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Abstract Many cancer treatments benefit only a minority of patients who receive them. This results in
an enormous burden on patients and on the health care system. The problem will become even
greater with the increasing use of molecularly targeted agents whose benefits are likely to be
more selective unless the drug development process is modified to include codevelopment
of companion diagnostics. Whole genome biotechnology and decreasing costs of genome
sequencing make it increasingly possible to achieve an era of predictive medicine in oncology
therapeutics. The challenges are numerous and substantial but are not primarily technological.
They involve organizing publicly funded diagnostics of deregulated pathways, adopting new
paradigms for drug development, and developing incentives for industry to incur the complex-
ity and expense of codevelopment of drugs and companion diagnostics. This article reviews
some designs for phase III clinical trials that may facilitate movement to a more predictive
oncology.

Most cancer treatments benefit only a minority of patients to
whom they are administered. This results in adverse events and
substantial health care costs for treatment of cancer patients
who receive no benefit. Accumulating understanding of
genomic differences among tumors of the same primary site
indicates that most molecularly targeted agents are likely to
benefit only the patients whose tumors are driven by
deregulation of the targeted pathways. It is important that
new drugs be developed with companion diagnostics that
identify the patients who are most likely to benefit from the
new regimen. It is often very difficult to determine this after the
treatment is in broad use. Successful prospective codevelop-
ment of a drug and companion diagnostic presents many new
challenges, however. In this article, we will address some of the
issues in the design of phase III clinical trials for new treatments
and diagnostic tests that may indicate which patients benefit
from the new treatment. We will not discuss in detail the early
steps in the development of the diagnostic.

Biomarkers

The term ‘‘biomarker’’ can be used for a wide variety of
purposes and this often leads to confusion in discussion of
biomarker development, use, and validation. Traditionally, a
biomarker was a measurement that tracks the pace of a disease,
increasing as the disease progresses and decreasing as it
regresses. There are many potential uses for such biomarkers
for measuring antitumor effect in phase I and phase II studies

conducted to establish proof of concept and identify an
appropriate dose. For such uses, the biomarker need not be a
validated surrogate of clinical benefit, only a measure of
treatment effect in which the developers have sufficient
confidence to use in preparing the way for a phase III trial.
Claims of treatment benefit should rarely be made based on
phase I or II trials. The standards for validation of a biomarker
as a surrogate of clinical benefit are stringent (1, 2). It is not
sufficient to show that the biomarker is correlated with clinical
outcome. Partial tumor regression is generally not a valid
surrogate for survival although responders often survive longer
than nonresponders. Validation of a biomarker as a surrogate
of clinical benefit generally requires a series of randomized
clinical trials that show that treatment versus control arm
differences with regard to average biomarker change are
concordant with treatment versus control arm differences with
regard to clinical outcome (2, 3).

Biomarkers can also play key roles in prognostic and
predictive characterizations of a patient’s disease. Prognostic
markers are baseline measurements that provide information
about the patients’ likely long-term outcome either untreated or
with standard treatment. Prognostic markers can be used to
determine whether the patient requires any systematic treat-
ment or any cytotoxic chemotherapy. Predictive markers are
baseline measurements that indicate whether the patient is a
good candidate for a specific drug or regimen. Biomarker
diagnostics used for these purposes can be powerful tools for
improving patient management and for enhancing the effec-
tiveness of clinical development. The purpose of prognostic and
predictive biomarkers is completely different from the purpose
of biomarkers used as surrogate end points. Because ‘‘valida-
tion’’ or ‘‘qualification’’ only has meaning in terms of fitness for
the intended use, the criteria for validation of surrogate end
points should not be mistakenly applied to prognostic or
predictive biomarkers (4). The validation of prognostic and
predictive biomarkers, although demanding, is often much
more feasible than the validation of biomarkers as surrogate
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end points. The Food and Drug Administration guidance for
industry on pharmacogenomic data submissions seems to be
written based on experience with biomarkers intended for use
as surrogate end points but proposed as applying to all types of
biomarkers (5).

Prognostic and Predictive Classifiers

The oncology literature is replete with publications on
prognostic factors but very few of these are used in clinical
practice. For example, Pusztai et al. (6) identified 939
publications over a 20-year period on prognostic factors in
breast cancer, but only four factors [estrogen receptor,
progesterone receptor, human epidermal growth factor receptor
2 (HER2), urokinase plasminogen activator, and Oncotype DX]
were recommended for use by the American Society of Clinical
Oncology (7). Prognostic factors are rarely used unless they
help with therapeutic decision making. Most prognostic factor
studies are conducted using a convenience sample of patients
whose tissues are available (8). Often these patients are too
heterogeneous with regard to treatment, stage, and standard
prognostic factors to support therapeutically relevant conclu-
sions (9). Many publications attempt to show that new factors
are ‘‘independently prognostic’’ or are more prognostic than
standard factors, but these analyses often fail to identify a role
of the new factors in therapeutic decision making. Hayes et al.
(10, 11) have developed and used a tumor marker utility
grading system to assist in the evaluation of the clinical utility
of tumor markers. The REMARK guidelines will hopefully
promote better study design for the development of prognostic
markers (12).

