Statistical Analysis of Gene Expression Microarray Data

Lisa M. McShane Eric C. Polley

Biometric Research Branch National Cancer Institute

CIT, May, 2011

CLASS OVERVIEW

- Day 1 Discussion of statistical analysis of microarray data Lisa McShane and Eric Polley
- Day 2 Hands-on BRB ArrayTools workshop Supriya Menezes

OUTLINE

- 2 Data Quality & Image Processing
- Ormalization & Filtering
- 4 Study Objectives
- **5** Design Considerations

2 Data Quality & Image Processing

3 Normalization & Filtering

- 4 Study Objectives
- 5 Design Considerations

GENE EXPRESSION MICROARRAYS

Permit simultaneous evaluation of expression levels of thousands of genes

Main Platforms:

- Spotted cDNA arrays (2-color)
- Affymetrix GeneChip (1-color)
- Spotted Oligo arrays (1- or 2-color)
- Bead arrays (e.g. Illumina-DASL)

SPOTTED CDNA ARRAYS

cDNA arrays: Schena et al., Science, 1995.

Each spot corresponds to a gene. Sometimes multiple spots per gene.

Two-color (two-channel) system:

- Two colors represent the two samples competitively hybridized
- Each spot has "red" and "green" measurements associated with it.

CDNA ARRAY

http://www.genome.gov/10000533/

CDNA ARRAY

Figure: Overlaid "red" and "green" images for cDNA microarray

AFFYMETRIX GENECHIP

Lockhart et al., Nature Biotechnology, 1996.

Affymetrix: http://www.affymetrix.com

Glass wafer ("chip") — photolithography, oligonucleotides synthesized on chip

Single sample hybridized to each array

Each gene represented by one or more probe sets:

- One probe type per array "cell"
- Typical oligo probe is 25 nucleotides in length
- 11-20 PM:MM pairs per probe set (PM = perfect match, MM = mismatch)

GENECHIP

Figure: Affymetrix Oligo "GeneChip" array

http://en.wikipedia.org/wiki/DNA_microarray

GENECHIP

Figure: Image of scanned Affymetrix GeneChip

GENECHIP

Figure: Perfect Matching - Mismatch Probe Pair

From Schadt et al., Journal of Cellular Biochemistry, 2001

2 Data Quality & Image Processing

3 Normalization & Filtering

4 Study Objectives

5 Design Considerations

SPOTTED ARRAYS: QC

Figure: Background haze

Figure: Edge effect

Figure: Bubble

- Visual inspection of arrays advisable
 - Danger: Garbage In ⇒ Garbage Out

GENECHIP: QC

Figure: Affymetrix Arrays: Quality Problems

From Schadt et al., Journal of Cellular Biochemistry, 2001

SEGMENTATION

cDNA/2-color spotted arrays need to be segmented to extract data.

Segmentation: Separation of feature (F) from background (B) for each spot.

Summary measures computed for *F* (for each channel/color):

- Intensity: Mean or Median over pixels
- Additionally: SD, Size (# pixels), etc.

SIGNAL CALCULATION

cDNA/2-color spotted arrays: Background correction & signal calculation (for each channel/color):

- No background correction: Signal = F
- Local background correction:

 $Signal = F - B_{local}$

• Regional background correction:

 $Signal = F - B_{region}$

FLAGGING SPOTS

cDNA/2-color spotted arrays: flagging spots/arrays exclusion

Exclude spots if "signal" or "signal-to-noise" measure(s) poor (low):

- F
- F B
- (F-B)/SD(B)
- Spot size

Exclude whole arrays or regions if:

- Too many spots flagged
- Narrow range of intensities
- Uniformly low signals

2-COLOR ARRAYS: GENE-LEVEL SUMMARY

- Model-based methods:
 - Work directly on signals from two channels
 - Color effects and interactions between color and experimental factors incorporated into statistical models
- Ratio Methods[†]
 - Red signal / Green signal
 - "Green" sample serves as internal reference

[†]Today's course will focus on ratio methods

AFFYMETRIX ARRAYS: IMAGE PROCESSING

- DAT image files \rightarrow CEL files
- Each probe cell is 10×10 pixels
- Grid alignment to probe cells
- Signals:
 - Remove outer 36 pixels $\rightarrow 8 \times 8$ pixels
 - The probe cell signal, PM or MM, is the 75^{th} percentile of the 8×8 pixel values
- Background correction: Average of the lowest 2% probe cell values in zone is taken as the background value and subtracted
- Summarize over probe pairs to get gene expression indices

