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Gene Expression Microarrays

• Permit simultaneous evaluation of
expression levels of thousands of genes

• Main platforms
– Spotted cDNA arrays (2-color)

– Affymetrix GeneChip (1-color)

– Spotted oligo arrays (2-color or 1-color)

– Nylon filter arrays
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Spotted cDNA Arrays
(and other 2-color spotted arrays)

• cDNA arrays: Schena et al., Science, 1995

• Each gene represented usually by one spot
(occasionally multiple)

• Two-color (two-channel) system
– Two colors represent the two samples

competitively hybridized

– Each spot has “red” and “green” measurements
associated with it
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cDNA Array
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Affymetrix GeneChip Arrays

• Lockhart et al., Nature Biotechnology, 1996

• Affymetrix:  http://www.affymetrix.com

• Glass wafer (“chip”) – photolithography,
oligonucleotides synthesized on chip

• Single sample hybridized to each array

• Each gene represented by a “probe set”
– One probe type per array “cell”

– Typical probe is a 25-mer oligo

– 11-20 PM:MM pairs per probe set
(PM = perfect match, MM = mismatch)
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[Affymetrix] Hybridization
Oligo “GeneChip” Array
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Affymetrix:  Assay procedure

(Figure 1 from Lockhart et al., Nature Biotechnology, 1996)
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Perfect Match - Mismatch Probe Pairs

(Figure 2 from Schadt et al., Journal of Cellular Biochemistry, 2000)
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Image of a Scanned
Affymetrix GeneChip
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Slide Quality

A “good” quality cDNA array
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cDNA/Spotted Arrays: Slide Quality

Fiber or scratch? Bubble

Edge effect Background haze
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cDNA/Spotted Arrays:  Spot Quality

Poorly defined borders Large holes

Dust specsSaturated spot
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Affymetrix Arrays:  Quality Problems
(Figure 1 from Schadt et al., Journal of Cellular Biochemistry, 2000)
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cDNA/2-color spotted arrays:
Image Processing

 (Yang, et al., J. Computational and Graphical Statistics, 2002)

• Segmentation

• Background correction & signal calculation

• Spot flagging criteria

• Gene-level summaries
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cDNA/2-color spotted arrays:
Segmentation

• Segmentation - separation of feature (F)
from background (B) for each spot.

(See software documentation)

• Summary measures computed for F
– Intensity: mean or median over pixels

– Additional measures: SD, # pixels (size), etc.
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cDNA/2-color spotted arrays:
Background Correction &

Signal Calculation

• No background correction
Signal = F intensity

• Local background correction
Signal = F intensity - Blocal

• Regional background correction
Signal = F intensity - Bregional
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cDNA/2-color spotted arrays:
Flagging Spots for Exclusion

• F

• F-B

• F/B

• (F-B)/SD(B)

• Spot Size

A spot is excluded from analysis if “signal” or “signal-
to-noise” measure(s) at that spot fail to exceed a
threshold.  Several criteria can be used:
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Excluding Entire
Arrays or Regions

• Too many spots flagged

• Narrow range of intensities

• Uniformly low signals
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cDNA/2-color spotted arrays:
Gene-level Summaries

• Model-based methods
– Work directly on signals from two channels

(two colors)

• Ratio methods
– Red signal/Green signal
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Affymetrix Arrays:
Image Processing

• Grid alignment to probe cells

• Background correction

• Summarize over probe sets to get gene expression
indices
– Detection calls - present/absent

See Affymetrix documentation:
• Affymetrix website (http://www.affymetrix.com)

• Affymetrix Microarray Suite User Guide
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Affymetrix Arrays:
Probe Set (Gene) Summaries

• AvDiffi = Σ(PMij-MMij)/ni for each probe set i
 (original Affymetrix algorithm)

• Model-Based Expression Index
– (Li and Wong, PNAS, 2001)
– MBEIi = θi estimated from PMij- MMij = θi φj + εij  ⇒

weighted average difference

• New algorithms to address negative signals, etc.
– “New” Affymetrix algorithm
– PM only (no mismatch subtraction)
– Average background adjustment (Irizarry et al., 2002)
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cDNA/2-color spotted arrays:
Need for Normalization

