specimens or genes.

Numerous other linkage methods are available for use in hierarchical clus-
ter analyses; see Gordon (1999) for an extensive discussion. We note here
only two additional linkage methods besides those described above. One is



9.4 Clustering Algorithm 133

that used by Eisen et al. (1998) and implemented in the "Cluster" software.
Although referred to by Eisen as "average" linkage, it is not the same as the
average linkage we describe above. Under Eisen's average linkge method, the

distance between two clusters is computed as the distance between tl(eir cen-
troids (cluster means). There are computational advantages to this method as
the algorithm requires fewer calculations to determine best merges. However,
it can lead to diffuse clusters that are not well separated.

Another linkage method that has enjoyed some popularity is Ward's
method (Ward 1963). In Ward's method, the focus is on controllng the total
sum of squared distances about the cluster centroids. At any stage, the opti-
mal merge of clusters is the one that leads to the smallest possible increase in
the total sum of squared distances about the cluster centroids. It is similar in
spirit to complete linkage because both are aiming to produce "tight" clusters,
but the two methods differ in the way they quantify "tight."

One disadvantage of hierarchical clustering procedures in general is that
due to their sequential nature, they cannot recover from a bad merge (ag-
glomerative algorithms) or split (divisive algorithms). Once a bad merge or
split decision has been made, the algorithm must continue down that path.
These bad decisions are most likely to occur when there is considerable noise
in the data. Sometimes it is useful to apply a partitional clustering algorithm
to the data such as K-means (see Section 9.4.2) as a final "clean-up" step
after a hierarchical clustering has been applied. For example, if a hierarchical
clustering is performed and it suggests five clusters are present in the data,
one can perform K-means with five clusters using the cluster centroids from
the hierarchical clustering as the initial centroids. Yeung et al. (2001b) found
this clean-up step to yield improved clustering results in their investigations.

9.4.1.2 Dendrograms

The end result of a hierarchical clustering is a tree structure or dendrogram.
Example dendrograms are presented in Figures 9.5(a) to (c). The dendrogram
in Figure 9.5(a) resulted from hierarchical cluster analysis applied to log ex-
pression ratios from the melanoma data of Bittner et al. (2000) (31 tumors,
3613 genes as described for Figure 9.3). The distance metric used was one mi-
nus the Pearson correlation and average linkage was used. At the bottom of
the tree, each of the original specimens constitutes its own cluster and, at the
top of the tree, all specimens have been merged into a single cluster. The tree is
"rooted" at the top. Mergers between two specimens, or between two clusters
of specimens, are represented by horizontal lines connecting them in the den-
drogram. The height of each horizontal line represents the distance between
the two groups it merges, with greater heights representing greater distances.
This is often not appreciated and sometimes software does not even preserve
the height data which are very important to interpreting dendrograms.'

Figures 9.6(a) and 9.6(b) were created from simulated data using hierar-
chical clustering with distance equal to one minus Pearson correlation and
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Fig. 9.5. Dendrograms resulting from hierarclucal cluster analyses of gene expres-
sion profiles obtained for 31 melanoma tumors (Bittner et aL. 2000). Distance metric
used in all three dendrograms was one minus Peason correlation. Linkge methods
used were (a) average linkage, (b) single linkage, and (c) complete linkge.
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Fig. 9.6. Dendrograms created from two simulated datasets using average linkage
hierarcrucal clustering with distance equal to one minus Pearson. For dendrogram
(a), Gaussian data were simulated from two well-separated clusters. Data from ran-
dom Gaussian noise were used to create dendrogram (b).
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average linkage, and they ilustrate the importance of labelig the vertical

axs in a dendrogram. Both figures might convey the impression of two clus-
ters. The data used for Figure 9.6(a) were Gaussian data generated from two
well-separated clusters, and this figure does, in fact, exhibit two tight, well-
separated clusters. The height at which the last merge occurs to complete
the cluster of items 1 through 10 is approximately 0.12 (Pearson correlation
= 0.88), and the cluster of items 11 through 20 is completed at a height of
approximately 0.18 (Pearson correlation = 0.82). The distance between the
two clusters is large; the height of their merge corresponds to a Pearson cor-
relation of only 0.42. In contrast, all merges in Figure 9.6(b) occur at heights
of 0.6 or greater (Pearson correlation less than 0.4). The data used to create
Figure 9.6(b) were generated as random Gaussian noise; that is, there was no
true clustering. (We labeled the arrays based on their resulting ordering in the
dendrogram.) Any appearance of clusters in Figue 9.6(b) is due to chance.

Dendrograms in Figures 9.5(a),(b),(c) differ only in the linkage method
used. It can be readly seen how changing the linkage method can substan-

tially alter the results of the clustering, and therefore the appearance of the
duster dendrogram. For example, using complete linkage (Figure 9.5(c), tu-
mors i to 4 appear to cluster with tumors 25 to 29 (albeit fairly late in the
merging process). In contrast, using single linkge (Figure 9-5b) tumors 25
to 29 are dispersed throughout the dendrogram. It should be kept in mind,
however, that the left-to-right ordering in the dendrogram is determined by
an arbitrary rule that may differ between software implementations. The or-
dering rule used by the statistical software R is to place the tighter of the
two just-merged clusters on the left. Tightness is determined by the linkage
method, with singleton clusters being the tightest possible clusters. Eisen et
al. (1998) suggest that when clustering genes by hierarchical clustering, one
might determiúe left-to-right ordering based on the genes' average expression
levels (across arrays) or chromosomal positions. The dendrograms in Figure
9.5 use the "tighter cluster to the left" rule. The fact that tumors 1 and 3
appear on the far left in the dendrogram of Figure 9.5(a) but on the far right
in Figure 9.5(b) is of little significance. In both cases, those two tumors cluster
first with each other and are some of the last to be clustered with any other
tumors.

Figure 9.7 shows another hierarchical clustering dendrogram constructed
from the same data, where in this case, median centering of the genes (see
discussion at end of Section 9.2) has been performed prior to clustering. Note
the difference between it and the dendrogram in Figure 9.5(a) that used the
same similarity metric and likage method. However, had we used Euclidean
distance in the hierarchical clustering, the median centering of genes would
not have affected the clustering results because the gene medians would "sub-
tract out" in the Euclidean distance formula. All of the above dendrogram
examples demonstrate the potential lack of stabilty of clustering results with
regard to choice of cluster analysis method and data preprocessing. Some of
this variation is to be expected because different clustering methods or data
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Fig. 9.7. Dendrogram resulting from average linkge hierarcrucal cluster analysis
of gene expression profiles obtained for 31 melanoma tumors (Bittner et aL 2000).
Prior to clustering, median centering of log ratios was performed witrun each gene.
Distance metric was one minus Pearson correlation.

preprocessing methods may emphasize different aspects of the data, but some
of the variation is pure instabilty resulting from noise in the data, the high-
dimensionality of the data, and the relatively small number of arrays. Very
strong clustering patterns (tight clusters and good separation between clus-
ters, e.g., Figue 9.6(a) should be reasonably stable even when factors such
as linkge method are varied, but diferent distance metrics or data center-

, ing methods might stil have a very large impact on the clustering results.
We recommend comparison of results obtained from application of multiple
clustering methods in order to assess the level of this instabilty for any given
dataset. Alo, when trying to compare clustering patterns across different
ciatasets, it should be kept in mind that the comparison could be completely
confounded with the clustering algorithms used.

9.4.1.3 Color Image Plots

Another popular display method for hierarchical clustering results is a color
image plot that is a rectangular array of colored blocks, with the color of

"-
6cd50 Cc. ilJ h¡Al,.ltp)
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each block representing the expression level of one gene on one array (spec-
imen). Typically, shades of red are used to represent degrees of increasing

expression, and shades of green are used to represent degrees of decreasing

expression. Each column of boxes represents a specimen, and each row of
boxes corresponds to a gene. The columns are ordered according to how they
are ordered in the hierarchical clustering dendrogram obtained from clustering
specimens. In thi case, the genes have also been subjected to a hierarchical

clustering, and the rows are ordered according to how they were ordered in the
dendrogram that resulted from the cluster analysis of genes. The end result is
a color image plot with patches of red and green indicating combinations of

genes and specimens that exhibit high or low expression. If one were cluster-
ing genes on the basis of time-series experiments and wanted to display the
results in a color image plot, typically only the rows, and not the column,
would be ordered by hierarchical clustering.

Figure 9.8 presents an example color image plot for the same melanoma
data used for the dendrograms just discussed. We have color-coded the blocks

in this display by the values of the standardized log ratio, calculated by sub-

tracting the mean log expression ratio for the array and dividing by the stan-
dard deviation. This puts the data on a scale that is more comparable to using
a 1 - correlation distance metric. A red band of blocks (corresponding to a
subset of genes) at the center top of the image plot seems to be one of the
defining characteristics of the subgroup of tumors consisting of tumors 5 to
24 (with labels printed in orange). This is the "cluster of interest" reported
by Bittner et al. (2000) except for the addition of tumor 5. See Section 9.5

for further assessment of this cluster. Other examples of color image plots are
given in Eisen et al. (1998) and Alizadeh et al. (2000).

Care must be taken in interpreting the color-coding of the blocks when any
standardization or centering of the data has been performed. For example, in
Figure 9.8 expression measurements were standardized within each array, so
the coloring of a particular block represents the number of standard devia-
tions the expression measurement is away from the mean in that array, and
these standardized values cannot be compared in an absolute sense between
arrays. When median centering of genes has been performed, then the color-
coding of a particular block should be interpreted as the amount of expression
above or below the median for that gene. In this case, the values cannot be
compared in an absolute sense across genes. The impact of median centering
genes on the appearance of the image plot is that the red and green blocks
are approximately balanced within each row (gene).

9.4.2 k-Means Clustering

The k-means method is a popular partitional clustering procedure. Given
some specified number of clusters k, the goal is to segregate objects (speci-
mens or genes) into k cohesive subgroups. (Note that the k in k-means should
not be confused with K, the total number of genes.) A published example
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Fig. 9.8. Color image plot representing results of average linkge hierarchical cluster
analysis of gene expression profiles obtained for 31 melanoma tumors (Bittner et
al. 2000). Distance metric was one iinus Pearson correlation. Thors (colwns)
and genes (rows) are each ordered according to dendrogram order. At the top is
the dendrogram resulting from the clustering of the tumors. Because the distance
metric used for clustering was 1 - correlation, each block in this display ha been
color-coded by the value of its corresponding standardized log ratio (for each log
expression ratio on each array, subtract the mean log expression ratio for the aray
and divide by the standard deviation for the array). Blocks colored most intense

red represent the most highly over expressed genes, and blocks colored most intense

green represent the genes with greatest degree of under expresion. Black indicates
genes whose expression is siiilar in the experimental and common reference samples.
Note the red band of blocks (corresponding to a subset of genes) at the center top of
the image plot. This appears to be one of the defining characteristics of the subgroup
of tumors consisting of tumors 5 to 24 with tumor numbers printed in orange.

of its application to gene expression data is found in Aronow et al. (2001).
The basic algorithm, as described by Macqueen (1967), begins with either an
initial partition of the objects into k subgroups or an initial specification of k
cluster centroids. These initial subgroups may represent a random partition
of the dataset, or sometimes they are obtained from a preliminary hierarchi-
cal clustering or other clustering. Similarly, the initial centroids might be k
randomly chosen points from the dataset or they might be centroids of clus-
ters obtained from a preliminary hierarchical clustering dendrogram cut at
some leveL. The algorithm proceeds by considering each object, one by one,
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and determinng to which of the current cluster centroids the object is closest
(usually as measured by Euclidean ditance). The object is then "assigned"
to that cluster. The centroid of the recipient cluster is updated to reflect its
new member, and the centroid of the donor cluster (if there was an initial
partitioning of objects) is updated to reflect the loss. The algorithm cycles
through the data again, reallocating objects among the clusters and updating
cluster centroids. The cycling ends when the entire list of objects has been
presented without any more reallocations occurring. In practice, it is a good
idea to run the algorithm multiple times using different initial partitions or
centroids to assess sensitivity of the final results to the initial conditions. If
diferent results are obtained, one might select the best partition by use of a
criterion such as minium sum of withi-cluster distances.