More details at http://www.affymetrix.com

AFFYMETRIX ARRAYS: GENE SUMMARIES

Original Affymetrix algorithm (AvDiff):

$$Y_i = \sum_j \frac{1}{n_i} \left(PM_{ij} - MM_{ij} \right)$$

Revised Affymetrix algorithm to address negative signals (MAS 5.x series):

$$Y_i = \exp\left\{ave_T\left(\log(PM_{ij} - IM_{ij})\right)\right\}$$

where $ave_T(\cdot)$ is the Tukey biweight method and

$$IM = \begin{cases} MM & \text{if } MM < PM \\ PM - \delta & \text{if } MM > PM \end{cases}$$

AFFYMETRIX ARRAYS: GENE SUMMARIES

Model based summaries for Li and Wong (*PNAS*, 2001; *Genome Biology*, 2001; incorporated into dChip)

• $MBEI_i = \theta_i$ estimated from:

$$PM_{ij} - MM_{ij} = \theta_i \phi_j + \varepsilon_{ij}$$

where ϕ_j is the j^{th} probe sensitivity index and ε_{ij} is random error.

• $MBEI_i^* = \theta_i^*$ estimated from:

$$PM_{ij} = \nu_i + \theta_i^* \phi_j'$$

where ϕ'_j is the j^{th} probe sensitivity index and ν_i is baseline response for i^{th} probe *pair*

AFFYMETRIX ARRAYS: GENE SUMMARIES

 Irizarry *et al.* (*Nucleic Acids Research*, 2003; *Biostatistics*, 2003): *RMA_i* = μ_i estimated from

$$T(PM_{ij}) = \mu_i + \alpha_j + \varepsilon_{ij}$$

where $\mathrm{T}(PM_{ij})$ is the cross-hybridization corrected, (quantile-) normalized and log-transformed PM intensities.

• Wu *et al.* (*J. Amer. Stat. Assoc.*, 2004): Apply cross-hybridization correction that depends on G-C content of probe

2 Data Quality & Image Processing

Ormalization & Filtering

4 Study Objectives

5 Design Considerations

NEED FOR NORMALIZATION

For cDNA/2-color spotted arrays:

- Unequal incorporation of labels. Green brighter than red
- Unequal amounts of sample
- Unequal PMT voltage
- Autofluorescence greater at shorter scanning wavelength

2-COLOR ARRAYS: NORMALIZATION

Ratio-based methods:

- Median (or mean) centering method
- Lowess method
- Multitude of other methods: (Chen *et al.*, *Journal of Biomedical Optics*, 1997; Yang *et al.*, *Nucleic Acids Research*, 2002).

2-COLOR ARRAYS: NORMALIZATION

Subtract median or mean log-ratio (computed over all genes on the slide or only over housekeeping genes) from each log-ratio

Data from Agilent Rat Whole Genome Array in CC14 package

M VS A PLOT

Yang et al., Nucleic Acids Research, 2002

2-COLOR ARRAYS: NORMALIZATION

Figure: Bad Array Example

AFFYMETRIX NORMALIZATION

- Variations due to sample, chip, hybridization, scanning
- Probe set-level vs. probe level
- Quantile normalization, intensity-dependent, etc.
- Normalize across all arrays or pairwise
- PP-MM vs. PM only
- Built in to dChip, RMA, and MAS 5.x series algorithms:
 - Li and Wong (PNAS, 2001; Genome Biology, 2001)
 - Irizarry et al. (Nucleic Acids Research, 2003; Biostatistics, 2003)
 - Bolstad et al. (Bioinformatics, 2003)

FILTERING GENES

"Bad" or missing values on too many arrays

Not differentially expressed across arrays (non-informative):

Variance

 s_i^2 is the sample variance of (log) measurements of gene i (i = 1, 2, ..., K). Exclude gene i if:

$$(n-1)s_i^2 < \chi^2(\alpha, n-1) \times \text{median}(s_1^2, s_2^2, \dots, s_K^2)$$

Fold Difference

Exclude gene *i* if: $\max_i / \min_i < 3 \text{ or } 4$; or $95^{th}\%/5^{th}\% < 2 \text{ or } 3$.

2 Data Quality & Image Processing

3 Normalization & Filtering

STUDY OBJECTIVES

Class Comparison (supervised)

For predetermined classes, establish whether gene expression profiles differ, and identify genes responsible for differences

Class Discovery (unsupervised)

Discover clusters among specimens or among genes

Class Prediction (supervised)

Prediction of phenotype using information from gene expression profile

CLASS COMPARISON

Examples:

- Establish that expression profiles differ between two histologic types of cancer
- Identify genes whose expression level is altered by exposure of cells to an experimental drug

CLASS COMPARISON

Global tests

- Compare whole profiles
- Permutation tests

Gene-level analyses

- Model-based methods (e.g. multi-parameter)
- Test-based methods (e.g. t-tests, nonparametric tests)
- Hybrid variance methods
GLOBAL TESTS

Global tests for differences in profiles between classes:

- Choice of summary measure of difference, for example:
 - Sum of squared univariate t-statistics
 - Number of genes univariately significant at α level
- Statistical testing by permutation test
- BRB-ArrayTools uses the number of univariately significant genes as a summary measure for the global test for differences between profiles

GENE-LEVEL

Model-based methods

Multi-parameter modeling of channel-level data (e.g. Gaussian mixed models), hierarchical Bayesian models, etc. May borrow information across genes and use multiple comparison adjustments.

