
 
 
Methods Supplement for “How large a training set is needed to develop a classifier 

for microarray data” by Kevin K. Dobbin, Yingdong Zhao and Richard Simon 
 
 
Calculations for Table I 
 
For these calculations, the following normal homoscedastic model is assumed 
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where x  is a vector of gene expression measurements, and I  is the identity matrix.  The 
length of vector x is the number of features represented on the microarray.  For these 
calculations it is assumed that )',...,,( 21 pμμμμ =  with Δ=iμ  for mi ,...,1=  and 0=iμ  
for pmi ,...,1+= .  Under these assumptions, the standardized fold change for the first m  

genes is 
σ
Δ2 .  It can be shown that the lowest possible error rate of a linear predictor is 
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1 , which is the equation used to calculate the right column in the table. 

 
 
Calculations for Tables II & III 
 
 
The input parameters are the tolerance γ  (which is 0.10 in Table II and 0.05 in Table III), 
number of genes on the arrays (fixed at 22,000 for these tables), the standardized fold 

change 
σ
Δ2  given by the rows of the tables, and the prevalence in the under-represented 

class up  given by the columns of the tables.   
 
Implementation of the algorithm required the development of a new method for 
estimating the average probability of correct classification given a random sample from a 
population with sn0  from one class and Bn0  from the other class (with Bs nn 00 < ), and 

also given a fixed effect size 
σ
Δ2  and number of informative genes m  and that one will 

optimize over the gene selection significance level α  as described in Dobbin and Simon 
(2007).  The total training set size is Bs nnn 000 += .  This new function is denoted 

),( 00 Bsm nnPCC , where the dependence on 
σ
Δ2  is omitted to simplify the notation.  The 

value of ),( 00 Bsm nnPCC  is obtained by searching over different values of α  to find one 



that maximizes the expected accuracy.  We can represent this notationally as 
),(max),( 00,1000 BsmBsm nnPCCnnPCC αα<<= .  In order to calculate ),( 00, Bsm nnPCCα , 

one needs an estimate of the power for detecting the fold change for an informative gene.  
We use the method of Dupont and Plummer (1990) with the ratio of control to 

experimental subjects 
B

s

n
n

0

0 .  To ensure internal consistency in the computations, the ratio 
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,, 00 +

=  is used in the internal search loop as the estimate of the population 

proportion from the under-represented class.    
   
 
Algorithm 
 

1. Set { }5:min0 ≥= unpnn .   
2. Calculate )( 00 us pnroundn ⋅=  and sB nnn 000 −= , the expected sample sizes 

in from each class. 
3. For 10,...,2,1=m , informative genes, calculate the optimal accuracy using the 

formula 
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.            Call 

these )(
0,0,, ∞

BnsnupmPCC . 
4. Calculate the optimal cutoff values for gene selection associated with each 

m .  Call these 101,...,αα .  Here mα  is the α  that minimizes the function 
),()( 00, 0,0, Bsmpm nnPCCPCC

Bnsnu
−∞ .  Each mα  is obtained via a golden 

section search on the unit interval.  In particular, the objective function whose 
maximum is obtained at each step of the search is 
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 where DPPow is the power function for a t-test estimated using the method 
of Dupont and Plummer (1990). 

5. Estimate the worst-case-scenario difference between the optimal accuracy 
and the expected accuracy difference based on this sample size by 

{ }),,()( 00,,101 0,0,0,0, Bsmpmpmm nnPCCPCCMaxWCAccDiff
BnsnuBnsnu
α−∞= ≤≤ .  

Here we are exploiting the fact that the worst-case-scenario m is usually 1, 



and is extremely unlikely to be greater than 10, in order to streamline 
calculation. 

6. If γ<WCAccDiff , then exit, otherwise let 100 += nn  and return to step 2. 
 
A schematic of the algorithm is presented below. 
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Calculations for Table IV 
 
The algorithm described in the calculations for Tables II and III is applied with the 
adjustments described in the caption to Table IV. 
 
 
Calculations for Table V 
 
Entries in this table have prevalence set at 50% and the number of genes on each array set 
at 22,000.  Columns represent the overall sample size used for the training set.  Rows 
represent the largest absolute value of the pooled-variance t-test statistic observed on the 
training set (denoted below maxT), i.e., the t-test statistic associated with the most 
significant (smallest p-value) gene.  Note that here we assume there is no missing data for 
any of the genes, so that each t-test is based on samples of size 2/n  from each class.   
 
Using these parameter inputs, the maximum standardized fold change size in the training 

set is estimated by the formula   
n

TF 4max80.0ˆ ••= , with motivation described in the 

caption to Table IV.  Hence F̂  is the estimate of 
σ
Δ2 .  Using this estimate, the tolerances 

given in the table are estimated by { })()(max 5.0,5.0,101 nPCCPCC mmm −∞≤≤ .   
 
 
Calculations for Figure 1 
 
The web-based interface program (implementing the methodology described in the 
calculations for Tables II and III) was used to calculate individual points on the lines and 
cubic spline interpolation was used to connect points associated with the same sample 
size. 
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