A major advantage of nonhierarchical clustering methods such as k-means
is computational feasibilty. Unlike hierarchical methods, there is no need to
compute or store all pairwise ditances (or simarities) between objects. This
makes it possible to cluster a larger number of objects in less time. In the
context of microarray data, this is particularly important for clustering 'genes,
which may number in the tens of thousands. Many computer implementa-
tions of hierarchical clustering canot handle clustering of more than a few
thousand genes. Disadvantages of k-means are that it does require specifca-
tion of a number of clusters and an initial partitioning, and the fial results
can be very sensitive to these choices. Rahnenfuehrer (2002) compares several
clustering methods on two micro array datasets with known clusters and fids
that k-means (fixing the number of clusters) typically performed poorly when
applied only a single time to a dataset. However, Rahnenfuehrer (2002) also
considered a "best-of-l0" k-means partition. Thi best-of-l0 partition is ob-
tained by applying the k-means algorithm 10 times to a single dataset using
ten different randomly chosen sets of initial cluster centroids, and choosing
the partition that miniizes the withi-cluster sum of squares. This best-of-l0

k-means partitioning method had very good performance on the two datasets
considered by Rahnenfuehrer (2002). Another limitation of k-mean is that

less information is provided about the full structure of the data in the sense

of similarity or dissimilarity among clusters. For example, in hierarchical clus-
tering a dendrogram shows relationships among clusters. Graphical display
of the k-means results such as a multidimensional scaling plot of the cluster
centroids or of all of the ~apoin~th the clusters identified by color can
be helpfuL. d '" te. poi" l s

Figure 9.9 is a parallel coordinates plot ilustrating the relationship be-

tween the clusters derived using various hierarchical and k-means clustering
methods applied to the melanoma data of Bittner et al. (2000). The first (low-
est) level of circles represents the clusters derived by hierarchical clustering
using the distance of one minus Pearson correlation and average linkge; the
leftmost cluster is the 20-element cluster of tumors 5 to 24. The second level
shows the clusters derived from hierarchical clustering with average linkage
using Euclidean distance rather than one minus correlation distance. It can
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Fig. 9.9. Parallel coordinates plot displaying results of multiple clustering methods
applied to the melanoma data of Bittner et aI. (2000). The first (lowest) level of
circles represents the clusters derived by hierarchical clustering using distance of
one iinus Pearson correlation and average linkage; the left most cluster is the 20-
element cluster of tumors 5 to 24 noted in Figure 9.3. The second level shows the

clusters derived from hierarchical clustering with average linkge using Euclidean
distance rather than one iinus correlation distance. The third through fifth levels
are based on k-means clustering with k = 7, 6, and 5, respectively. Each k-means
result is the best obtained (smallest sum of squared distances from centroids) from
among 10 separate k-means analyses, each using a different set of k iiutial cluster
centroids selected randomly from the 31 tumor profies.

be seen that changing the distance metric substantially alters the definitions
of the clusters. Changing to the k-means clustering method (k = 7, 6, and 5
for levels 3, 4, and 5, respectively) defines yet another set of clusterings. For
each of the k-means analyses(k = 7,6, and 5), k initial cluster centroids were
randomly selected (without replacement) from among the 31 tumor profiles.
This random selection of k centroids was performed 10 times: the k-means
clustering was derived for each initialization, and then the final k-means clus-
tering result reported was the one of the 10 that produced the smallest sum
of within-cluster sum of squared distances from centroids.
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9.4.3 Self-Organizing Maps

Self-organizing maps (SOMs), developed and studied by Kohonen (1997), are
another clusering approach that has been used for the analysis of microarray
data. It can be viewed as a constrained version of the k-means algorithm in
which a relationship is maintained between cluster centroids. In this type of
analysis (assuming one is clustering arrays), a set of K-dimensional vectors
is mapped into a set of nodes in a lower-dimensional space. The nodes in

this lower-dimensional space have some imposed structure such as being ar-
ranged in a rectanguar grid on a two-dimensional coordinate system. With
each node in the grid there is associated a K -dimensional vector, sometimes
called a code book value. We denote the codebook value associated with the
jth node by Cj. Initially, codebook values are assigned at random to the grid
nodes, for example, by random selection from the data points or random gen-
eration on the range of the data. Then each vector in the dataset ("input
value") æ is compared to the set of codebook vectors to determine to which

it is closest. That closest codebook value em and other codebook vaues cor-
responding to grid nodes within some neighborhood of the closest node (on
the two-dimensional grid) are moved toward the input value æ by some multi-
plicative shrinkge factor a(t), called the learning rate. The procedure cycles
through the data, and as the iterations progress,both the learning rate and
the neighborhood size are decreased.

Symbolically, the iterated step in the SOM procedure can be described as
Cj ~ cj+a(t)(æ-cj) for all Cj associated with grid nodes in the neighborhood

Nm(t) of node m for iterations t = 1, 2, .... The procedure iterates through
the dataset multiple times until convergence of the codebook vectors is reached

or until a(t) = O. A popular choice for a(t) is a linear function that decreases

to zero by the time the maximum number of iterations is reached; a popular
choice for the neighborhood Nm(t) is a "bubble" with radius that decreases
with the number of iterations. At the end, each input value is assigned to the
node having the codebook vector to which it is closest. In this way, clusters of
the original data vectors in K -dimensional space are formed and associated
with grid nodes in two-dimensional space. Neighboring grid nodes wil have
associated with them codebook vectors that are more similar than codebook
vectors associated with nodes distant from each other on the two-dimensional
grid.

If one were to define the neighborhood size small enough that it never
contained any other grid nodes besides the one at its center, then codebook
vectors would be updated independently of each other. In this case, the SOM
procedure would reduce to an approximate k-means clustering with k equal
to the number of grid nodes.

There is obviously considerable subjectivity in the choice of grid size and
configuration, shrinkage function, and neighborhood size, and it is well known
that the fial map can be sensitive to these choices. It is recommended that
multiple settings of these factors be considered to determine how much the
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final results will vary. If the final map does not vary much, one can have
greater confidence in the results.

Tamayo et al. (1999) fit a SOM to cluster genes in a time course exper-
iment involving hematopoietic differentiation in HL-60 cells using the softare
GeneCluster available at http://ww-genome . wi . mi t . edu/ cancer / soft
ware/software.htmL. In this experiment, gene expression profiles were mea-
sured on cRNA samples prepared from HL60 cell line cultures at 0, 0.5, 4, and
24 hours after exposure to the phorbol ester PMA. The array platform was the
Affymetrix HU6000 expression array which contains probes to represent 6416
distinct human genes, of which 585 were used in the analysis because they
showed sufcient variation across timepoints; see Appendix B for detailed
information about the data. We conducted our own SOM analysis of these
data, using the GeneSOM package (based on SOM..AK-3.1 written in R,
http://ww.stat.math.ethz.ch/CRAN/bin/windows/ contrib/GeneSOM.

zip) to fit a 4 x 3 rectangular SOM with horizontal and vertical spacing

of one unit. We used the same 585 genes as Tamayo, but we prefer to work
on the log scale. We transformed the expression vaues to the log base 2 scale,
and then each gene was standardized by subtracting its mean over the four
time points and dividing by its standard deviation. (Tamayo et al. applied a
similar standardization to each gene, but did not take log transformation.)

We specified 10,000 iterations, an initial a = .1 with linear decrease over the

iterations, and a bubble neighborhood with initial radius = 5 and decreasing
linearly to 1 over the iterations.

Figure 9.10 displays the results of the SOM fit. A multipanel figure of
plots such as this is one of the most commonly employed display techniques
for SOMs. For each node of the fial SOM, an average time course (over
the four timepoints) for the genes mapped to that node was computed. The
arrangement of panels in the figure corresponds to the arrangement of nodes
on the grid. The line plot displayed in each panel is the average time course for
the genes mapped to that node, and the error bars at each timepoint indicate
one standard deviation where the standard deviation is computed from the
values recorded at that timepoint for those genes. For example, we see that the
genes mapping to the nodes in the last row all exhbit expression levels that
are relatively constant from baseline (time 0) through 4 hours, but then their
expression levels decrease by 24 hours. We refer to the plot at each node as a

profile plot. Similarity of the profile plots gives an indication of the closeness
of the clusters. Although with four time points it is not too diffcult for the
eye to assess similarity of profile plots, for more complex profile plots over
longer time courses, this assessment may be diffcult. In these cases, it can be
useful to cluster the codebook values using k-means or hierarchical clustering
and visualize them using a multidimensional scaling display or dendrogram.

SOMs and k-means clustering share many of the same advantages and dis-
advantages. What we see as the major advantage of SOMs over hierarchical
clustering is the computational feasibilty when large numbers of objects (e.g.,
genes) are being clustered. For example, to cluster 5000 genes using hierar-
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Fig. 9.10. Profile plots obtained for the nodes of a 4 x 3 SOM constructed to cluster
genes in a time course experiment involving hematopoietic differentiation in HL-60
cells (Tamayo et aI. 1999). Plotted values represent average log base 2 expression
measurements, and error bars represent one standard deviation. The value of n
designated for each node is the number of genes that were mapped to that node by
the 80M analysis.

chical clustering would require calculation of milions of pairwise distances.
Disadvantages are the sensitivity to grid configuration and other parameters
such as neighborhood size, learning rate, and shrinkage function. Particularly,
we have found cases where using too few grid nodes can lead to very poor
performance, so we recommend erring on the side of too many grid nodes
with the possibilty of later combining or reducing the number of nodes. Also,
as reported by Rahnenfuehrer (2002), sometimes the SOMs take a very long
time (large number of iterations) to converge. Thus, although SOMs have
been successfully applied to some microarray datasets, in general one should
exercise caution in using them.
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9.4.4 Other Clustering Procedures

There are many other clustering methods and it is beyond the scope of this
book to cover even a modest fraction of them. However, we make note of just
a few particularly interesting features of some other clustering procedures.

The methods we have described up until this point are algorithmic rather
than statistically based procedures. They all make assignments of each item
to only one cluster rather than allowing for the possibilty of membership in
multiple clusters. Also, we have considered up to now only clustering arrays
using similarity metrics based on all genes and clustering genes using simi-

larity metrics based on all arrays. Briefly, we now discuss some alternative
approaches.

One statistically based method of clustering involves the use of miure
models to determine clusters. Such approaches are often referred to as model-
based clustering; see, for example, Banfield and Raftery (1992). Yeung et aL.

(2001a) discuss application of model-based clustering methods to microarray
data. The Gaussian mixure model approach assumes that the data have
arisen from a mixture of multivaiate Gaussian distributions. For example,
in clustering genes, the log expression vector for each gene (across the set of
arrays) is assumed to have a multivariate Gaussian distribution characterized
by a mean vector and a covariance matrix. Different clusters of genes are
generated from different Gaussian distribution components. One can write
the likelihood of the data as a function of the mean vectors and covariance
matrices. Through maximum likelihood estimation, one can estimate the mean
vector and covariance matrix of each of the component Gaussian distributions
as well as the prevalences of the different components of the mixture. For each
item considered in the clustering, one can estimate a probabilty that it came
from any given cluster. These mixture model approaches are only possible to
apply when the number of items (arrays or genes) being clustered exceeds the
data dimension (number of genes if clustering arrays and number of arrays if
clustering genes), and they are most likely to be successful when the number
of items substantially exceeds the dimension. Consequently, this approach is
most applicable to clustering genes. For clustering specimens, however, one
would have to either restrict attention to a small number of genes, or use the
fist few (largest variance) principal components of the genes as the data, not
individual genes. The R and Splus software packages both contain mixure
model-based clustering routines.

FUzzy clustering algorithms have the feature that they do not require each

item to be assigned to only a single cluster. The output of a fuzzy clustering
algorithm is a set of membership probabilties. Such algorithms might be
particularly relevant for the clustering of genes. For example, we expect that
some genes are involved in more than one pathway, and this could manifest
itself as the gene belonging to more than one cluster. Jain et aL. (1999) describe
one basic version of a fuzzy clustering algorithm.
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Several papers have proposed two-way clustering methods, that is, the si-
multaneous and nonindependent clustering of genes and specimens. The plaid
model of Lazzeroni and Owen (2002) fits to gene-expression data sums of lay-
ers of two-way analysis of variance (ANOVA) models. In one of the ANOVA
layers, a few subsets of genes may be showing increased or decreased expres-
sion in some subsets of specimens, whereas in another ANOVA layer, different
subsets of genes may be exhibiting increased or decreased expression in dif-
ferent subsets of specimens. By adding together all of these layers, one can
model complex situations such as genes potentially being involved in multiple
pathways and influencing specimen profiles in multiple ways. As noted by its
developers, a drawback to the complexity of the plaid model is that its fit can
be sensitive to various options one specifies in the algorithm used to fit it, so
considerable experimentation with fitting algorithm may be required to as-
sure stable results. The biclusteringmethod of Cheng and Church (2000) has
similarities to the plaid models. It is an algorithm for searching for interesting
gene-by-array subsets using ANOVA-type models, which is a slightly different
goal than that of the plaid model which seeks to explain the expression data
by suming up layered ANOVA models.

The gene shaving method was proposed by Hastie et aL. (2000). It is de-
signed to identify subsets of genes having high correlation in expression pat-
terns that exhibit large variation across arrays. It can be effective in finding

appropriate clusters when different subsets of specimens are driving different
clusters of genes. Several authors have developed methods of finding subsets
of genes that lead to interesting clustering of specimens (Ben-Dor et aL. 2001;
Xing and Karp 2001).