Test-based methods

t-test, F-test, or Wilcoxon tests for each gene. Multiple comparison adjustment commonly used.

Random variance methods

Variance estimates borrow across genes.

RANDOM VARIANCE

Bayesian Baldi and Long, *Bioinformatics*, 2001

Frequentist

Wright and Simon, *Bioinformatics*, 2003 Available as the 'Random Variance' option in BRB-ArrayTools

Variance model:

🔽 Use randomized variance model for univariate tests.

Goal:

Identification of differentially expressed (DE) genes while controlling for false discoveries (genes declared to be differentially expressed that in truth are not).

We compute *m* tests where m_0 are true nulls and $m - m_0$ are false nulls (DE).

The test rejects \mathbf{R} out of *m* hypotheses, with \mathbf{S} correctly rejected. \mathbf{V} represents a type I error and \mathbf{T} represents a type II error.

Adapted from Benjamini and Hochberg, JRSS-B, 1995.

Different ways to control:

- Actual number of false discoveries: FD
- Expected number of false discoveries: E(FD)
- Actual proportion of false discoveries: FDP
- Expected proportion of false discoveries: E(FDP) = false discovery rate (FDR)

$$FD = V$$
 and $FDP = V/R$

MULTIPLE TESTING: SIMPLE PROCEDURES

Control expected number of false discoveries

- $E(FD) \le u$
- conduct each of k tests at level u/k

Bonferroni control of family-wise error (FWE)

- Conduct each of k tests at level α/k
- At least $(1 \alpha)100\%$ confident that FD = 0

Problems with the simple procedures:

- Bonferroni control of FWE is very conservative
- Controlling *expected* number or proportion of false discoveries may not provide adequate control on *actual* number or proportion

Additional Procedures:

- Review by Dudoit et al. (Statistical Science, 2003)
- "SAM" Significance Analysis of Microarrays
 - Tusher, et al., PNAS, 2001 and relatives
 - Esimate quantities similar to FDR (old SAM) or control FDP (new SAM)
- Bayesian
 - Efron *et al.*, *JASA*, 2001
 - Manduchi et al., Bioinformatics, 2000
 - Newton et al., J Comp Bio, 2001
- Step-down permutation procedures
 - Westfall and Young, 1993 Wiley (FWE)
 - Korn et al., JSPI, 2004 (FD and FDP control)

TYPES OF CONTROL

Korn *et al.* FD

FD(2): We are 95% confident that the actual number of false discoveries is not greater than 2

Korn et al. FDP

 ${\rm FDP}(0.10)$: We are 95% confident that the actual proportion of false discoveries does not exceed 0.10

Tusher et al. SAM

 $\mathrm{SAM}_{old}(0.10)$: On average, the false discovery proportion will be controlled at 0.10

Current SAM

 $SAM_{new}(0.10)$: Similar to Korn FDP procedure

Bayesian Methods

Higher posterior probability of differential expression

The step-down permutation procedure for FD and FDP control is available in BRB-ArrayTools for class comparison, survival analysis, and quantitative traits analysis.

Can also set number of permutations

CLASS DISCOVERY

Examples:

- Discover previously unrecognized subtypes of lymphoma
- Cluster temporal gene expression patterns to get insight into genetic regulation in response to a drug or toxin

CLASS DISCOVERY

Cluster Analysis

- Hierarchical
- K-means
- Self-organizing maps
- Maximum likelihood/mixture models
- Many more...

Graphical Displays

- Dendrogram
- Heatmap
- Multidimensional scaling plot

CLUSTER ANALYSIS

Hierarchical Agglomerative Clustering Algorithm

Two approaches:

- Cluster genes with respect to expression across speciments
- 2 Cluster specimens with respect to gene expression profiles

Often helpful to filter genes that show little variation across specimens and median/mean center genes.

CLUSTER ANALYSIS

Hierarchical Agglomerative Clustering Algorithm

Merge two "closest" observations into a cluster. Continue merging closest clusters/observations.

Two things to define:

1 How is distance between individuals measured?

- Euclidean
- Maximum
- Manhattan
- 1 Correlation
- 2 How is distance between clusters measured?
 - Average linkage
 - Complete linkage
 - Single linkage

DISTANCE METRICS

Euclidean distance:

Measures absolute distance (square root of sum of squared differences)

1 - Correlation:

Large values reflect lack of linear association (pattern dissimilarity)

LINKAGE METHODS

Average Linkage

Merge clusters whose average distance between all pairs is minimized. Particularly sensitive to distance metric

Complete Linkage

Merge clusters to minimize the maximum distance within any resulting cluster. Tends to produce compact clusters

Single Linkage

Merge clusters at minimum distance from one another. Prone to "chaining" and sensitive to noise

LINKAGE METHODS

CLUSTER ANALYSIS

Average

Single

Dendrograms using 3 different linkage methods, 1 - Corr distance (Data from Bittner *et al.*, *Nature*, 2000)

DOES CLUSTER METHOD MATTER?