• Unequal incorporation of labels

– green better than red

• Unequal amounts of sample

• Unequal PMT voltage
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Normalization Methods for
cDNA/2-Color Spotted Arrays

• Model-based methods
– Normalization incorporated into model

• Ratio-based methods
– Median (or Mean) Centering Method
– Lowess Method
– Multitude of other methods

Chen et al., Journal of Biomedical Optics, 1997
Yang et al. (http://oz.berkeley.edu/users/terry/zarray)

– Scaling factors, separately by printer pin, etc.
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Median (or Mean) Centering

Subtract median or mean log-ratio (computed over all genes
on the slide or only over housekeeping genes) from each 
log-ratio. 

In plot of log(red signal)
versus log(green signal), if 
point scatter is parallel to 
45° line, adjust intercept to 0.

MCF7 vs MCF10A, Expt. 3
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Lowess Normalization: M vs A plots
Yang et al. (http://oz.berkeley.edu/users/terry/zarray)

M vs A with Lowess Smooth, Expt. 22

A=(log2(GREEN signal)+log2(RED signal))/2
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log2(GREEN signal), MCF10A

lo
g

2
(R

E
D

 s
ig

n
a

l)
, 

M
C

F
7

5 10 15

0
5

1
0

1
5

M = log2(GREEN signal)-log2(RED signal) 
A=(log2(GREEN signal)+log2(RED signal))/2



31

Normalization: Affymetrix Arrays

• Need
– Variations in amount of sample or

environmental conditions
– Variations in chip, hybridization, scanning

• Methods
– Median, lowess, quantile adjustments, . . .
– Across probe cells or across genes summaries?
– Adjust to fixed value or to “reference” array
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Filtering Genes
• “Bad” values on too many arrays.

• Not differentially expressed across arrays.

– Variance (assumes approx. normality)

Let s2
i = sample variance of gene i (log) measurements

across n arrays.

Exclude gene i if

(n-1) s2
i < χ2(1- α, n-1)×median(s2

1, s2
2, . . ., s2

n).

– Fold difference

Examples: Max/Min < 3 or 4

(95th percentile/5th percentile) < 2 or 3
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Design and Analysis Methods Should
Be Tailored to Study Objectives

• Class Comparison (supervised)
– For predetermined classes, establish whether gene

expression profiles differ, and identify genes
responsible for differences

• Class Discovery (unsupervised)
– Discover clusters among specimens or among genes

• Class Prediction (supervised)
– Prediction of phenotype using information from gene

expression profile



35

Class Comparison Examples

• Establish that expression profiles differ between
two histologic types of cancer.

• Identify genes whose expression level is altered by
exposure of cells to an experimental drug.
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Class Discovery Examples

• Discover previously unrecognized subtypes of
lymphoma.

• Identify co-regulated genes



37

Class Prediction Examples

• Predict from expression profiles which patients are
likely to experience severe toxicity from a new
drug versus who will tolerate it well.

• Predict which breast cancer patients will relapse
within two years of diagnosis versus who will
remain disease free.
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Design Considerations
• Sample selection
• Sample size planning
• Controls
• Sources of variability/levels of replication
• For cDNA/2-color spotted arrays:

– Reverse fluor experiments
– Allocation of samples to (cDNA) array

experiments
• Kerr and Churchill, Biostatistics, 2001
• Dobbin and Simon, Bioinformatics, in press
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Sample Selection
• Experimental Samples

– A random sample from the population under
investigation?

– Broad versus narrow inclusion criteria?

• Reference Sample (cDNA array experiments using
reference design)
– In most cases, does not have to be biologically relevant.

• Expression of most genes, but not too high.

• Same for every array

– Other situations exist (e.g., matched normal & cancer)
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Sample Size Planning

• No comprehensive method for planning sample
size exists for gene expression profiling studies.

• In lieu of such a method…
– Plan sample size based on comparisons of two classes

involving a single gene.