Sometimes investigators wil use an informal approach to clustering genes
on the basis of a subset of arrays or clustering arrays on the basis of a subset
of genes. For example, from inspection of a color image plot produced using
hierarchical clustering, it might be apparent that a particular subset of genes
is mostly responsible for a cluster of arrays (specimens). It can be useful to
refine the cluster by reclustering all arrays using only that subset of genes.
In doing this, it is hoped that potential distortions in the clusters of arrays
caused by including extraneous and possibly noisy data from other genes will
be reduced. Applying class comparison procedures, such as t-tests or F-tests

(Chapter 7) to compare gene expression profies among the clusters is not
valid, however, because the clusters were constructed based on the expression
data rather than predefined based on phenotypes of the specimens. In the

next section, we discuss more appropriate methods for evaluating clusters.

9.5 Assessing the Validity of Clusters

Clustering algorithms can find clusters even on random data. The clusters
that are found by clustering algorithms wil exhibit greater within-cluster
homogeneity and more between-cluster separation than clusters formed by
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randomly partitioning the data because clustering algorithm can find spuri-
ous patterns in high-dimension random data. These features must be taken
into account when attempting to objectively assess the validity of clustering
results.

Assessing cluster validity is especially important when clustering speci-
mens. We know that proteins are organized into pathways, that some genes
are coregulated, and that some proteins are transcription factors involved in
the transcriptional regulation of other genes. Consequently, the expression

profiles of a large set of genes are expected to have structure. On the other
hand, it is not clear a priori that the expression patterns of the specimens

should have structure. If the specimens represent RNA extractions from dis-
ease tissue specimens of different patients, then the claim that there are real

clusters is often a claim that the disease is not homogeneous and that different
molecular subtypes have been discovered. This is a strong claim that requires
more basis than simply that a clustering algorithm produced some clusters.
In this section, we discuss some approaches for assessing clustering results.
More extensive discussions can be found in Jain and Dubes (1988, Chapter 4)
and Gordon (1999, Section 7.2).

Validation of a class predictor (Chapter 8) is far easier than validation of
a classification obtained by a cluster analysis. For the former, there is known
class information, and one can use cross-validation or bootstrap techniques
on the data used to build the predictor, or one can test the predictor on a
completely independent dataset for which class inormation is known. The
diffculty in validating a cluster analysis-derived classification is that there

is no gold standard classification against which the clustering results can be
compared.

In lieu of a true gold standard classification, investigators sometimes wil
examine the relationship between the clustering results and external variables
that have not been used in determining the clusters. For example, in studying
cancer cell lines, one would likely know tissue type of origin of each of the cell
lines, and it would be expected that a cluster analysis of the expression profiles
of those cell lines should be able to recover that tissue tye class structure. For

clustering genes, it might be known that genes belong to certain functional
classes and we might expect that at least some of that functional class struc-
ture would be picked up by the cluster analysis. Although it is not the goal to
predict the values of those external variables or to rediscover the subgroups
defined by those external variables, this exercise can lend some credibilty to
the clustering. However, the clustering wil undoubtedly produce some clus-
ters that are not readily explainable by the external information. This leaves

one in a quandary as to whether the unexpected results are spurious or if they
represent a truly novel and important finding. It is clear that additional ap-
proaches to cluster validity assessment are necessary. We focus on three main
aspects of cluster validation: how to establish the presence versus complete
absence of any clustering, how to find a good partition among many possi-
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ble partitions of the data, and how to assess the reproducibilty of a specifc
Cluster.

9.5.1 Global Tests of Clustering

We use the term global test for Clustering to refer to a test for the presence
versus absence of Clustering. To perform such global tests, one must have in
mind some way of characterizing the degree of Clustering in a set of points,
and one must specif some null (no clustering) model to test. Some ways
to characterize the degree of clustering inClude the distribution of pairwise

revYovL ~oint distances or the distribution of nearest neighbor ditances.
'l~ p It (. '" The concepts of pairwie and nearest neighbor distance distributions are

ilustrated in Figue 9-11. The leftmost plot in row (a) shows a scatter of

points distributed completely at random over a cirCle with radius one. The
scatterplot in row (b) shows a scatter of points generated from a bivariate
normal distribution exCluding points that fell outside the circle with radus
one. Note that the scatterplots in rows (a) and (b) both could be regarded
as showing a single Cluster of points. However, a difference is that the Cluster
shown in the scatterplot in row (b) shows a higher density of points in the
center of the cirCle with decreasing density moving outwards from the cen-
ter, whereas the Cluster in row (a) has a unform density of points over the
cirCle. The scatterplot in row (c) distinctly shows two Clusters. The middle
figure in each row is a histogram of nearest neighbor ditances, and the last
figure in each row is a histogram of pairwise distances. The differences in the
scatterplots in rows (a) and (b) are reflected in both the nearest neighbor

and pairwise distance histograms. The nearest neighbor histogram in row (b)
shows an excess of small nearest neighbor distances (taller bar in smallest dis-
tance category) compared to the nearest neighbor distance histogram in row

(a). This is picking up the higher density of points in the middle of Cluster (b)
compared to cluster (a). Also, the pairwise distance histogram in row (b) is
more "pointed" and slightly skewed compared to the corresponding histogram
in row (a). The most obvious difference in histograms is seen in comparing row
(c) to row (a) or (b), in particular the bimodal pairwise distance hitogram in
row (c). Pairs of points with members drawn from the same cluster contribute
most of the smaller pairwise interpoint distances comprising the left peak of
the hitogram, and pairs of points with members drawn from different Clus-
ters contribute most of the larger interpoint distances in the right peak of the
histogram.

There are many plausible null models, and an inherent diffculty in con-
ducting a test of no clustering is that the results can depend higWy on the
chosen null modeL. As previously stated, the scatterplots in both rows (a) and

(b) of Figure 9.11 could be reasonably regarded as null models, yet if one were
to test either one of them for clustering while specifyng the other as the null
model, the test would indicate significant departure from no clustering.
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Fig. 9.11. Scatterplots (left colum), nearest neighbor distance histograms (rrddle
colum), and pairwise distance mstograms (right column) for three hypothetical
datasets in two dimensions. In the top (row (a)) scatterplot, points were generated
completely at random over a circle with radius one. Points in the rrddle (row (b))
scatterplot were generated from a bivariate normal distribution excluding points
that fell outside the circle with radius one. In the bottom (row (c)) scatterplot,
points were generated from two bivariate normal distributions with different means.
The nearest neighbor distances are calculated by computing for eah point in the

dataset the distance from that point to the closest other point in the dataset. The
pairwise distances are calculated by considering all possible pairings of points within
thedataset, and then computing the interpoint distance witmn eah pair.

Another type of null model that has been proposed (Harper 1978) is the
one obtained by permuting the data, for example, permuting all of the ex-
pression values for different genes separately for each array. This approach is
problematic when clustering specimens because it destroys the natural corre-
lation among the genes, and this is not a null model of interest. Hence we do
not recommend permutation methods for generating null data for assessing
clustering of specimens.

The extremely high dimension of gene expression profile data makes it
particularly challenging to specify an appropriate form for the null distribution
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in a global test. Typically, one must estimate from the data some parameters
that define the null distribution. The higher the dimension, the more unnown
parameters there are that must be assumed to have known values or must
be estimated from the data. Errors in either the estimates or the assumed
values can translate to huge errors in specification of the null distribution of
points in the high-dimensional space, and this can cause extreme problems
with the performance of statistical procedures. In our investigations we have
found examples of global tests of clustering that perform very well in two-
or threedimensional space yet perform miserably in very high-dimensional

space. This prompts a word of caution that one should not blindly assume that
global tests of clustering that were developed for low-dimensional problems
wil automatically work well for high-dimensional gene expression data.

McShane et aL. (2002) describe a global test of clustering for testing for the
presence of any clustering in a collection of specimens. They base their test on
the first three principal components (multidimensional scaling representation)
for the specimens, and then they test for clustering in this threedimensional
space. This avoids the high-dimensionality problems described above, and they
found their test to have good properties in simulation studies based on several
high-dimensional expression datasets. In our experience many important clus-
tering patterns can be detected using just the first three principal components.
McShane et aL. (2002) argue that a null distribution of a single trivariate nor-
mal distribution is reasonable because the principal components are weighted
combinations of large numbers of variables, and therefore their distribution
wil tend to look normal; the mean and variance of that null distribution is
estimated from the data. The McShane et aL. (2002) quantification of cluster-
ing is based on the distribution of nearest neighbor distances. Applying their
global test to the melanoma data of Bittner et aL. (2000), described in Section
9.4.1.2, resulted in a p-value 0.01 for the test of no clustering. Hence they
concluded that there was significant evidence for clustering of the expression
profies of the melanoma tumors.

9.5.2 Estimating the Number of Clusters

Once it is established that there does exist clustering in the data, a ne~t logical
step is to determine a good partition of the data or how many clusters there
are in the data. There is an extensive literature on determining the number
of clusters in multivariate data. A comprehensive review of 30 different proce-
dures is given by Miligan and Cooper (1985). Many of these procedures are
based on measures of cohesiveness within clusters versus separation between
clusters, measures of the predictive power of the clustering (as described be-
low), or on data perturbation methods in which stabilty of a partition in the
presence of jittering (added random noise) is assessed. We discuss, in turn,
several of these approaches that have been applied to microarray data.

Yeung et aL. (2001b) propose use of a figure-of-merit (FOM) criterion
for estimating the predictive power of a clustering and choosing an optimal



9.5 Assesing the Validity of Clusters 151

number of clusters. Their procedure is performed by removing one array at
a time from the dataset, clustering the genes into k clusters based on the
remainig data, and then assessing how well those k gene cluster means can

predict the gene expression in the left-out array. Each array is left out, in turn,
and the predictive measure is averaged over the arrays to produce the FOM.
This procedure is repeated for different values of k and the FOM is then
plotted against the number of clusters k. The number of clusters at which
it reaches a minimum is taken to be the estimate of the optimal number of
clusters. Their particular interest was in clustering genes and they relied on the

independence of the arrays for justification of their leave-one-out approach. It
is not clear that their method should be applied to clustering specimens, as
it is not reasonable to assume that genes are independent.

Tibshirani et al. (2001) proposed the GAP statistic for estimating the num-
ber of clusters in multivariate data. It is based on a statistic that is equal to a
pooled within-cluster sum of squares around the cluster means. The value of
the GAP statistic observed for the data is compared to the sampling distribu-
tion expected under a null distribution described in their paper to determine
the number of clusters that produces a partition most significantly different
from that expected under the null distribution. In their paper, they applied
it to a miclOarray data example in which they were trying to find the opti-
mal number of clusters of arrays, although their reported simulation studies
evaluated situations only up to dimension 10. Unfortunately, the GAP statis-
tic appears to break down in high-dimensional microarray settings. Dudoit

and Fridlyand (2002) reported that it overestimates the number of clusters
in micro array data. Our own simulation studies have indicated that _ it wil
frequently erroneously find clusters in high-dimensional data that were gen-
erated from a single unimodal distribution. Hence it should not be used for
determination of the number of clusters in microarray data.

Golub et al. (1999) suggested a cross-validation method for assessing clus-
tering results that involves building a predictor for the observed clusters and

assessing whether new expression profiles can be unambiguously assigned to
specific clusters. Without an independent dataset, however, the method is
problematic because the same data is used to build the clusters, develop the
predictor, and evaluate classification error. The method could potentially be
applied in the context of leave-one-out cross-validation (see Section 8.4.2).

Two cautions are in order regarding application of procedures for estimat-
ing the number of clusters to microarray data. The first is that procedures
that work well in lower dimensions do not necessarily work well in the high-
dimensional setting of microarrays. The failure of the GAP statistic for mi-
croarray data is a good example of this. In addition, there is a temptation to
use these procedures that are designed for estimating the number of clusters
as global tests (i.e., to demonstrate that the best estimate of the number of
clusters is greater than one versus only one). Many of these procedures were
not designed to differentiate between no clustering versus some number of
clusters more than one. It should not be assumed without further investiga-
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tion that they will perform well as global tests of clustering, because they may
not have been designed to control the probabilty of falsely estimating that
the number of clusters is greater than one in situations in which there are no
clusters in the data. Moreover, some of the tests cannot even be calculated
for the case of one cluster.

9.5.3 Assessing Reproduciblity of Individual Clusters

McShane et al. (2002) argue that it may be more usefu to thin in terms of
assessing reproducibilty of individual clusters rather than trying to find an

"optimal number" of clusters. For example, it could be that a dataset contains
only a few very strong clusters in the midst of "noise" points that don't fall
neatly into clusters. Because a cluster algorithm will have to deal somehow
with those noise points, it likely wil either lump them in with one or more of
the tight clusters (thus weakening those clusters) or will form additional small,
not very reproducible clusters to encompass them. Consequently, either the
average strength (over all clusters) of the resulting clusters or the number of
clusters could be misleading. Both the methods of McShane et al. (2002) and
those of Kerr and Churchill (2001 b) focus more heavily on assessing validity
of individual clusters rather than estimating the number of clusters.