CLUSTER ANALYSIS

How to interpret the cluster analysis results:

- Cluster analyses always produce cluster structure
 - Where to "cut" the dendrogram?
 - Which clusters do we believe?
- Circular reasoning
 - Clustering using only genes found significantly different between two classes
 - "Validating" clusters by testing for differences between subgroups observed to segregate in clusters
- Different clustering algorithms may find different structure using the same data

ASSESSING CLUSTERING RESULTS

Global test of clustering

Based on inter-sample distances in transformed dimension-reduced space

Available as an option in BRB-ArrayTools for multidimensional scaling of samples

Assessment of reproducibility

Are the individual clusters using the selected cuts of the dendrogram in hierarchical clustering reproducible? (McShane *et al.*, *Bioinformatics*, 2002)

ASSESSING CLUSTERING RESULTS

Data Perturbation Methods

Most believable clusters are those that persist given small perturbations of the data.

Perturbations represent an anticipated level of noise in gene expression measurements.

Perturbed data sets are generated by adding random errors to each original data point:

- Gaussian Errors –McShane *et al.*, *Bioinformatics*, 2002
- Bootstrap residual errors–Kerr and Churchill, PNAS, 2001

ASSESSING CLUSTERING RESULTS

Perturbation Method in BRB-ArrayTools

Perturb the log-gene measurements by adding Gaussian noise and then re-cluster. For each cluster:

- Compute proportion of elements that occur together in the original cluster and remain together in perturbed data clustering when cutting dendrogram at the same level k
- Average the cluster-specific proportions over many perturbed data sets to get an *R*-index for each cluster
- the *R*-index may be obtained in BRB-ArrayTools for the hierarchical clustering of samples by selecting the 'Compute cluster reproducibility measures' options[†]
- 4 Hope for R-index ≥ 0.75

[†]*R*-index not available for gene clustering

*R***-INDEX EXAMPLE**

- 3 out or 3 pairs in X remain together
- 3 out of 3 pairs in Y remain together
- 1 out of 3 pairs in Z remain together
- R = (3+3+1)/(3+3+3) = 0.78

CLUSTER REPRODUCIBILITY: MELANOMA

From Bittner *et al.*, *Nature*, 2000. Expression profiles of 31 melanomas were examined with a variety of class discovery methods.

A group of 19 melanomas consistently clustered together

CLUSTER REPRODUCIBILITY: MELANOMA

CLUSTER REPRODUCIBILITY: MELANOMA

For hierarchical clustering, the cluster of interest had R-index = 1.0 (highly reproducible)

Melanomas in the 19 element cluster tended to have:

- reduced invasiveness
- reduced mortality

ESTIMATING NUMBER OF CLUSTERS

- GAP statistic (Tibshirani *et al., JRSS B*, 2002): detects too many false clusters (not recommended).
- Yeung *et al.* (*Bioinformatics, 2001*): jackknife method, estimate # of gene clusters.
- Dudoit *et al.* (*Genome Biology, 2002*): prediction-based resampling.
- Comparison of methods for estimating number of clusters (Milligan and Cooper, *Psychometrika*, 1985): uncertain performance in high dimensions.

HEAT MAP

Figure: Lymphoma data (Alizadeh et al., Nature, 2000)

MULTIDIMENSIONAL SCALING (MDS)

High-dimensional data points are represented in a lower-dimensional space (e.g. 3D):

- Principal components or optimization methods
- Depends only on pairwise distances between points
- "Relationships" need not be well-separated clusters

MULTIDIMENSIONAL SCALING

Figure: Color = patient, large circle = tumor, small circle = FNA. Assersohn *et al.*, Clinical Cancer Research, 2002.

CLASS PREDICTION

Examples:

- Predict from expression profiles which patients are likely to experience severe toxicity from a new drug versus who will tolerate it well
- Predict which breast cancer patients will relapse within two years of diagnosis versus who will remain disease free

CLASS PREDICTION METHODS

- Comparison of linear discriminant analysis, NN classifiers, classification trees, bagging, and boosting: Tumor classification based on gene expression data (Dudoit, *et al., JASA*, 2002).
- Weighted voting method: distinguished between subtypes of human actue leukemia (Golub *et al.*, *Science*, 1999).
- Compound covariate prediction: distinguished between mutation positive and negative breast cancers (Hedenfalk *et al.*, *NEJM*, 2001; Radmacher *et al.*, *J. Comp. Bio.*, 2002).
- Support vector machines: classified ovarian tissue as normal or cancerous (Furey *et al.*, *Bioinformatics*, 2000).
- Neural networks: distinguished among diagnostic subcategories of small, round, blue cell tumors in children (Khan *et al.*, *Nature Medicine*, 2001).