– Make adjustments for the number of genes that are
examined.
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• Total sample size when comparing two equal sized,
independent groups:

n = 4σ2(zα/2 + zβ)2/δ2

where  δ = mean difference between classes
 σ = standard deviation
 zα/2, zβ = standard normal percentiles

• Choose  α small, e.g.  α = .001
• Alternative formulas for unequal, paired, or multiple

groups

Sample Size Planning
GOAL: Identify genes differentially expressed in a
comparison of pre-defined classes of specimens.
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Controls

• Multiple clones (cDNA arrays) or probe
sets (oligo arrays) for same gene spotted on
array

• Spiked controls (e.g. yeast or E. coli)
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• Biological Heterogeneity in Population

• Specimen Collection/ Handling Effects
– Tumor: surgical bx, FNA

– Cell Line: culture condition, confluence
level

• Biological Heterogeneity in Specimen

• RNA extraction

• RNA amplification

• Fluor labeling

• Hybridization

• Scanning
– PMT voltage

– laser power

Sources of Variability
(cDNA Array Example)

(Geschwind, Nature Reviews Neuroscience, 2001)
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Examples of Replication

• RNA sample divided into multiple aliquots

• Multiple RNA samples from a specimen

• Multiple subjects from population(s)
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Level of Replication
Determines Inference

• Replication of samples should generally be
at the “subject” level because we want to
make inference to the population of
“subjects”, not to the population of sub-
samples of a single biological specimen.
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Does it pay to replicate arrays?

• When the subject-to-subject variability is
greater than the experimental variability, it
is more efficient to assay specimens from
additional subjects than it is to perform
replicate arrays for the same subjects.

• Some replicates may be helpful as quality
checks, but can be misleading if replication
covers only some of the sources of
variability.
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cDNA/2-Color Spotted Arrays:
Reverse Fluor Experiments

Forward vs -Reverse logRatio
 MCF7 vs MCF10A

Avg. of 7 forward logRatios
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cDNA/2-color spotted arrays:

Should reverse fluor “replicates” be
performed for each array?
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cDNA/2-color spotted arrays:
Reverse Fluors

• When interested in interpreting an individual
ratio . . .
– If gene-specific dye bias is relatively constant

across specimens, dye bias can be accounted for
by performing some reverse fluor experiments.
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cDNA/2-color spotted arrays:
Reverse Fluors

• When interested in class comparisons . . .
– If gene-specific dye bias is constant across

arrays, it will “cancel out”.

– If average dye bias within each group is the same
for all groups, the average bias will “cancel out”.
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cDNA/2-color spotted arrays:
Reverse Fluors

• When interested in class discovery . . .
– Usefulness of reverse fluor experiments and

replicates will depend on nature and magnitude
of both dye bias and experimental variability
relative to between subject variability.

– For some clustering methods, constant dye biases
will “wash out”.

– Some reverse fluors and replicates may be useful
as informal quality checks.
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cDNA/2-color spotted arrays:
Reverse Fluors

• When interested in class prediction . . .
– Considerations of replicates and reverse fluor

experiments are similar to those for the case of
class comparisons.
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How best to allocate effort?

In many cases it may make a lot of sense to
first identify a list of potentially interesting
genes, and then verify their expression by
other more accurate methods rather than
trying to eliminate the biases and noise in the
microarray-based measurements by
performing many replicate arrays or reverse
fluor experiments (2-color arrays).
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Class Comparison:
Allocation of Specimens to
cDNA Array Experiments

• Reference Design

• Loop Design
– Kerr and Churchill, Biostatistics, 2001

• Block Design
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Reference Design

A1

R

A2 B1 B2

R R R

RED

GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

R = aliquot from reference pool

Bi = ith specimen from class B
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Loop Design

A1

A2

B1 A2 B2

B1 B2 A1

RED

GREEN

Array 1 Array 2 Array 3 Array 4

Ai = aliquot from ith specimen from class A

Bi = aliquot from ith specimen from class B

(Requires two aliquots per specimen)
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Block Design

A1

A2

B2 A3 B4

B1 B3 A4

RED

GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B
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Comparison of Designs

• For class discovery, a Reference design is
preferable because of large gains in cluster
performance.