McShane et aL. (2002) and Kerr and Churchil (2001 b) each considered
data perturbation methods for assessing clustering results. The general ap-
proach of data perturbation to assess clustering stabilty is a technique that
has been used by others in different settings (Rand, 1971; Gnanadesikan et
aL. 1977; Fowlkes and Mallows 1983).

Two cluster reproducibilty measures were proposed by McShane et al.
(2002) for assessing the meaningfess of clusters of specimens. The idea is
to assess the stabilty of the observed specimen clusters in the background

of experimental noise. "New data" are simulated by adding artificial exper-
imental error in the form of Gaussian noise to the existing log expression

measurements. An appropriate variance to use in generating this Gaussian
experimental error can be estimated on a gene-specific basis if replicate ar-
rays are available. Otherwise, an approximate variance can be generated in
the following way. For each gene, the variance across arrays of the expression

measurements is calculated. If it is felt that the majority of genes wil not be
differentially expressed across arrays, then the median (50th percentile) of the
observed distribution of variances can be taken as the experimental variance
estimate. The median should be robust to contamination by modest numbers
of large standard deviation estimates that reflect true tumor-to-tumor differ-
ences rather than experimental noise. A lower percentile such as the 10th or
25th may be a good choice if larger numbers of differentially expressed genes
are expected.

The new "perturbed" data are then re-clustered and the results are com-
pared to the original clustering results by calculating two different comparison
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measures. The first measure they call the robustness (R) index, and thesec-
ond measure they call the discrepancy (D) index. The perturbation-clustering
cycle is repeated numerous times to estimate the stabilty of the original clus-
tering to data perturbations. Considering a particular number of clusters (for
example, cutting the dendrogram from a hierarchical clustering at a partic-
ular level for both the original and perturbed data clusterings), the R-index
measures the proportion of pairs of specimens within a cluster for which the
members of the pair remain together in the re-clustered perturbed data. The
D-index measures the number of discrepancies (additions or omissions) com-
paring an original cluster to a best-matching cluster in the reclustered per-
turbed data.

More specifically, the R-index is calculated as follows. Each of the origi-
nal data dendrogram and the perturbed data dendrogram are cut to form k
clusters. If a cluster i of the original data contain ni specimens, it can be
viewed as containing mi = ni (ni - 1) /2 pairs of specimens. If the clusters
are robust, then members of a pair should fall in the same cluster in the
re-clustered data. Let Ci denote the number of these mi pairs with members
fallng in the same cluster in the reclustered perturbed data. Then Ti = Ci/mi
is a measure of the robustness of the ith cluster in the original dataset. For
singletons, Ti is defied as the proportion of re-clusterings in which the spec-
imen remains a singleton. An overall measure for the set of k clusters is
R = (ci +C2+" ,+ck)/(mi +m2+" .+mk). Note that this overall measure is
a weighted average of the cluster-specific measures, weighted by cluster size.
In computing the overall measure, singleton clusters in the original data are
excluded. The robustness indices are averaged over a large number of cycles
of perturbatipns and re-clusterings. We suggest the benchmarks of an R-index
of at least 0.9 for strong reproducibilty of an individual cluster, or at least
0.8 for moderate reproducibilty.

The D-index is computed somewhat differently. For each cluster of the
original data, determine the cluster of the perturbed data that is the "best
match," defined as the one having the greatest number of elements in common
with the original cluster. (Ties are broken by choosing the match with the least
number of added elements.) The discrepancy can be subdivided into one of
two types; either specimens in the original cluster that are not in the best

match perturbed cluster (omissions), or elements in the best match cluster
that were not in the original cluster (additions). It can be helpful to keep
track of these two types separately, and this is one potential advantage of the
D-index compared to the R-index. An overall measure of discrepancy is the
summation of cluster-specific discrepancy indices. These indices can also be
averaged over a large number of cycles of perturbations and re-clusterings. In
computing the discrepancy index, it is usefu to consider cuts of the perturbed
data tree with similar, in addition to identical, numbers of clusters as in the
original data, and to report the D-index as the minimum over the several cuts
considered.
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./ Table 9.2. Cluster-Specifc Reproducibilty Measures for the Melanoma Dataa

Cut at 7 Clusters Overal: R-index = 0.992, D-index = 1.904b

Cluster 'Ior members Robustnessc Omissions Additions
1 1,3 .050 .928 .000
2 2 .960 .000 .000
3 4 1.00 .000 .000
4 5-24 1.00 .004 .008
5 25 .999 .000 .001
6 26-27 .954 .046 .465
7 28-31 .920 .209 .243

Cut at 8 Custers Overall: R-index = 0.991, D-index = 17.334
b (

Cluster 'Ior members Robustnessc Omissions Additions
1 1, 3 .000 .959 .0002 2 1.00 .000 .0003 4 1.00 .000 .0004 5 .000 .000 14.853
5 6-24 1.00 .021 .7826 25 .996 .000 .001
7 26-27 .920 .123 .142
8 28-31 .916 .386 .067

a A hierarchical agglomerative clustering algorithm using average linkge and dis-

tance metric equal to one minus the Pearson correlation was applied; 1000 simulated
perturbed datasets were generated using a noise SD = .52.
b The D-index, omissions, and additions computed here allow searching over numbers

of clusters in the perturbed data ranging from two less to two more than the number
of clusters considered in the original data.
C The reported robustness measure for a singleton cluster is the proportion of per-

turbed data clusterings for which it remained a singleton in the perturbed data
clustering.

Table 9.2 presents cluster-specific reproducibilty measures for clusters
formed at cuts of 7 and 8 clusters when hierarchical clustering with distance =
1 -correlation and average linkae was applied to the melanoma data described
in Section 9.3 and Appendi B. The estimated experimental noise standard
deviation (square root of medan estimated variance) estimate was 0.52 (log
base 2 scale) for these data. Of particular interest to Bittner et al. (2000)

was the 19-member cluster containng tumors 6 to 24 as shown in the central
portion of the dendrogram in Figue 9.5(a). That group of 19 tumors occurs
as a stand alone cluster at cuts of 8, 9, and 10 clusters. Cutting the tree at
8 clusters, it is evident from the reproducibilty measures that, on average,
there is an addition of about one member to the collection 6 to 24. The ob-
servation of a large average number of additions (14) to the singleton cluster
containing tumor 5, along with inpection of several of the perturbed data
trees (not shown), reveals that tumor 5 is frequently merged with tumors 6
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to 24 when cutting to obtain 8 clusters. Going back to cutting the tree at 7
clusters, we see that the cluster with elements 5 to 24 (composed of Bittner
et aL.'s major cluster and one additional tumor) is highly reproducible. Thus
there appears to be strong evidence for reproducibilty of a large cluster con-
taining tumors 5 to 24. These results support Bittner et al.'s identification of
subsets of melanoma within the dataset with the minor refinement of tumor
5 being included with the major cluster of noninvasive melanomas.

Kerr and Churchil (2001 b) used data perturbation methods to assess
the validity of select gene clusters in yeast microarray data for which they
had predefined prototype profiles. These profies (clusters) of interest were
based on seven prespecifed temporal patterns of induced transcription. To
each profile of interest they assigned a hand-selected set of a few genes that
they determined fit the profile, and then they calculated a prototype for that
profile as the average of those initial genes selected for that profile. Their goal
was to determine which of some candidate new genes showed strong evidence

for inclusion in those clusters. They generated experimental noise for the per-
turbations by calculating residuals from an analysis of variance model fit to
intensity measurements and bootstrapping from the empirical distribution of
those residuals. For each gene, they recorded for the perturbed datasets the
proportion of times that gene's profile best matched the prototype profiles
of each of the prespecified gene clusters, where the best match was defined
as the prototype profile having the highest correlation with that gene's pro-

file. Although their primary goals were somewhat different from those of the
McShane et al. (2002) methods which were used in the Bittner et aL. (2000)
study, they alluded to the idea of using an index equivalent to McShane et
aL.'s (2002) overall R-index in cases where there are no prespecified clusters
or prototype profiles. Their methods required replicate profie measurements
from at least some specimens, and the type of replicates available must be
consistent with the totality of sources of experimental error that one wishes
to account for in the reproducibilty assessment. In our experience with mi-

croarray data, when replicates are available they often incorporate only some
sources of the total experimental variation, for example, hybridization of a

single sample to the multiple arrays, but not replication at the level of resam-
pling a tumor or reisolating mRA. In settings where appropriate replicates
are available, the bootstrap resampling method for generating perturbation
errors is an idea worthy of consideration, although it can be quite computa-
tionally intensive. If duplicate arrays of independent RNA extractions from
the same tissue sample are available for a suffcient number of patients, then
examining the extent to which duplicate samples appear in the same cluster
can be potentially more informative than the statistical measures of cluster
reproducibilty.
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Basic Biology of Gene Expression

A. i Introduction

This appendix contains a brief introduction to the biology of gene expres-
sion for readers with little or no biological background. For more complete
information with excellent ilustrations, the reader can see references such as
Watson et aL. (1987).

The cell is considered the basic unt of life. A defining characteristic of life
is reproduction. Single-celled organisms reproduce by cell duplication. Mul-
ticellular organisms start with a single cell and develop by the programmed
division of cells.

Most of the important functions performed in cells involve proteins. A
protein can be represented as a linear sequence of amino acids joined by

peptide bonds (Figure A.l). Each amino acid consists of a central carbon
atom to which three chemical entities are joined: the amine (NH2) group,
the carboxyl (COOH) group, and the side chain (R). There are 20 commonly
occurring types of side chains and thus 20 amino acids (Figure A.2). The
peptide bond connecting amino acids joins the nitrogen atom at the amino
end of one amino acid to the carbon atom at the carboxyl end of the adjacent
amino acid. Typical proteins contain between 100 to 1000 amino acids.

Although the chemical composition of a protein may be described by spec-
ifying the linear sequence of amino acids, the fuctional aspects of a protein
are determined by the three-dimensional structure that the protein takes when
placed in an aqueous solution. It was demonstrated by Sela et aL. (1957) that
the amino acid sequence determines the structural conformation of the pro-
tein but, to date, three-dimensional structure cannot be effectively predicted

based on amino acid sequence.
Proteins do not self-assemble. They are assembled based on information

contained in DNA. Messenger RNA (mRNA) acts as an intermediate: mRA
is synthesized using DNA as a template and is then used for translation into
protein. All RNA molecules consist of a sequence of nucleotides (Figure A.3).
There are four types of nucleotides in RNA: adenine (A), cytosine (C), gua-
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Fig. A.I.

nine (G), and uracil (U). Cytosine and uracil are single ring structures called
pyrimidines whereas adenine and guanine are double ring structures called
purines. Each nucleotide building block has a sugar-phosphate group attached
to a specific side group. The sugar-phosphate units link together to form a
backbone.

Each mRNA molecule is created by a multi-step process starting with
a transcription using genomic DNA as a template for the construction of
an RNA molecule. DNA is a polymer of nucleotides, in many ways similar
to RNA. A DNA molecule consists of a string of nucleotides joined by a
deoxyibose sugar backbone, rather than a ribose sugar backbone as in RNA.
Whereas the nucleotides appearing in RNA are A, C, G, and U, in DNA
thymine (T) replaces uracil (U). The bonds joining the nucleotides in DNA
are directional, with what are referred to as a 5' end and a 3' end.

Although RNA and DNA share many features, there are also major differ-
ences. Whereas RNA molecules are short, the entire human genome consists
of only 23 pairs of huge DNA molecules. These DNA molecules are packaged
in the 23 pairs of chromosomes. Each of the DNA molecules consists of two
strands of polynucleotides, wound around each other in a helical structure
(Figure A.3). The structure is stabilzed by chemical bonds between pairs
of complementary bases on the two strands. The adenines (A) bind with

thymines (T) and the guanines (G) bond with the cytosines (C) by hydrogen
bonds. This complementarity of bases is a crucial feature of DNA; it is the
basis of both cell reproduction and gene expression.
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Fig. A.2.

In gene expression, the two strands of a DNA molecule separate and a
molecule ofRNA is synthesized using a segment of one of the DNA strands as a
template (Figure A.4). The transcription occurs in the direction from the 5' to
3' end of the DNA segment. The DNA segment used for synthesis corresponds
roughly to a single gene. The RNA molecule synthesized is complementary to
the DNA sequence in the gene. That is, an adenine nucleotide in the DNA
strand results in the synthesis of a uracil nucleotide in the growing RN A
strand, a cytosine in the DNA strand results in the synthesis of a guanine in
the RNA strand, a guanine in the DNA strand results in the synthesis of a
cytosine in the RNA strand, and a thymine in the DNA strand results in the
synthesis of an adenine in the growing RNA strand.