COMPOUND COVARIATE PREDICTOR (CCP)

• Select "differentially expressed" genes by two-sample *t*-test with small α .

$$CCP_i = t_1 x_{i1} + t_2 x_{i2} + \ldots + t_d x_{id}$$

 t_j is the *t*-statistic for gene *j*, x_{ij} is the log expression measure for gene *j* in sample *i*,

d is the number of differentially expressed genes (at level α).

- Threshold of classification: midpoint of the CCP means for the two classes.
- *Ref:* Tukey. *Controlled Clinical Trials*, 1993; Radmacher *et al.*, *J. Comp. Bio.*, 2002.

CLASSIFICATION PITFALLS

- When number of potential features is much larger than the number of cases (*p* >> *n*), one can always fit a predictor to have 100% accuracy on the data set used to build it.
- If applied naively, more complex modeling methods are more prone to over-fitting.
- Estimating accuracy by "plugging in" data used to build a predictor results in highly biased estimates of performance (re-substitution estimate).
- Internal and external validation of predictors are essential.
- *Ref:* Simon *et al.*, *JNCI*, 2003; Radmacher *et al.*, *J. Comp. Bio.*, 2002.

True Function

Sample of 5 observations

Two Samples of 5 observations

- Models in high dimension are usually complex (not necessarily for the individual gene, but as a whole the model has a large space to live in).
- Sample sizes are virtually always too small for precise estimation of the true model.
- Look for simpler models that provide reasonable approximations

In almost every experiment, we are interested in the performance of the predictor on future (Generalization Error) and not the performance of the predictor on the current data (Resubstitution Error).

The difference between the generalization error and the resubstitution error is one measure of the over-fit.

VALIDATION APPROACHES

Internal Validation

Within-sample Validation:

- Cross-validation (many flavors: leave-one-out, split-sample, k-fold, etc.)
- · Bootstrap and other resampling methods
- See Molinaro et al. (Bioinformatics, 2005)

External Validation

Independent-sample validation

LEAVE-ONE-OUT CV (LOOCV)

INTERNAL VALIDATION

Limitations of within-sample validation:

- Frequently performed incorrectly:
 - Improper CV (e.g. not including feature selection)
 - Special statistical inference procedures required (Lusa *et al.*, *Statistics in Medicine*, 2007; Jiang *et al.*, *Stat. Appl. Gen. and Mol. Bio.*, 2008).
- Large variance in estimated accuracy and effect sizes,
- Doesn't protect against biases due to selective inclusion/exclusion of samples.
- Built-in biases possible (e.g. lab batch, specimen handling).

Generation of Gene Expression Profiles

- 100 specimens ($P_i, i = 1, ..., 100$)
- Log-ratio measurements on 6000 genes
- $P_i \sim \text{MVN}(\mathbf{0}, \mathbf{I}_{6000})$
- 1000 simulation repetitions
- Can we distinguish between the first 50 speciments (class 1) and the last 50 (class 2)? The class distinction is artificial here since all 100 were generated from the same distribution.

Prediction Method

Linear Discriminant Analysis (*LDA*) prediction using significant DE genes ($\alpha = 0.001$).

Resubstitution Method

- **1** Build *LDA* from all data.
- **2** For $i = 1, \ldots, 100$, apply LDA to sample *i*.
- 3 Compare predicted class to actual class.

LOOCV Without Gene Selection

- **1** Select DE genes for *LDA* using all 100 samples.
- **2** For $i = 1, \ldots, 100$:
 - **1** Leave out sample *i*.
 - **2** Build LDA(i) on other 99 samples.
 - **3** Apply LDA(i) to sample *i*.
- Ompare predicted class to actual class

LOOCV with Gene Selection (Correct)

1 For i = 1, ..., 100:

1 Leave out sample *i*.

- 2 Select DE genes based on other 99 samples.
- **3** Build LDA(i) on other 99 samples.
- 4 Apply LDA(i) to sample *i*.
- 2 Compare predicted class to actual class

BREAST CANCER EXAMPLE

Gene-Expression Profiles in Hereditary Breast Cancer (Hedenfalk *et al.*, *NEJM*, 2001).

- cDNA microarrays
- Breast tumors studied
 - 7 BRCA1+ tumors
 - 7 BRCA2+ tumors
 - 7 sporadic tumors
- Log-ratios measurements of 3226 genes for each tumor after initial data filtering.