• For class comparisons . . .
– With a fixed number of arrays, Block design is more

efficient than Loop or Reference design, but Block
design precludes clustering.

– With a fixed number of specimens, Reference design is
more efficient than Loop or Block design when intra-
class variance is “large” relative to experimental
variation.
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Analysis Strategies for Class
Comparisons

• Model-based methods

• Global tests

• Multiple testing procedures to identify
differentially expressed genes
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Model-based Methods for
cDNA Arrays

• Kerr et al., Journal of Computational Biology,
2000

• Lee et al., PNAS, 2000

• Kerr and Churchill, Biostatistics, 2001

• Wolfinger et al., Journal of Computational
Biology, 2001

• Dobbin & Simon, Bioinformatics, 2002, in press
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Global Tests for Differences
Between Classes

• Choice of summary measure of difference
Examples:

- Sum of squared univariate t-statistics

- Number of genes univariately significant at 0.001
level

• Statistical testing by permutation test
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Multiple Testing Procedures

• Actual Number of False Discoveries: FD
• Expected Number of False Discoveries: E(FD)

• Actual Proportion of False Discoveries: FDP
• Expected Proportion of False Discoveries:

E(FDP) = False Discovery Rate (FDR)

Identification of differentially expressed genes while
controlling for false discoveries (genes declared to be
differentially expressed that in truth are not).
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Simple Procedures

• Control expected number of false discoveries
– E(FD) ≤ u
– Conduct each of k tests at level u/k

• Bonferroni control of familywise error (FWE) rate
at level α
– Conduct each of k tests at level α/k
– At least (1-α)100% confident that FD = 0
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Problems With Simple
Procedures

• Bonferroni control of FWE is very conservative

• Controlling expected number or proportion of
false discoveries may not provide adequate control
on actual number or proportion
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Additional Procedures
• “SAM”  - Significance Analysis of Microarrays

– Tusher et al., PNAS, 2001
– Estimate FDR
– Statistical properties unclear

• Empirical Bayes
– Efron et al., JASA, 2001
– Related to FDR

• Step-down permutation procedures
– Korn et al., 2001 (http://linus.nci.nih.gov/~brb)

– Control number or proportion of false discoveries with
stated confidence
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Class Discovery
• Cluster analysis algorithms (Gordon, 1999)

– Hierarchical
– K-means
– Self-Organizing Maps
– Maximum likelihood/mixture models
– Multitude of others

• Graphical displays
– Hierarchical clustering

• Dendrogram
• “Ordered” color image plot

– Multidimensional scaling plot
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Hierarchical Agglomerative
Clustering Algorithm

• Cluster genes with respect to expression across
specimens

• Cluster specimens with respect to gene expression
profiles
– Filter genes that show little variation across specimens

– Median or mean center genes
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Hierarchical Agglomerative
Clustering Algorithm

• Merge two closest observations into a cluster.
– How is distance between individual observations

measured?

• Continue merging closest clusters/observations.
– How is distance between clusters measured?

• Average linkage

• Complete linkage

• Single linkage
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Common Distance Metrics for
Hierarchical Clustering

• Euclidean distance
– Measures absolute distance

(square root of sum of
squared differences)

• 1-Correlation
– Large values reflect lack of

linear association (pattern
dissimilarity)
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Linkage Methods
• Average Linkage

– Merge clusters whose average distance between all
pairs of items (one item from each cluster) is minimized

– Particularly sensitive to distance metric

• Complete Linkage
– Merge clusters to minimize the maximum distance

within any resulting cluster
– Tends to produce compact clusters

• Single Linkage
– Merge clusters at minimum distance from one another
– Prone to “chaining” and sensitive to noise
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Interpretation of
Cluster Analysis Results

• Cluster analyses always produce cluster structure
– Where to “cut” the dendrogram?

• Different clustering algorithms may find different
structure using the same data.

• Which clusters do we believe?
– Reproducible between methods
– Reproducible within a method
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Assessing Cluster Reproducibility:
 Data Perturbation Methods

• Most believable clusters are those that persist
given small perturbations of the data.