The transcription of the DNA into a messenger RNA molecule begins with
the binding of the enzyme RNA polymerase to the DNA in the promoter region
upstream of the 5' start of the gene. That region contains control sequences
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that are binding sites for proteins, called transcription factors, that infuence
the binding of RNA polymerase. Hence these sequences control the conditions
under which the gene wil be transcribed. The trancribed RNA molecule
contains a sequence complementary to the DNA strand that served as the
template. In multi-cell organisms, the created RNA molecule also contains a
long string of adenines (As) added at the end of the segment, the so-called

poly-A taiL.
Genes of higher organisms are organzed with segments of protein coding

regions interspersed among longer segments of noncoding regions. The former

Ribonucleic acid DeoyriboncleiC add

Fig. A.3.
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Fig. A.4.

are called exons and the latter introns. The intronic regions are excised from
the mRN A molecule and the resulting exonic regions are spliced together. The
poly-A tail is retained. Although the splicing process is not well understood,
it is known that different kinds of mRA transcripts, and consequently dif-
ferent protein variants, are obtained from trancription of the same gene by
alternative splicings of the primary transcripts.

A spliced mature mRNA molecule exits the nucleus and is transported
to a ribosome in the cytoplasm where it directs the synthesis of a molecule
of protein. The ribosomes are complex structures consisting largely of RNA
molecules of a different type called ribosomal RNA. Most of the RNA content
of a cell is ribosomal RNA. At the ribosome, the mRA molecule directs the
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synthesis of a protein molecule via the genetic code (Figure A.5). Triplets

Fig. A.5.

of contiguous nucleotides, called codons, correspond to specific amino acids.
Because there are only 20 naturally occurring amino acids, and there are 43
or 64 possible codons, the genetic code is redundant. In many cases the amino
acid is determined by the first two nucleotides of the codon. Nevertheless,

the translation process is based strictly upon the decoding of triplet codons
without gaps between codons in the mRA sequence.

The process of converting an mRNA molecule to a protein is called trans-
lation. Translation of mRA involves a third type of RNA molecule, called
transfer RNA (tRNA). A unique tRNA molecule exists for each possible
codon. A tRNA molecule has an anticodon at one end, which binds to its corre-
sponding codon. At the other end, the tRNA molecule has the corresponding
amino acid. The anticodons of tRNA molecules bind to the corresponding
co dons of the uiRA molecule and thereby bring the correct sequence of
amino acids together; peptide bonds form between adjacent amino acids.
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A correspondence exists between protein molecules and mature mRA
molecules. Mature mRNA molecules are often called mRA transcripts,
because they are synthesized by transcription of DNA. Each synthesized
molecule of protein requires and consumes one trancript, therefore the rate of

synthesis of a protein can be estimated by quantifyng the abundance of cor-
responding transcripts. The relationship between the rate of protein synthesis
and abundance of transcripts of the corresponding type is not exact, however,
because some transcripts are degraded before participating in protein transla-
tion, and the rate of degradation varies for diferent genes. Nevertheless, DNA
microarrays are assays for measuring the abundance of mR A transcripts cor-
responding to thousands of different genes in a collection of cells.

For the most part, all cells of a multicellular organism contain the same
DNA. The cells differ from each other in fuction, and the functions of indi-
vidual cells change over time based on external conditions. These functional
differences are determined by differences in the abundance of the various types
of proteins. Hence, by quantifyng the abundance of mRA transcripts in col-
lections of cells from different tissues and under different conditions, one can
gain insight into the biological mechanisms that mediate those differences.
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Description of Gene Expression Datasets Used
as Examples

B.i Introduction

This appendix describes the datasets used as examples in thi book. We have
made versions of these datasets available on our Web site http://linus . nci .

nih.gov/BRB-ArrayTools .html. These datasets are formatted for ease of im-
portation into BRB-ArrayTools, and the names and formats of the files are
described in Appendix C. Readers wishing to analyze these datasets using
other software can either use the version described in Appendix C or can ob-
tain the primary data directly from the Web sites of the original investigators
who generated the data, as described below.

B.2 Bittner Melanoma Data

The data of Bittner et aL. (2000) consist of gene expression profiles ob-

tained on a collection of 38 samples, comprised of 31 melanoma tumors and
7 controls. The data were downloaded from http://research . nhgri . nih.
gov /microarray /Melanom~upplement/Files/ gene_list -Cutaneous_
Melanoma. xis. The array platform was a spotted cDNA array containing

probes from 8150 cDNAs (representing 6971 unique genes). A common ref-
erence design was used for this series of experiments. The common reference
sample was a pool of RNA from a nontumorigenic revertant of a melanoma
cell line. Each test sample was labeled with Cy5 and the reference sample
was labeled with Cy3. Thus a spot that shows up red in an image display

corresponds to a large ratio (Le., a gene that is more highly expressed in the
test sample than the reference sample).

For the analyses presented in this book, the data from the seven control

specimens were excluded, and only measurements from the 3613 genes that
were considered "strongly detected" were used. Strongly detected spots were
defined by Bittner et al. (2000) as those having an average mean intensity
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above the background of the least intense signal (Cy3 or Cy5) across all ex-
periments greater than 2000, and an average spot size across all experiments
greater than 30 pixels. An indicator variable is provided in the dataset to
identify strongly detected spots. Only the ratios were made available on Bit-
tner's Web site and they had already been normalized using image processing
software. An additional processing step was to replace ratios greater than 50
by 50, and ratios less than 0.02 by 0.02. We have taken logarithms to the base
2 in the data we make available.

B.3 Luo Prostate Data

The data of Luo et aL. (2001) consist of gene expression profiles obtained on a
collection of 25 prostate tissue samples, comprised of 16 prostate cancers and
9 benign prostatic hyperplasia (BPH) specimens. The data were downloaded
from http://research . nhgri. nih. gov /microarray /ProstateJ3upplement/
Images/6500GeneListw=CRs&QSs .xls. The array platform was a spotted

cDNA array containing probes from 6500 human cDNAs (representing 6112
unique genes). A common reference design was used for this series of exper-
iments. The common reference sample was a pool of RNA derived from two
benign prostatic hyperplasia specimens. Each test sample was labeled with
Cy3 and the reference sample was labeled with Cy5. Thus a spot that shows
up green in an image display corresponds to a large ratio and a gene that is
more highly expressed in the test sample than the reference sample. Only the
ratios were made available by Luo et aL. and they had already been normalized
using image processing softare. Quality scores taking values in the range zero
to one were provided for each ratio measurement. A quality score of zero indi-
cates that the ratio is unreliable and should not be used; positive quality scores
increasing toward the highest quality level of one indicate increasing levels of
measurement quality. Although the exact calculation method for the quality
score is not reported, it is said to be a composite index that reflects the idea
that unreliable datapoints frequently result from weak target intensity, high
local background, small target area, and inconsistent target intensity within a
given target. A subsequent report from the same group discusses their method
for calculating quality scores (Chen et aL. 2002). For the analyses presented
in this book, only ratios with quality scores greater than zero are used. We
have taken logarithms to the base 2 of the ratios in the file we provide.

BA Perou Breast Data

The data of Perou et aL. (2000) include gene expression proffes obtained on
a collection of 65 human breast tissue samples from 42 different individuals
(36 infiltrating ductal carcinomas, 2 lobular carcinomas, 1 ductal carcinoma
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in situ, 1 fibroadenoma, and 3 normal breast samples). For the analyses pre-
sented in this book, the only expression profile data used were those from 20
breast cancer patients for whom specimens were available both before and
after a 16-week course of doxorubicin chemotherapy. The microatray analy-
ses generated two gene expression profiles for each of these 20 patients, one
before and one after chemotherapy. The primary data were downloaded from
http:// genome-ww . stan ord. edu/breast_cancer /molecularportrai ts/

download. shtmL. The array platform was a spotted cDNA array. A com-
mon reference design was used for this series of experiments. The common
reference sample was a pool of RN A isolated from 11 different cultured cell
lines, and it was labeled with Cy3. Each ,test sample was labeled with Cy5.
Thus a spot that shows up red in an image display corresponds to a large ratio
and a gene that is more highly expressed in the test sample than the reference
sample. Of the 9216 spots for which data were available, 185 were labeled as
"EMPTY" and were flagged to be excluded from analysis. Data from spots
flagged for quality reasons and not used by the original investigators were also
excluded from the analyses in this book. In each channel the signal for a spot
was calculated as foreground intensity minus background. Spots for which the
signal was less than 100 in both channels were not used. If the signal was
less than 100 in only one channel, the spot was used with the signal set in
that channel to 100. The expression ratio was formed as channel 2 divided

by the channel 1 signaL. Ratios were median-normalized within each array by
dividing the ratios by the median of the ratios for that array.

B.5 Tamayo HL-60 Data

The HL-60 data analyzed in Tamayo et al. (1999) consist of gene expres-
sion profies obtained from a time-series experiment conducted on a cell 

line

model of human hematopoietic differentiation. The myeloid leukemia cell line

HL-60 undergoes macrophage differentiation when treated with the phorbol
ester PMA. Antisense cRNA was prepared from the cells harvested at 0, 0.5,
4, and 24 hours after administration of PMA. The array platform was the
Affetrix HU6000 expression array containing probe sets for 6416 distinct
human genes. Expression data were reported for 7229 probe sets because some
genes were represented by more than one probe set, and there were a few
additional probe sets to detect spiked controls. The data were downloaded
from http://ww . genome. wi. mi t . edu/MPR. Intensities were captured by the
GeneChipTM Software (Affmetrix, Santa Clara, CA) and were scaled so that
the overall intensity for each chip was made constant across the set of arrays.
For each gene, a trimmed mean of the intensity differences from the 20 probe
pairs representing it on the array was calculated as its summary expression
leveL. Tamayo et al. (1999) reported trimmed means of less than 20 as 20,
and trimmed means greater than 20,000 as 20,000. The profile for each gene
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consisted of its sumary expression measure recorded for each of the four
timepoints.

Tamayo et aL. (1999) filtered their data for self-organizing map clustering
by excluding genes that did not exhibit substantial variation in expression
measurements across the four timepoints. They required included genes to
have a maximum/minimum expression level of at least 3 and a maximum-
minimum expression level of at least 100. This left 585 genes for their self
organizing map analysis.

B.6 Hedenfalk Breast Cancer Data

The data of Hedenfalk et aL. (2001) consist of expression profies of 22 breast
tumors taken from 21 patients. Because the analysis of the publication is
based on analysis of 22 tumors, we use all 22 expression profiles in the anal-
yses in Chapter 9. Seven of the tumors were from patients with germline

BRCAI mutations, eight were from patients with germline BRCA2 tumors,
and seven were from patients with neither BRCAI nor BRCA2 germline mu-
tations. RNA from the specimens was analyzed on an array consisting of 6512
cDNA spots representing 2905 known and 2456 unknown genes. The reference
RNA was derived from the MCF-I0A human mammary epithelial cell 

line.

Normalized ratios were available for 3226 genes meeting qualiy standards of
an average intensity of more than 2500, an average spot area of more than
40 pixels, and no more than one sample jn which the size of the spot area
was 0 pixels. Only normalized ratios were provided. Ratios were calculated as
intensity for the tumor sample divided by intensity for internal reference and
were then normalized using image processing software. The data were down-
loaded from http://research.nhgri.nih.gov /microarray /NEJMJ3upplement/.
We have taken logarithm to the base 2 in the dataset we provide.

Details about all datasets provided on the book Web site are given in
Appendix C.
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BRB-ArrayTools

c.i Software Description

The datasets used in this book are available at http://linus.nci.nih.gov/BRB-
ArrayTools.html. The reader is encouraged to analyze these data sets using
whatever software with which he or she is most comfortable. For readers who
do not have software, we provide information here about the BRB-ArrayTools
package that implements many of the methods described in this book. More
detailed information about BRB-ArrayTools is available in the 

Users Guide

(Simon and Lam 2003). For noncommercial applications, BRB-ArrayTools can
be obtained without charge at the Web site. The package can be licensed from

NIH for commercial use by contacting the NIH Technology Transfer Offce at
the telephone number indicated on the Web site and a 60 day trial version is
available.

BRB-ArrayTools is an integrated package for the analysis of DNA mi-
croarray data developed by Dr. Richard Simon and Ms. Amy Peng Lam. It
is intended to be usable by biologists, and it contains sophisticated and pow-
erful analytic and visualization tools that the statisticians in the Biometric
Research Branch of the National Cancer Institute have found useful in their
collaborations. Tools were selected based on substantial experience with the
analysis of DNA microarray data, knowledge of statistical theory, and critical
review of the burgeoning literature of methods for analysis. The package is an
attempt to encapsulate good statistical practice and to faciltate the training
of biologists in the analysis of their microarray data. Although no software
package is a substitute for collaboration with a trained and experienced statis-
tician, such individuals are in short supply.