Research questions

Can we distinguich *BRCA1+* from *BRCA1-* cancers and *BRCA2+* from *BRCA2-* cancers — based solely on their gene expression profiles?

BREAST CANCER EXAMPLE

Classification with Compound covariate predictor:

Class	# genes †	# misclass (m) \ddagger	proportion §
BRCA1+/-	9	1	0.004
BRCA2+/-	11	4	0.043

- $^{\dagger} \alpha = 0.0001$ on the full data set
- [‡] Using LOOCV

 $\ensuremath{^\$}$ Proportion of permutations with m or fewer misclassifications

CLASS PREDICTION IN BRB-ARRAYTOOLS

- Variety of prediction methods available
- Predictors are automatically cross-validated, and a significance test may be performed on the cross-validated mis-classification rate.
- Independent test samples may also be classified using the predictors formed on the training set.

CLASS PREDICTION IN BRB-ARRAYTOOLS

Class prediction		×
This procedure computes a classifier which can b	e used for predicting the class of a new sample.	-
Column defining classes:	☑ Use random variance model for univariate tests.	
Average over replicates of:	Gene selection f Individual genes:	
	Significant univariately at alpha level: 0,001 Optimize over the grid of alpha-levels (and cross-validate optimization)	
Arrays are paired between classes.	With univariate misclassification 0,2 With fold-ratio of geometric means 2	
Prediction methods:	Gene pairs	
Bayesian compound covariate	Number of pairs selected by the 25 "Greedy pairs" method:	
 Diagonal linear discriminant analysis K-nearest neighbors (for K=1 and 3) 	C Recursive feature elimination	
Vearest centroid		
Support vector machines	NOTE: This analysis is currently set to run on all genes passing the filter.	
OK Cancel	Options Reset Help	•

CLASS PREDICTION IN BRB-ARRAYTOOLS

Additional prediction plug-ins:

- Adaboost: Freund and Schapire, In Proceedings of the Thirteenth Internal Conference on Machine Learning, 1996.
- Prediction Analysis of Microarrays (PAM): Tibshirani *et al.*, *PNAS*, 2002.
- Random Forests: Breiman, Machine Learning, 2001.
- Top-scoring pairs: Geman et al., SAGMB, 2004.

1 Introduction: Technology

2 Data Quality & Image Processing

3 Normalization & Filtering

4 Study Objectives

DESIGN CONSIDERATIONS

- Sample selection, including reference sample
- Sources of variability/levels of replication
- Pooling
- Sample size planning
- Controls
- For 2-color spotted arrays:
 - Reverse fluor experiments
 - Allocation of samples to array experiments

SAMPLE SELECTION

Experimental Samples

- A random sample from a population under investigation?
- Broad versus narrow inclusion criteria?

Reference Samples (cDNA)

- In most cases, does not have to be biologically relevant:
 - Expression of most genes, but not too high.
 - Same for every array
- Other situations exist (e.g. matched normal & cancer)

SOURCES OF VARIABILITY

- Biological heterogeneity in population
- Specimen Collection/handling
 effects
- Biological heterogeneity in specimen
- RNA extraction
- RNA amplification
- Fluor labeling
- Hybridization
- Scanning

Geschwind, Nature Reviews Neuroscience, 2001

LEVELS OF REPLICATION

Technical Replicates

RNA sample divided into multiple aliquots and re-arrayed.

Biological replicates

Use a different human/animal for each array.

In cell culture experiments, re-grow the cells under the same condition for each array (independent replication).

LEVELS OF REPLICATION

Summary:

- Independent biological replicates are required for valid statistical inference.
- Maximizing biological replicates usually results in the best power for class comparisons.
- Technical replicates can be informative, e.g., for QC issues.
- But, systematic technical replication usually results in a less efficient experiment.

IS POOLING ADVANTAGEOUS?

- If RNA samples are tiny, pooling is an alternative to amplification.
- If RNA samples big enough, then there is not usually an advantage unless arrays are very expensive and samples very cheap.
- NO FREE LUNCH: pooling samples for each array can reduce the number of arrays needed to achieve desired precision and power, but this will come at the COST of requiring that a larger number of biologically distinct samples be used.
- Single pool with many aliquots hybridized to arrays is NOT smart! inference requires independent replication.

POWER OF POOLING

McShane et al., JMGBN, 2003; Kendziorski et al., Biostatistics, 2003; Shih et al., Bioinformatics, 2004

ALLOCATION OF SPECIMENS

Allocation of speciments in cDNA array experiments for class comparisons:

- Reference design (traditional)
- Balanced block design
- All pairs design
- Loop design (Kerr and Churchill, Biostatistics, 2001)

REFERENCE DESIGN

Array 1 Array 2 Array 3 Array 4

 $\mathbf{A}_i = i^{th}$ specimen from class A $\mathbf{B}_i = i^{th}$ specimen from class B \mathbf{R} = aliquot from reference pool

REFERENCE DESIGN

If the reference sample is not biologically relevant to the test samples, the class comparison is done between groups of arrays.