– Perturbations represent an anticipated level of noise in
gene expression measurements.

– Perturbed data sets are generated by adding random
errors to each original data point.

• McShane et al., Bioinformatics, in press –
    Gaussian errors
• Kerr and Churchill, PNAS, 2001 – Bootstrap residual errors
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• Perturb the log-gene measurements and re-
cluster.

• For each original cluster:

– Compute the proportion of elements that occur
together in the original cluster and remain together
in the perturbed data clustering when cutting
dendrogram at the same level k.

– Average the cluster-specific proportions over many
perturbed data sets to get an R-index for each
cluster.

Assessing Cluster Reproducibility:
 Data Perturbation Methods
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k = 3

}

c1

}

c2

}

c3

Perturbed Data

}
p1

}
p2

}

p3

Original Data

R-index Example

• 3 out of 3 pairs in c1 remain together in perturbed clustering.

• 3 out of 3 in c2 remain together.

• 1 out of 3 in c3 remain together.

• R-index = (3 + 3 + 1)/(3 + 3 + 3) = 0.78

x1  x2  x3      y1  y2   y3    z1  z2   z3 x1  x2   x3     y1  y2   y3  z3     z1  z2
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Cluster Reproducibility: Melanoma
(Bittner et al., Nature, 2000)

Expression profiles of 31 melanomas were examined with a variety of class 
discovery methods. A group of 19 melanomas consistently clustered together.

For hierarchical clustering, the
cluster of interest had an
R-index = 1.0.

fi  highly reproducible

Melanomas in the 19 element
cluster tended to have:

• reduced invasiveness
• reduced motility
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Evaluating the Number of Clusters
• Global test of “no clustering” followed by

comparison of R-index and D-index over many
cuts in the original dendrogram to assess how
many clusters are reproducible (McShane et al.,
Bioinformatics, in press)

• Gap Statistic (Tibshirani et al., JRSS B, 2002) –
estimate number of clusters

• Comparisons of methods for estimating number of
clusters in small dimension cases (Milligan and
Cooper, Psychometrika, 1985)
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Graphical Displays:
Ordered Color Image Plot

Hierarchical Clustering of Lymphoma Data (Alizadeh et al., Nature, 2000)
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• High-dimensional (e.g. 5000-D) data points are
represented in a lower-dimensional space (e.g. 3-D)

– Principal components or optimization methods

– Depends only on pairwise distances (Euclidean, 1-
correlation, . . .)  between points

– “Relationships” need not be well-separated clusters

Graphical Displays:
Multidimensional Scaling (MDS)



81

 

 

MDS: Breast Tumor and FNA Samples

(Assersohn et al., Clinical Cancer Research, 2002)

Color = Patient
Large circle = Tumor
Small circle = FNA
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MDS Representation of Total and Amplified
RNA Samples from Same Cell Line

(Fang et al., unpublished)

• There appears to be a difference between total and
amplified samples.

• Variability among amplified samples appears larger than
variability among total samples.
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Class Prediction Methods

Comparison of linear discriminant analysis, NN classifiers,
classification trees, bagging, and boosting: tumor classification
based on gene expression data (Dudoit, et al., JASA, 2002)

Weighted voting method: distinguished between subtypes of
human acute leukemia (Golub et al., Science, 1999)

Compound covariate prediction: distinguished between
mutation positive and negative breast cancers (Hedenfalk et al.,
NEJM, 2001; Radmacher et al., J. Comp. Biology, in press)

Support vector machines: classified ovarian tissue as normal or
cancerous (Furey et al., Bioinformatics, 2000)

Neural Networks: distinguished among diagnostic subcategories
of small, round, blue cell tumors in children (Khan et al., Nature
Medicine, 2001)



84

Pitfalls in Class Prediction for
Microarray Data

(Simon, et al. JNCI, in press)

“Note that when classifying samples, we are confronted with a
problem that there are many more attributes (genes) than
objects (samples) that we are trying to classify. This makes it
always possible to find a perfect discriminator if we are not
careful in restricting the complexity of the permitted
classifiers. To avoid this problem we must look for very simple
classifiers, compromising between simplicity and classification
accuracy.” (Brazma & Vilo, FEBS Letters, 2000)

Validation! Validation! Validation!
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The Compound Covariate Predictor (CCP)
(Tukey, Controlled Clinical Trials, 1993)

• Select “differentially expressed” genes by two-
sample t-test with small α.