BRB-ArrayTools is implemented as an add-in for Microsoft Excel 2000
and later versions for computers runing the Microsoft Windows family of
operating systems. Although most of the analytic and visualization tools are
performed by backend programs external to Excel, the interface to backend
programs is invisible to the user who only needs to interact with the spe-
cial BRB-ArrayTools menu in Excel and with the dialog boxes programmed
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into Excel using Visual Basic for Applications. The system is very portable
and easily extensible, important features in the diverse and dynamic world
of DNA microarrays. The program can accommodate about 240 arrays and
30,000 genes per project. BRB-ArrayTools contains a plug-in feature that en-
ables users and other methodologists to inert their own analysis tools in the
program. The plug-in must be written in the powerful and popular R statisti-
callanguage (available at the BRB-ArrayTools Web site). The plug-in facility
provides a wizard enabling the R fuction developer to provide VBA dialog
boxes for user interaction because the R language itself does not have an ef-
fective dialog capabilty. The wizard creates the dialog for the developer so
the user does not need to know Visual Basic for Applications.

BRB-ArrayTools is applicable to data from dual-label glass arrays, Aff-
metrix GeneChips TM, and filter arrays. The package operates on "spot" or
"probe set" level data produced by image analysis programs and by the
Affymetrix Microarray Analysis Suite software. Most users import into BRB-
ArrayTools either the background-adjusted Cy3 and Cy5 intensities for each
spot on a dual-label glass array, or the signal for each probe set on an
Affymetrix GeneChipTM. Importing spot flag indicators, spot size values, and
background levels are optionaL. These data are usually given in a separate fie
for each array. There is a row for each spot or probe set and the columns
represent the variables measured for that spot on that array. In this intensity
file there must be some spot or probe set identifier, such as a probe set ID or
a spot index. The identifier is used for two purposes: to align the rows of in-
tensity files for the different arrays and to link the intensity data to additional
spot identifier data that may be contained in a separate flat file containing
optional columns such as Gene Title, clone ID, Genbank accession number,
Unigene ID, and Gene SymboL. Not all of these identifiers need to be given,
but providing at least one such identifier will enable the package to provide
hyperlinked gene annotation information on spots that are identified as being
of interest from the vaious analysis and viualization tools. For Affetrix
GeneChipTM data, the probe set ID is usually the identifier in the expression
data files and no other identifier or identifier file is needed. For dual-color
glass arrays, the additional identifiers may occupy colum directly on each
intensity file instead of being in a separate gene identifier file.

In addition to the fies of intensity or signal data and the fie of spot or
probe set identifiers, the user must provide an experiment descriptor work-
sheet.The rows of this file correspond to the arrays to be analyzed. The first
column of the experiment descriptor worksheet must provide the file name of
the intensity data for the array corresponding to that row. The other columns
provide user-determied descriptors of the arrays. The descriptors generally
refer to features of the experimental specimens hybridized to the arrays. For
example, in an analysis of breast tumor specimens, one column might contain
indicators of which arrays correspond to estrogen-receptor positive tumors and
which correspond to estrogen-receptor negative tumors. For dual-label arrays,
it is usually assumed that one channel is a common internal reference RNA and
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the column of the experiment descriptor worksheet refer to the experimental
specimen in the other channeL. Any coding of the descriptors can be used,
but the spellng must be consistent. For example, one could code the column

ER+ for the positive tumors and ER- for the negative tumors; one need not
invent numerical codes. Tumors of unknown estrogen-receptor status would
be blank in the ER column and would be omitted in any analysis comparing
the ER+ to the ER- tumors. The experiment descriptor worksheet is used by
BRB-ArrayTools to drive class comparison and class prediction analyses, to
tell the program which arrays to use in analysis and which to omit, and to
provide a mechanism for specifyng how dendrograms and multidimensional
scaling plots should be labeled and colored.

In some cases the user may wish to import expression data that have
already been horizontally aligned and placed in a single fie with each row
corresponding to a spot or probe set and blocks of colums providing ex-
pression data for each array. BRB- ArrayTools provides this option. It is also
possible to import dual-label glass slide data for which only the log ratios are
available, and not the channel-specific intensities.

During the data import step, BRB-ArrayTools also performs filtering and
normalization. Many of the options described in Chapters 5 and 6 are aval-
able. After the data have been imported, filtered, and normalized, the im-
ported data are saved in a project workbook in ExceL. The user may utilze
the provided tools for analysis, then close the project workbook and leave Ex-
ceL. At any later time the user can reopen Excel, open the project workbook,
and resume the analysis by selecting additional tools.

More information about data importing and all aspects of BRB- ArrayTools
is available from the Users Guide (Simon and Lam 2003) which can be found
on the Web site.

C.2 Analysis of Bittner Melanoma Data

The melanoma data of Bittner et al. (2000) analyzed in Chapter 9 is described
in Appendix B. The data provided by Bittner et al. (2000) are the ratios for
the 3613 genes that were considered "well measured" because their intensi-
ties were suffciently high. We have converted these ratios to log2 ratios. The
log2 ratios for the 31 cDNA arrays resulting from analysis of 31 melanoma
specimens are available in the file BittneLexpression.dat which contains 3614
rows and 34 column. The first row is a header that contains column labels.
Each of the other rows corresponds to one of the well-measured genes. The

first column contains a clone identifier, the second column contains the Uni-
gene cluster identifer, and the third column contains a gene title. A very
rudimentary experiment descriptor file, named BittneLexp_description.dat, is
also provided. It contains a header row followed by 31 rows corresponding to
the 31 arrays. The rows of the experiment descriptor file correspond to the
arrays in the horizontally aligned expression data file and they are in the same
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order. The first colum of the experiment descriptor fie contains array names.
The second column contains a specimen number (1 to 31) used in Chapter
9 for the analysis of these data. The last column indicates which specimens
were found to be part of the cluster identified by Bittner et aL. (2000) and by
the analysis presented in Chapter 9. This column would not, of course, have
been part of the experiment descriptor fie at the time of initial analysis, but
is provided here for convenience in labeling dendrograms.

Fig. C.!. BRB-ArrayTools dialog box expression data tab for collation of Bittner
melanoma data.

Figure C.L shows the first BRB-ArrayTools dialog for collating horizontally
aligned data. The dialog boxes sometimes change with new releases of BRB-
ArrayTools, so the dialog boxes you see with your BRB-ArrayTools software
may not agree exactly with those ilustrated here. This box requests informa-
tion about the expression data fie. There is a browse button to enable the
user to find the file containing the horizontally aligned expression levels. For
horizontally aligned data, it is assumed that the data for the different arrays
are in contiguous blocks of columns but there may be multiple columns of
information for each array. For the melanoma data there is actually only a
single column of information for each array, the log2 ratio. In other cases,
however, the information may include Cy5 intensity, Cy3 intensity, spot size,
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spot flag, and so on. The two fields under "Data file format" are filed in
to indicate that for these data there is only one column per block and that
the block for the first array starts in colum 4 of the file. The first three
columns of the fie contain clone identification information. The button for
"Enter dual channel log ratios" is selected to indicate that only the log ra-
tios, not the channel-specific intensities are available. When this is the case,
the dialog under "Enter dual channel intensities" is greyed out. The log ratio
column is indicated as colum 1 because it is the first (and only) column in
each block of information for each array. The optional spot size and spot filter
fields are blank because that inormation is not available. If it were available,
the column numbers we would indicate would be column numbers relative to
the first column of a block.

Fig. C.2. BRB-ArrayTools dialog box gene identifiers tab for collation of Bittner
melanoma data.

After completing the ''Expression data" tab, you should select the "Gene
identifiers" tab shown in Figure C.2. The gene identifier information can either
be in the initial columns of the file containing the expression data, or in

a separate fie. For the melanoma data, they are in the first three column
of the fie containing the expression data. In this case there are only three

identifiers. The first column is the IMAGE Consortium clone identifier. The
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second column is the Unigene cluster identifer, and the third column is a gene
title as indicated in the figure.

The third tab requests information about the experiment descriptor fie.
You can browse to indicate the complete path of the file. For dual-label arrays,
most of the analysis tools of BRB- ArrayTools assume that a reference design
has been used. That is, it is assumed that all of the experimental samples

have been cohybridized with a common reference RNA specimen, and that
the same label has been used for the reference on each array. If the labeling
of the reference and the experimental specimen are reversed for some arrays,
then the button "Flip ratios on reverse fluor experiments" should be selected

and you should then indicate what column of the experiment descriptor file
indicates which arrays were labeled "forward" and which "reverse".

After completing the three dialog tabs to provide information about the
expression data, the gene descriptors, and the experiment descriptor file, you
are presented with a dialog for fitering and normalization. There are three
tabs of fiter information. The first is for filtering spots that have low inten-
sities, small sizes (in pixels), or spots that have been flagged as uneliable
by the image analysis program or by visual inspection of the images. For
the melanoma data, we do not have channel-specific intensities, spot sizes, or
flag values, so we do not select any of these filters. The melanoma data made
available by Bittner et al. (2000) include only spots that were considered "well
measured" and so were prefiltered.

The second tab of the filter dialog enables you to exclude genes that either
did not show much variabilty among the arrays or which were filtered from
too many arrays because of low intensity or other problems. It is not necessary
to filter the genes at all unless one wishes to cluster the genes. Hierarchical
clustering of genes is memory intensive, as similarity of expression profies for
all pairs of genes needs to be computed. For gene clustering it is generally best
to first omit the genes that do not show substantial variation among samples
and those that are not well measured on many arrays.

One option provided for the filter criteria is to filter based on the variation
in the log ratio or log signal value. The variance is computed for each gene over
the complete set of arrays. One might wish to compare that variance to that
of a housekeeping gene and to filter the gene if its variance is not statistically
significantly greater. Because the variance for a housekeeping gene is often not
known, the median of the variance values for all genes is used as the variance
expected for a housekeeping gene. This is based on the assumption that most
of the genes are not differentially expressed among the arrays. Another option
is to select the genes with the greatest variances; the proportion of the genes
selected can be indicated in the dialog. A third option is to fiter genes for
which the proportion of arrays in which the expression differs from the median
expression (for that gene) by less than a specified-fold difference is below a
threshold leveL. The dialog also permits you to indicate how many arrays the
gene can be fitered from before the gene is excluded entirely. For this analysis
we have not requested any gene filtering.
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The normalization tab permits you to indicate whether you want the data
to be normalized. In general, the answer wil be yes. For the melanoma data,
however, the data were previously normalized and not all of the genes are
provided, hence we specify that the data should not be renormalized. When
channel-specific intensities are provided for dual-label data, two normalization
options are available: normalizing to make the median log ratio on each array
zero, and intensity-dependent loess normalization as described in Chapter
5. When only log ratios are provided, intensity-dependent normalization is
not possible. For Affetrix GeneChipTM data, the arrays are normalized

by computing for each array the log ratios of signal values relative to signal
values for the fist array in the experiment descriptor file. A normalization

constant is determined for each array to make the median of these log ratios
zero, where the median is either computed over the specified housekeeping

genes or over all the genes if housekeeping genes are not available.
The normalization dialog also provides the option of truncating extreme

ratio values for dual-label arrays that are likely to be outliers.
After completing the normalization dialog, you should click the ok button

and then click the ok button for the main collation dialog. The collation,
filtering and normalization are then performed. BRB-ArrayTools wil also
try to download annotation information for the genes on your array if you
have given it suffcient gene identification inormation and are connected to
the Internet when you do the collation. This entire process may take several
minutes, particularly the download of gene annotation information. When the
collation is completed, your project workbook is created. You may close this
workbook at any time and come back to it at a later time by opening the
project workbook and selecting more analyses to run from BRB-ArrayTools. ì

The objective of the melanoma study by Bittner et aL. (2000) was to dis-
cover whether there were subsets of patients with advanced disease that could
be identifed by their gene expression profiles. Although some class comparison
analyses were carried out, the dominant focus was on class discovery. BRB-
ArrayTools contains two types of tools for addressing this objective. One is
the tool for hierarchical clustering of samples. When this is selected from the
menu, the dialog box shown in Figure C.3 appears. There are many clustering
algorithms and clustering is an exploratory and subjective method of analysis.
BRB-ArrayTools offers only hierarchical clustering, but even within this there
are several options that must be specifed, as described in Chapter 9. Figure
C.3 shows that for the analysis of the melanoma samples we have requested
average linkage hierarchical clustering using the centered correlation similarity

metric using as the expression vaues the log2 ratios. We have not requested
median centering of the genes. All of the genes not excluded by gene filtering
during collation are used in computing the similarity metric" and all of the
arrays are included in the analysis. You could perform the clustering using
only a subset of genes contained in a gene list if you wanted. The dialog also
asks you whether you wish the program to compute cluster reproducibilty
measures, as described in Chapter 9.
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Fig. C.3. BRB-ArrayTools dialog box for cluster analysis of samples on Bittner
melanoma data.