If the comparison between the reference sample and the test samples is biologically meaningful (e.g. reference sample is a mixture of normal samples, test samples are types of tumor samples), the class comparison is done between green and red channels – some reverse fluor experiments are required to adjust for potential dye bias.

BALANCED BLOCK DESIGN

Array 1 Array 2 Array 3 Array 4

 $\mathbf{A}_i = i^{th}$ specimen from class A $\mathbf{B}_i = i^{th}$ specimen from class B

ALLOCATION OF SPECIMENTS

- For 2-group comparisons, block design is most efficient but precludes clustering.
- For cluster analysis or comparison of many groups, reference design is preferable.
- Reference design permits easiest analysis, allows greatest flexibility in making comparisons within and between experiments (using same reference), and is most robust to technical difficulties.
- BRB-ArrayTools performs class comparison between "groups of arrays" (e.g. reference designs) or between "red and green channels" (e.g. block designs).

SAMPLE SIZE PLANNING

For 2-group comparisons with cDNA arrays using reference design or with Affymetrix arrays:

- No comprehensive method for planning sample size exists for gene expression profiling studies.
- In lieu of such a method:
 - Plan sample size based on comparisons of two classes involving a single gene.
 - Make adjustments for the number of genes that are examined.

SAMPLE SIZE PLANNING

Approximate total sample size required to compare two equal sized, independent groups:

$$n = \frac{4\sigma^2 \left(Z_{\alpha/2} + Z_\beta \right)}{\delta^2}$$

Where:

- δ = mean diff. between classes (log scale)
- $\sigma =$ standard deviation (log scale)
- $Z_{\alpha/2}, Z_{\beta} =$ standard normal percentiles

More accurate iterative formulas recommended if n is approximately 60 or less.

How to choose α and β

K = # of genes on array, M = # of genes DE at $\theta = 2^{\delta}$ Expected number of false positives:

 $\mathsf{EFP} \le (K - M) \times \alpha$

Expected number of false negatives:

 $\mathsf{EFN}_{\theta} = M \times \beta$

Popular choices for α and β :

 $\alpha = 0.001$ $\beta = 0.05 \text{ or } 0.10$

 $1 - \beta = \mathsf{Power}$

Effect of α and β on FDR

False Discovery Rate (FDR) is the expected proportion of false-positive genes on the gene list

$$\mathsf{FDR} = \frac{\alpha(1-\pi)}{\alpha(1-\pi) + (1-\beta)\pi}$$

where π is the proportion of DE genes

π	α	$1-\beta$	FDR
0.005	0.01	0.95	68%
0.005	0.01	0.80	71%
0.005	0.001	0.95	17%
0.005	0.001	0.80	20%
0.05	0.001	0.95	2%

Choosing σ and δ

Value of δ will be determined by biology and experimental variation. Within a single class, what SD is expected for expression measure?

For \log_2 ratios, σ in range 0.25–1.0 (smallest for animal model and cell line experiments)

Value of δ is the size of mean difference (\log_2 scale) you want to be able to detect:

2-fold:
$$\delta = \log_2(2) = 1$$

3-fold: $\delta = \log_2(3) = 1.59$
SAMPLE SIZE EXAMPLE

$$K =$$
 10,000 genes on array
 $M =$ 100 genes DE
 $\alpha = 0.001 (Z_{\alpha/2} = 3.291)$
 $\beta = 0.05 (Z_{\beta} = 1.645)$
 $\sigma = 0.75$
 $\delta = 1$ (2-fold)

Need n = 55 (~ 28 per group).

Expect ≤ 10 false positives and miss $\approx 5/100$ 2-fold genes.

SAMPLE SIZE EXAMPLES ($\alpha = 0.001$)

σ	δ	2^{δ}	n	Power(%)
0.25	1.00	2.00	6	95
0.50	1.00	2.00	14	95
0.25	1.00	2.00	5	82
0.50	1.00	2.00	5	14
0.25	1.20	2.29	5	95
0.50	2.39	5.24	5	95

Raises unique issues:

- The classes may mostly overlap, even in the high dimensional space.
- There may be no good classifier.
- There will be an upper limit optimal performance that no classifier can exceed.

Solution: Determine sample size big enough to get "close to optimal" performance:

- Dobbin and Simon, *Biostatistics*, 2007; Dobbin, Zhao and Simon, *Clin Cancer Res*, 2008.
- http://linus.nci.nih.gov/

3 essential inputs for sample size calculation with two classes:

- 1 Number of genes on the array
- 2 The prevalence in each class
- 3 The fold-change for informative genes (difference in class means divided by within class SD, on the \log_2 scale)

For example, $\sim 22,000$ features on the Affymetrix U113A array, 20% respond to drug, so prevalence is 20% vs. 80%, and the fold change of 1.4.