CCPi = t1 xi1 + t2 xi2 + . . . + td xid

tj is the two-sample t-statistic for gene j.

xij is the log expression measure for gene
j in sample i.

Sum is over all d differentially expressed
genes.

• Threshold of classification: midpoint of the CCP
means for the two classes.
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Non-Cross-Validated Prediction

Cross-Validated Prediction (Leave-One-Out Method)

1. Prediction rule is built using full data set.
2. Rule is applied to each specimen for class

prediction.

1. Full data set is divided into training and
test sets (test set contains 1 specimen).

2. Prediction rule is built using the training
set.

3. Rule is applied to the specimen in the
test set for class prediction.

4. Process is repeated until each specimen
has appeared once in the test set.
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Prediction on Simulated Null Data

Generation of Gene Expression Profiles

• 20 specimens (Pi is the expression profile for specimen i)

• Log-ratio measurements on 6000 genes

• Pi ~ MVN(0, I6000)

• Can we distinguish between the first 10 specimens (Class 1)
and the last 10 (Class 2)? (class distinction is totally artificial
since all 20 profiles were generated from the same distribution)

Prediction Method

• Compound covariate prediction

• Compound covariate built from the log-ratios of the 10 most
differentially expressed genes.
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Gene-Expression Profiles in
Hereditary Breast Cancer

( Hedenfalk et al., NEJM, 2001)

• Breast tumors studied:
7 BRCA1+ tumors
8 BRCA2+ tumors
7 sporadic tumors

• Log-ratios measurements of
3226 genes for each tumor
after initial data filtering

cDNA Microarrays
Parallel Gene Expression Analysis 

RESEARCH QUESTION
Can we distinguish BRCA1+ from BRCA1– cancers and BRCA2+ from
BRCA2– cancers based solely on their gene expression profiles?
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Classification of hereditary breast cancers with the compound covariate predictor

Class labels

Number of
differentially

expressed genes
m = number of

misclassifications

Proportion of random
permutations with m or
fewer misclassifications

BRCA1+ vs. BRCA1− 9 1 (0 BRCA1+, 1 BRCA1−) 0.004
BRCA2+ vs. BRCA2− 11 4 (3 BRCA2+, 1 BRCA2−) 0.043

1 2

1Using full data set and significance level α = .0001
2Using leave-one-out cross-validation.
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Validation of Predictor on
Independent Data

• Potential pitfalls of estimated prediction accuracy
from leave-one-out cross-validation on a single
data set
– High variance of LOO CV error rate for small samples

– Peculiarities of the training set may influence the
prediction rule

• Independent data set for validation
– Should be fairly large (e.g., as big as training set)

– Similar proportions of specimens for the classes as exist
in the population
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Summary Remarks
• Data quality assessment and pre-processing are important.

• Different study objectives will require different statistical
analysis approaches.

• Different analysis methods may produce different results.
Thoughtful application of multiple analysis methods may be
required.

• Chances for spurious findings are enormous, and validation of
any findings on larger independent collections of specimens will
be essential.

• Analysis tools are not an adequate substitute for collaboration
with professional data analysts.
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• NCI: http://linus.nci.nih.gov/~brb
– Tech reports, talk slides

– BRB-ArrayTools software

• Berkeley: http://www.stat.berkeley.edu/users/terry/zarray/Html/index.html

• Harvard: http://www.dchip.org

• Hopkins: http://biosun01.biostat.jhsph.edu/~ririzarr/Raffy/

• Jackson Labs: http://www.jax.org/research/churchill/

• Stanford:
– http://genome-www5.stanford.edu/MicroArray/SMD/restech.html

– http://www-stat.stanford.edu/~tibs/  (R. Tibshirani)

Helpful Websites
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