Before pressing the ok button, you should press the options button. On

the options dialog you can specify how you would like the samples labeled in
the dendrogram that the tool will produce. The dialog shows you the column
headings from your experiment design worksheet, and you select one of the
column for labeling. For your reanalysis of these data, it is useful to use the
third column of the experiment descriptor worksheet for labeling the dendro-
gram. This column indicates specimens belonging to the cluster of interest
identified by Bittner et al. (2000). The options dialog also requests specifica-
tion of how many times the data should be randomly perturbed for calculating
the cluster reproducibilty estimates; the default vaue is 100. It also requests
the standard deviation that should be used for the random perturbations. If
the assay standard deviation is not known from reproducibilty studies, the
tool wil compute the standard deviation for all genes and use the median
value as the assay standard deviation.

After pressing the ok button for the options dialog and the ok button for
the hierarchical clustering of samples dialog, the analysis proceeds. The results
produced include a dendrogram of the samples, labeled as requested on the
options dialog, and the cluster reproducibilty results. For computing cluster
reproducibilty, you must specify where to cut the dendrogram to give specific
clusters. You are interactively prompted to do so if you have requested cluster
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reproducibilty analyses. For the melanoma data, the dendrogram should look
like the average linkage dendrogram in Figure 9.5 of Chapter 9. If you cut the
dendrogram at a point corresponding to eight clusters (Table 9.2), the cluster
reproducibilty results you obtain should indicate that the cluster consisting
of samples 6 to 24 is very reproducible within the context of this clustering
algorithm.

Fig. C.4. BRB-ArrayTools dialog box for multidimensional scaling analysis of Bit-
tner melanoma data.

A second approach to class discovery in the melanoma data is use of the
multidimensional scaling tool. The multidimensional scaling dialog is shown
in Figue C.4. It is similar to the dialog for hierarchical clustering of sam-

ples. The two outputs of this tool are a rotating 3-D scatterplot in which
each sample is represented by a point in the scatterplot. The user has control
of the speed and direction of rotation and can use those controls to try to
identify views that show clusters of samples. The dimensions of the display
are the three linear combinations of the genes that are orthogonal to each
other and that provide a 3-D representation that best preserves the distances

between the samples in the original high-dimensional space of the gene expres-
sion vectors (Section 9.3.1). The rotating scatterplot can be stopped by the
user. Points can be selected for identification by brushing the points with the
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mouse while holding down the left mouse button. The identities of the samples
corresponding to the brushed points are identified below the scatterplot. The
rotating 3-D scatterplot can also be imported into a Powerpoint presentation
for display on a computer with the BRB-ArrayTools software.

The points on the multidimensional scaling plot represent specimens. They
are color-coded based on a column of the experiment descriptor worksheet

specified by the user on the options dialog page that is reached by pressing

the options button on the multidimensional scaling dialog. The options page

also requests the user to specify how many random permutations (default
1000) to perform in computing the statistical significance test of the null
hypothesis that the samples are not clustered in 3-D space more than would
be expected for a multivariate normal distribution (see Section 9.5.1). On
the multidimensional scaling dialog, you specif the distance metric to use for
measuring distance between expression profiles of each pair of samples. For the
melanoma data, the 3-D projections of the expression profiles are significantly
different from what one would expect for a multivariate normal distribution.
As indicated in Chapter 9, the statistical significance level is approximately
0.01 when using centered correlations of noncentered genes as the distance
metric.

C.3 Analysis of Perou Breast Cancer Chemotherapy
Data

The Perou breast cancer dataset is described in Appendix B and represents
published microarray expression profiles of 20 breast tumors before and after
chemotherapy. These data were analyzed in Chapter 7.

File Perou_expression.dat provides the intensity data for all arrays hori-
zontally aligned with each line of the file giving all the data for each of the
9217 clones represented on the array. The first five columns of the fie contain
a gene title, clone type indicator, Genbank accession number, IMAGE clone
identifier, and spot index, respectively. The remaining columns contain the
actual array data, arranged in 40 blocks of 3 columns per block. Each block
corresponds to an array. The column within a block are the Cy3 signal (fore-
ground minus background), Cy5 signal, and a flag column. A flag value other
than zero indicates that the intensity data were considered not reliable.

File Perou_exp_description.dat is the experiment descriptor file prepared
for this dataset. It contains 41 rows, a header row and a row for each of the
40 arrays. The first column contains identifers for the arrays. The second col-

umn contains identifiers for the patients whose breast tumor specimens were
hybridized to the arrays. A reference design was used and the tumors were
always labeled with Cy5. The internal reference was a miure of cell lines.
Tuors were biopsied both before and after the patient received chemother-
apy. The third column contains indicators of whether the array corresponds
to a tumor sampled before ("BE") or after ("AF") chemotherapy.
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Fig. C.5. BRB-ArrayTools dialog box expression data tab for collation of Perou
breast cancer chemotherapy data.

The data can be imported into BRB-ArrayTools using the "collate hori-
zontally aligned data" tool. The intensity and gene dialog boxes are filled in
as shown in Figures C.5 and C.6. The file names have to be adjusted based on
the names and locations you have given to these fies after you downloaded
them. Note that the expression data file has two header rows, not the one

which is the default in the dialog box. The data are fitered in the following
way. If the background-adjusted intensities in both channels are less than 100,
then the information is filtered out. If one channel is less than 100 and the
other is above 100, then the spot is not filtered, but the ratio is calculated
after bringing the smaller value up to 100. Spots with a flag field other than
zero are also filtered. The spot size fiter is not used inasmuch as spot size
is not included in the imported data fields. The genes were filtered only for
excluding genes whose expression levels are missing or filtered in more than 10
arrays. The analysis in Chapter 7 excluded spots that were missing in either
pre- or postreatment specimens from more than 10 patients. BRB-ArrayTools
does not provide this option. Consequently the number of spots passing the
filter is 8065 for the data collated by BRB-ArrayTools compared to 8029 in
Chapter 7. We normalized the data by centering the median log ratios on each
array. Ratios greater than 64 or less than 1/64 were replaced by the default
thresholds of 64 and 1/64, respectively.
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Fig. C.6. BRB-ArrayTools dialog box gene identifiers tab for collation of Perou
breast cancer chemotherapy data.

Our objective in analyzing the Perou et al. (2000) data was to identify
genes that were differentially expressed in the prechemotherapy specimens
compared to the postchemotherapy specimens. This can be addressed using
the class comparison tool in the classification menu. The emphasis here is
on identifying differentially expressed genes, not on prediction, so the class
comparison tool is more appropriate than the class prediction tool. The class
comparison dialog is shown in Figure C.7. The arrays are paired for this
analysis, because a before chemotherapy and after chemotherapy expression
profile is available for each patient. Thi is indicated in the dialog and you
browse for the "Patient ID" label to indicate the colum of the experiment
descriptor fie that indicates which arrays correspond to the same patient.
You also indicate that the classes to be compared are defined by the column
of the experiment descriptor worksheet labeled "BeforeAfter".

BRB- ArrayTools contains several methods for controllng the number of

false positive claims that genes are differentially expressed. The user has the
option of selecting the methods to be used. Generally it is advisable to se-
lect all the methods. As shown in Figure C.7, we have requested that gene
lists be produced based on all of the criteria: univariate significance level less
than 0.001, number of false discoveries less than 5, and proportion of false
discoveries less than 10%. In the output, a single gene list will be produced.
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Fig. C.7. BRB-ArrayTools dialog box for class comparison analysis of Perou breast
cancer chemotherapy data.

The gene list wil be ordered by the univariate parametric significance levels.
The gene list should be truncated at different points, however, depending on
which of the criteria is of interest. This truncation inormation is provided at
the top of the output fie. In the example, there are 65 genes that satisfy the

univariate significance less than 0.001 criterion (the first 65 rows of the gene
list). The output indicates how many genes in the gene list should be included
in order to satisfy the criterion of limiting the number or proportion of false
discoveries using the multivariate permutation tests described in Chapter 7.

In order to have the median number of false discoveries equal to 5, the first
79 genes on the output should be considered the appropriate gene list. In
order to have 95% confdence that the number of false discoveries does not
exceed 5, the gene list should consist of the first 37 genes. The program also
computes the gene list for controllng the proportion of false discoveries. In
order to have the median proportion of false discoveries equal 10%, the gene

list should consist of the fist 118 genes on the output. In order to have 95%
confidence that the proportion of false discoveries does not exceed 10% the
gene list should consist of the first 27 genes.

Because the multivariate permutation tests are nonparametric and more
powerful than the univariate permutation tests, it is generally not necessary
to request the latter in the options dialog.

The dialog shown in Figure C.7 provides the option of using a "Ran-
domized Variance t-test" instead of the usual t-test. The Randomized Vari-
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ance method is described by Wright and Simon (2003) and is simlar to the
method described by Baldi and Long (2001). It makes the assumption that the
within-class variances for all genes represent random draws from a common
probabilty distribution, but not that the vaiances are the same for differ-
ent genes (Section 7.4). BecaUSe it provides for some sharing of information
among genes, it is more effcient for studies with few samples per class. If the
Randomized Variance option is selected, it is used for ordering the gene list,
for the permutation tests, and for determining how many genes satisfy the
false discovery number and false discovery rate criteria.

CA Analysis of Hedenfalk Breast Cancer Data

The breast cancer data of Hedenfalk et aL. (2001) analyzed in Chapter 8 are
described in Appendix B. The only data provided by Hedenfalk et aL. (2001)
are the ratios of intensities for tumor samples divided by internal reference for
the 3226 genes that were considered well measured. We have converted these
ratios to log2 ratios. The log2 ratios for the 22 cDNA arrays are available in
the file BRCA_expression.dat. The first three rows are headers. The first three
column contain clone information and the remaining 22 columns are the log2
ratios for the 22 tumor specimens. The first three columns contain inventory
well/plate identifier, IMAGE clone identifier, and gene title, respectively.

The fie BRCA_exper.dat is an experiment descriptor fie for use with these
data. The rows are ordered to correspond to the columns of the expression

data. The first column of the experiment descriptor fie gives a patient index
and the second column gives a specimen identifier. The third column gives
the mutation status of the specimen. The final three columns give binary

groupings of the mutation status; BRCAI mutated or not, BRCA1 mutated
or not, and sporadic or not. For developing a class predictor of whether the

specimen is derived from a patient with a germline BRCA2 mutation, we use
the column labeled "BRCA2 ?".

The data are collated (e.g., imported) to BRB-ArrayTools as described
for the melanoma data. Only log ratios are available, therefore several of the
filtering and normalization options are not avalable. The log ratios provided
were previously normalized. Because not all of the genes are provided, the
data should not be renormalized.

The main objectives of the analysis of the BRCA data were class compari-
son and class prediction. We have already ilustrated the class comparison tool
with the Perou data, therefore here we describe the class prediction tool. In
Chapter 8 this dataset was used to ilustrate developing a predictor of whether
a sample was derived from a patient with a germline BRCA2 mutation. The
class prediction dialog is ilustrated in Figure C.8. We have selected the col-
umn describing the class variable to be the one in the experiment descriptor
file that distinguishes BRCA2 mutated from BRCA2 nonmutated specimens.
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Fig. e.s. BRB-ArrayTools dialog box for class prediction analysis of Hedenfalk
germline BRCA mutation data.

Our specimens are not paired. We have indicated that we want feature selec-
tion to be based on genes that are differentially expressed between the classes
with a parametric t-test p ~ 0.001. The dialog permits us to specify the pre-
dictive models we would like to study. The default is to develop all of the
types permitted. The options include diagonal linear discriminant analysis,
compound covariate predictor, k-nearest neighbor classifier for k=1 and k=3;
nearest centroid classifier, and support vector machine with linear kerneL.

\The class prediction dialog permits us to designate samples that we wish to
exclude from the analysis. The excluded samples may represent samples.whose
classification is unnown. When the analysis is complete and all leave-one-out
cross-yalidations have been performed, the tool wil provide a class prediction
for each excluded sample using for prediction each type of model selected. The
prediction is based on the models fitted to all of the nonexcluded samples.
Whereas leave-one-out cross-validation is used to obtain an unbiased estimate
of the misclassification rate, prediction for future samples is best based on
a model fitted using the entire set of nonexcluded samples. The excluded
samples may represent a separate set of test samples whose true classification
is unknown. The user may also indicate that some of the samples are to be
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excluded and no prediction for them is desired. These features are described
in more detail in the BRB-ArrayTools User's Guide.

Leave-one-out cross-validation is performed. For each leave-one-out train-
ing set, the genes that are differentially expressed between the two classes

by a t-test at the specifed level (e.g., p -c 0.001) in the training set are de-
termined. All of the specified models are built in that training set for that

gene set, and the class of the left-out sample is predicted. This is repeated,
leaving out one sample at a time, and the cross-validated misclassification
rate for each method is determined. If requested, the entire cross-validation
process can be repeated many times with randomly permuted class labels in
order to determie the proportion of the time with random permutations one
obtains a cross-validated misclassification rate as small as obtained with the
real data. This is the statistical significance level associated with the cross-

validated misclassification rate. This significance level is computed for each
classification method studied. Not requesting the statistical signficance test
does not affect the computation of the cross-validated miclassification rates.
Computing the statistical significance level is much more time consuming.