Sample Size Planning for Developing Classifiers Using High Dimensional Data						
🔺 🕒 🏦 🕂 😧 http://linus.ncl.nlh.gov/brb/samplesize/Samplesize4GE.html 🛛 🛛 🗠 🖒						
🛱 🏭 Journals 🔻 Helix 🛪 Seminars 🔻	H▼ Google MobileMe R▼ Statistics▼ Genomics▼ BR	RB NCI Read Later GitHub				
Sample Size Planning for Developing Classifiers Using High Dimensional Data						
Windo Dable and Blaked Street Restatistic 8:101.17.2007						
	(Acvin Jopoin and Kichard Simon, BioMathiet 5101-17, 2007)					
	(Kevin Dobbin, Vingdong Zhao and Richard Simon, Clinical Cancer Research 14:108-114, 2008)					
1.4	Enter standardized fold change [> 0.2]					
22000	Enter number of genes on array $[>50]$					
11000	Enter number of genes on unity [> 50]					
0.8	Enter population prevalence in largest group	p (2 groups only) [between 0.5 and 0.85]				
(Calculate)						

SAMPLE SIZE REFERENCES

Technical replicates for 2 samples

- Lee et al., PNAS, 2000.
- Black and Doerge, *Bioinformatics*, 2002.

Sample sizes for pooled RNA designs

• Shih et al., Bioinformatics, 2004.

Sample sizes for balanced block designs, paired data, dye swaps, technical replicates, etc.

- Dobbin et al., Bioinformatics, 2003.
- Dobbin and Simon, *Biostatistics*, 2005.

HOW BEST TO ALLOCATE EFFORT

- Microarrays can serve as a good high-throughput screening tool to identify potentially interesting genes.
- Verification of results via a different, more accurate, assay often preferable to running many arrays or technical replicates.
- Gene IDs associated with sequences can change over time, so periodic verification is advisable.

CONTROLS

Internal Controls

Multiple clones (cDNA arrays) or probe sets (Oligo arrays) for same gene spotted on array

External controls Spiked controls (e.g. yeast or *E. coli*)

2-color spotted arrays with common reference design

Should reverse fluor "replicates" be performed for every array? Usually NO!

See Dobbin, Shih and Simon, *Bioinformatics*, 2003 for a comprehensive discussion of reverse fluor replication.

When interested in interpreting individual ratios:

- If gene-specific dye bias depends on gene sequence and not sample characteristics, dye bias can be adjusted for by performing *some* reverse fluor experiments.
- If dye bias depends on both the gene and the sample, dye swaps won't help!

In BRB-ArrayTools, reverse fluor arrays must be specified during the data importation (collation) step.

When interested in class comparisons and using common reference design:

- Comparing classes of non-reference samples tagged with the same dye, the dye bias should cancel out.
- Reverse fluors are not required.

When interested in class discovery and using common reference design:

- Usefulness of reverse fluor experiments and replicates will depend on the nature and magnitude of both dye bias and experimental variability relative to between subject variability.
- For some clustering methods (e.g. Euclidean distance), constant dye biases should wash out.
- Some reverse fluors and replicates may be useful as informal quality checks.

When interested in class prediction and using common reference design:

- Dye bias may wash out for some predictors (e.g. nearest neighbors)
- Dye bias may be incorporated into some predictors (e.g. CCP)

Balanced Block Design

- For each class, half the samples should be tagged with Cy3 and half with Cy5.
- When comparing different classes, dye bias will cancel out of the class comparisons.
- No reverse fluors are required.

SUMMARY I

- Data quality assessment and pre-processing are important.
- Different study objectives will require different statistical analysis approaches.
- Different analysis methods may produce different results. Thoughtful application of multiple methods may be required.
- Chances for spurious findings are enormous, and validation of any findings on larger independent collections of specimens will be essential.

- Analysis tools can't compensate for poorly designed experiments.
- Fancy analysis tools don't necessarily outperform simple ones.
- Even the best analysis tools, if applied inappropriately, can produce incorrect or misleading results.

HELPFUL WEBSITES

- NCI: http://linus.nci.nih.gov/brb
- BRB-ArrayTools: http://linus.nci.nih.gov/BRB-ArrayTools.html
- BRB textbook: http://linus.nci.nih.gov/~brb/book.html
- PDF of this talk: http: ((linus nois with mus() hub ()
 - //linus.nci.nih.gov/~brb/presentations.htm
- Bioconductor: http://www.bioconductor.org/

ACKNOWLEDGEMENTS

- Richard Simon
- Joanna Shih
- Kevin Dobbin
- Michael Radmacher
- Members of the NCI Biometric Research Branch
- Our NCI collaborators and students in the NIH microarray classes
- BRB-ArrayTools development team