The cross-validated misclassification rates and associated statistical sig-
nicance levels are reported in an output html fie. The file indicates the
prediction of each sample0for each method. The output fie also gives the set
of predictor genes that meet the feature selection criteria when applied to
the full dataset. The gene set differs for each leave-one-out training set and
one column of the output fie indicates the proportion of the leave-one-out

training sets in which each gene is contained.
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Adaptive circle segmentation uses, 31
Affetrix GeneCrup arrays, 6-7, 9-10,

14
array normaization of, 61-û4
image analysis for, 35-38
quality control for, 48-50

Agglomerative ruerarcrucal clustering,
131-132

Air bubbles, 40

Alternative hypothesis, 71

Amino acids, 157
Angular distance, 124
Anticodon, 163

Array-level quality control, 47-48
Array normalization, 53-û4

of Afmetrix GeneCrup arrays, 61-û4
choice of genes for; 53~55
combination location and intensity,

61
intensity-based, 57-59, 62-û4
linea or global, 56, 61-û2

location-based, 59-û1
for two-color arrays, 55-û1
using all genes, 55

Average linkge, 132

Background correction, 33-34
Bacground intensity, large relative,

43-44
Balanced block design, 19-20
Bayesian methods, 84-85
Best-of-10 partition, 140

Biclustering model of Cheng and
Churcli,146

,Binary tree-structured classifier, 105
Biological replicates, 15

Biology of gene expression; 157-163
Bittner melanoma data, 165-166 '1
analysisof~71-178 ~ t2.J1t .)

Block design, balanced, 19-20
Bonferroni methods, 75-77
Bootstrap estimation of error~, 112
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cDNA, 6
cDNA probes, 8
Cell lines, 15

Cells, 157
Centering of genes, mean or median,

124-125
Chaining, 132

Channel, 6

City block metric, 123

Class comparison, 12-13, 65-93
Class discovery, 13, 121-155
Classical multidimensional scaling,

125-131
Classification tree, 105-107
Class labels, 98
Class prediction, 13, 95-120

goal of, 95
Class prediction methods, 98-108

comparison of, 107-108
example, 114-118

Clones, 44
Cluster analysis, 96) i;;i

Clusering, global tests of, 148-150
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Clustering algorithm, 131-146

Clusters
assessing validity of, 146-155
estimating number of, 150-152
individual, assessing reproducibilty

of, 152-155
Codebook value, 142
Codons, 162

Color image plots, 137-138, 139

Combination location and intensity
array normalization, 61

Complete linkge, 132

Compound covariate predictor, 102-103

~ ,9onfocal microscope, 6
/ Covariance matrix, 99

PeMs~"J ¡-i3 Cross-validation, 109-112

Sper'""A.'" H"/~ , 2-J. -/2. ,,-
¡. ,. 1./ i1 ata imputation, 50-52, 112lA V\Æ'" U ,) 2.1' Clup software, 48-49

D (discrepàncy) index, 153-154
Dendrogram, 133-137

D~¡, fj..r~"-rb,,¡";o") fS¡J 
155' Diagonal linear discriminant analysis,!j 101

Diagonal quadratic discriminant
analysis, 101

variants 'of, 101-103
Dì"'-'e,5i~" nJi.cA-~iscrepancy (D) index, 153-154

,) Discriminant analysis, 98-101
I ir" J / 28' Discriminant fuction, 99

Dissimiarity metric, 122

Distance metric, 122

Divisive luerarclucal clustering, 131-132
DNA microarrays, 1

design of experiments, 11-27
printed, 7-9
reproducibilty of, 16
techology, 5-10

DNA molecules, 158-163
Dobbin and Simon model, 92-93
Dye swap, 22-23

Co.r (".. t.-HO .,

Eisen's average linkge method, 133
Error rate

bootstrap estimation of, 112

estimating, 108-114
reporting, 112-113
statistical signficance of, 113

Euclidean distance, 122-123
Exons, 161

Expression profiles, 11

Fale discoveries, expected number of,
24

False discovery proportion, controllng,

80-83
False positives, controllng .Gumber of,

79-80
Feature selection, 97-98
Feature variables, 98
Figue-f-merit (FOM) criterion,

150-151
Fisher linear discriminant analysis,

98-101
Fixed circle segmentation uses, 31
Fluorescence, 6

FOM (figue-of-mei:it) criterion,
150-151

Foreground intensity extraction, 32-33
Foreground region, 31
Frequentist method, 85
F -statistic, 71

Fuzy clustering algorithm, 145

GAP statistic, 151
GeneClup, see Affmetrix GeneChip

arrays
GeneCluster software, 143
Gene expression, 159

biology of, 157-163
Gene expression datasets, 165-168
Gene level qualty control, 44-47
Gene-level sumaries, 36
Genes

low vaiance, 46-47
nondifferentially expressed, 46

Gene shaving method, 146

GeneSOM package, 143
Global array normalization, 56, 61-62
Global background correction, 33
Global test, term, 148
Golub's weighted vote method, 101-102
Graplucal displays, 125-131
Gridding, 30

Hazard, 91

Hedenfalk breat cancer data, 168

analysis of, 182-184
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Histogram segmentation, 32
HoteIlng's T2 -test, 86
Housekeeping genes, 53-54
Hybridization intensity, relative, 17
Hypothesis testing, 11

Image analysis, 29-38
for Affetrix GeneChip arrays,

35-38
spots flagged at, 40-41

Image display, 30
Image file, 6, 29

visual inspection of, 40
Image generation, 29-30
Image output fie, 34
Informative genes, 101

Intensity-based array normalzation,
57-59, 62-64

Introns, 161

Jonckheere test, 72

Kaplan Meier survival curves, 119
k-mea clustering, 133, 138-141
Kruska-WaIis test, 72

Labeling, reverse, 22-23
Labeling methods, 6-7
Label intensity, meauring, 5-6
Leariung rate, 142

Leave-out-one cross-vadation, 109- 11 1

Linear array normaization, 56, 61-62

Linear discrimiant analysis, 98-101

Linkage methods, 132

Local background estimation, 34
Location-based array normalization,

59-61
Loop design, 21
Low vaiance genes, 46-47
Luo prostate data, 166

Mahalanobis distance, 123
Manhattan distance, 123
M-A plots, 57
Median centering, 124-125
Median pixel intensity, 32
Missing data, 97

- Model-based clustering, 145

Morphological opeiung, 33
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mRA transcripts, 5, 163
Multidimensiona scaling, 125-131

nonmetric, 131

Multiple comparisons problem, 74
Multivariate Gaussian probabilty

density, 100

Multivariate permutation methods,
77-79

Multivaiate permutation tests, 26
Multivaiate regression models, 90

Nearest neighbor classification, 103-105
Noise, 39
Nondifferentially expressed genes, 46
Nonmetric multidimensional scaling,

131
Normalzation

array, see Array normalization
quantile, 63

Normalization factor, 55
Normalized signl log value, 62

Null hypothesis, 67
N i.1/ ""otds .for 5/010../ ¡. t sh 0+ c.' l-~ l,,; ~ d) I 

i¡S-I '19
Oligonucleotides, 5

Overfitting, 96, 108

Paired samples, 17-21

Paired-specimen data, 72-74

Parametric tests, 68
Partial leat squares analysis, 97-98

Patch, 31 ~ Po.r-t;l'.o-"""l
Pathway analysis, 13
Peason correlation, 123
Permutation F-test, 71-72
Permutation paired t-test, 73
Permutation tests, 68-71
Permutation t-test, 69-70
Perou breast data, 166-167

analysis of, 178-182
Photomultiplier tube, 6'
Photomultiplier tube (PMT) detector,

29-30
Pixel intensity, median, 32
Pixels, 6

saturated, 30, 48

Plaid model of Lazzeroiu and Owen,
146

PMT (photomultiplier tube) detector,
29-30

Poly-A tail, 161
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Pooled-vaiance formula, 67
Pooling of samples, 16-17
Prediction accuracy, 27
Principal components, 126
Principal components anaysis,

125-128
Printed DNA microarrays, 7-9
Printers, robotic, 7
Probe-level quality control, 40-4
Probe pairs, 9
Probes, 5

Profie plot, 143

Prognostic index, 118-119
Prognostic prediction, 95, 118-120

p~ Of dr+;'", o-t \II) f jiu" e.--proportional hazards regression model,Q.y-pic.i"~) J2b 91
Proteins, 157-158
p-values, 49, 67

two-sided, 67

Quadratic discriminant analysis, 100
Quality control, 39-52

array-level, 47-4
for GeneChip arrays, 48-50
gene level, 44-47
probe-Ievel,40-44

Quantile normalization, 63

Rank-based multidimensional scaling
methods, 131

Red-green-blue (RGB) image, 30
Reference design, 17-19
References, 185-194
Reference sample, 19

Regional background correction, 33
Regression model analysis, 89-90
Relative hybridization intensity, 17
Replicates, number needed, 23-27
Replication, level of, 15
Reproducibilty

of DNA microarrays, 16
of individual clusters, assessing,

152-155
Resubstitution estimate

bias of, 108-109
calculated, 109

Reverse labeling, 22-23
RGB (red-green-blue) image, 30
Ribosomes, 162

RNA molecules, 158-163
RNA samples, comparing, 14
Robotic printers, 7
Robustness (R) index, 153-154
R (robustness) index, 153-154

Samples
paired, 17-21
poolig of, 16-17

Saturated pixels, 30, 48
SE (structural element), 33
Seeded region growing (SRG) algorithm,

32
Segmentation, 31-32
Self-organzing maps (SOMs), 142-144
Separate-variance formula, 67

Significance level, 23
Significance threshold, 97
Simiarity metric, 122

Single linkge, 132 i
SOMs (self-organizig maps), 142-144
Speama correlation, 123-124
Spiked controls, 54
Split sample approach, 27
Spot effects, 93
Spot mask, 31

Spot size, 41-42
SRG (seeded region growing) algorithm,

32
Statistica power, 23

Statistical signficace, 67
Stopping criteria, 105
Structural element (SE), 33
Study objectives, 12-13
Sumry meaure, 99
Supervised analysis strategies, 95-96
Support vector machines, 107

Tagged image fi~IFF), 29
TamaY~~67-168
Targets, 5 0. '" tA i ~/~ if of.ì /I i. -11.'1

labeled, see Label entries
Technical replicates, 15
TIFF (tagged image file), 29
Training set, 109

Transcription factors, 160

Tranfer RNA (tRNA), 162-163
Translation, 162

TrimMean, 62



tRNA (traner RNA), 162-163

t-test, 67-68
'Iey biweight algorithm, 37

Two-sided p-values, 67
--, ,.- (JV\..,...~r-.a"'4Iy'ìJ ""l-l¡'4tl~ III

Validation dataset, 113- 114 ~
Variabilty, within-class, 25

Variance estimator, 67

'\

Index 199

Variation, sources of, 14-16

Ward's linkge method, 133

Watershed algorithm, 31
Weak signal, 42-43
Wilcoxon rank-sum test, 70
Wilcoxon signed-ran test, 73
Within-class variabilty, 25
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Chapter 9 - final changes

Minor corrections in text:

p.126
p.137
p.140
p.148
p.154

Change "datapoints" to "data points".
Insert "(also called heatmap )".

Change "datapoints" to "data points".
Change "inter-point" to "interpoint".
Add superscript "b" to the number 17.334 in Table 9.2.

Additions to index:

Bittner melanoma data, analysis of:
Add page numbers 127, 129, 133-134, 136-141, 150, 154-155.

Bootstrapping residuals, 155

Cluster analysis:
Add page 121.

Correlation
Pearson, 123

Speanan ran, 123-124

uncentered, 124

Data perturbation, 152, 155

Dimension reduction, 126, 128

Gaussian mixture model, 145

Heatmap, see color image plot

Mixture model, 145

Null models for global test of clustering, 148-149

Paritional clustering methods, 131, 138

Proportion of varance explained, 126

Tamayo HL-60 data (correct misspellng of "data")
analysis of, 142-144

Unsupervised analysis methods, 121



Chapter 9 - new index items

Bootstrapping residuals, 155

Correlation
Pearson, 123

Spearan ran, 123-124

uncentered, 124

Data perturbation, 152, 155

Dimension reduction, 126, 128

Gaussian mixture model, 145

Heatmap, see color image plot

Mixture model, 145

Null models for global test of clustering, 148-149

Paritional clustering methods, 131, 138

Proportion of variance explained, 126

Tamayo HL-60 data
analysis of, 142-144

Unsupervised analysis methods, 121



Chapter 9 - index corrections

Corrected elements are in orange

Bitter melanoma data, 165-166

analysis of, 127, 129, 133-134, 136-141, 150, 154-155, 171-178

Cluster analysis, 96, 121

Tamayo HL-60 data, 167-168
analysis of, 142-144