Predictive biomarkers identify patients who are likely or
unlikely to benefit from a specific treatment. For example,
HER2 amplification is a predictive classifier for benefit from
trastuzumab and perhaps also from doxorubicin (13, 14) and
paclitaxel (15). The presence of a mutation in epidermal growth
factor receptor (EGFR) may be a predictive marker for response
to EGFR inhibitors (16), although it is unclear today whether
EGFR amplification is a better predictive marker or whether
either is sufficiently predictive for clinical use (17). A predictive
biomarker may be used to identify patients who are poor
candidates for a particular drug; for example, colorectal cancer
patients whose tumors have KRAS mutations may be poor
candidates for treatment with EGFR inhibitors (18).

Prognostic or predictive biomarkers are often based on the
sequence, copy number, translocation, phosphorylation, meth-
ylation, or expression of a single gene. Expression may be
measured either at the mRNA transcript or protein level. Such
single gene/protein biomarkers are attractive because they are
often closely linked to the mechanism of action of the drug and
are thus biologically interpretable. In some cases, the target of
the drug is known but it is not clear how to best measure
the essentiality of the target to the pathogenesis of a specific
tumor. For example, although trastuzumab was initially
developed using a test for protein expression of HER2,
subsequent classification has often been based on the amplifi-
cation of the gene (19). In other cases, the target of the drug may
not be clearly known and the options for measurement will be
more numerous. If a diagnostic is to be codeveloped with the

drug, the phase II studies must be designed to evaluate the
candidate assays available, to select one, and then to perform
analytic validation of the assay before launching the phase III
trial. Analytic validation refers to establishment of robustness
and reproducibility of the assay and measurement of sensitivity
and specificity relative to a ‘‘gold standard’’ assay if one is
available (4).

We will use the term ‘‘classifier’’ to refer to a diagnostic that
translates one or more biological measurements to a set of
predicted categories. For example, with a prognostic classifier,
the categories may refer to low risk of tumor recurrence,
moderate risk of recurrence, and high risk of recurrence. With a
predictive classifier, the categories may refer to patients most
likely to benefit from the new regimen and less likely to benefit.
A biomarker based on a measurement involving a single gene
or protein can be converted to a classifier by introducing one or
more cutoff points, depending on how many categories are
desired. Classifiers can also be defined based on summary
measures of combinations of many variables, as in the case of
gene expression profiling (20).

Prognostic classifiers based on gene expression data should
be developed in a manner that addresses a focused therapeutic
decision context. For example, the Oncotype DX recurrence
index was developed by studying women with breast cancer
whose tumors were estrogen receptor positive, had not spread
to the axillary lymph nodes, and who had received tamoxifen as
the only systemic therapy (21, 22). A score was developed
based on tumor expression of 21 genes to identify women
whose disease-free survival was sufficiently good that they
might elect to forgo cytotoxic therapy. Prognostic factors
developed in such a focused manner can be relevant for
therapeutic decisions. The score is often used as a classifier by
introducing two cutoff points to distinguish patients with low,
moderate, and high risks of tumor recurrence.

For developing a predictive classifier of patients likely to
benefit from a new drug, one can perform gene expression
profiling of patients on phase II trials of the drug and compare
the expression profiles of responders to those of nonrespond-
ers. In that way, one can identify the differentially expressed
genes and determine how to combine and weight expression
levels for the component genes and to establish a cutoff point
that optimizes predictive accuracy of the classifier. Dobbin et al.
(23, 24) have developed methods for planning the number of
cases needed to effectively develop such a classifier. Larger
phase II studies may be required to have sufficient responders
in the phase II database for this approach (25).

There is substantial literature on the development of gene
expression –based classifiers (e.g., refs. 26 – 32) and the process
is too extensive to be reviewed here. It is important to
emphasize that important components of the process include
identification of the genes to be included in the classifier,
selecting a mathematical way of combining the expression
levels of the individual genes, and training the classifier (i.e.,
determining the weights and cutoff points) on a training set
of data to distinguish responders from nonresponders (33). A
gene expression classifier is not just a set of genes. The process
of building a classifier based on genome-wide expression
profiling is very different than traditional statistical model
building. Because the number of variables (genes) available is
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much greater than the number of cases available in the
training data set, traditional statistical regression model
building strategies are ineffective. Traditional approaches that
ensure that all variables included in the model contribute to
prediction and that their interaction with other variables is
properly modeled often result in over-fitted models that
predict poorly. With high-dimensional data, one must focus
clearly on the objective of accurate prediction and not confuse
this objective with that of achieving biological insight or
ensuring that all variables included are essential, or that the
model is ‘‘correct’’ (34). Criticisms of models that predict
accurately based on grounds that they do not provide
biological insight or that not all of the components may be
essential are misguided. As with physics, predictive models can
have great power and benefit, even if they do not clarify the
nature of reality. It is possible to develop models that predict
accurately when the number of cases is fewer than the number
of variables, if recent methods of model development and
validation are used.

The BRB-ArrayTools software provides extensive resources for
development of a wide range of prognostic and predictive
classifiers based on gene expression data for binary response or
survival end points (35). It provides an environment for
developing a classifier on a training set and estimating the
accuracy of the model on a test set of data or for using a wide
range of resampling methods for estimating the predictive
accuracy of the model developed on the complete set of
data. All of these methods represent internal clinical validation
(34, 36). Comparison of the split sample approach and
resampling methods has been done by Molinaro et al. (37)
in the context of studies where the number of variables is much
greater than the number of cases. There are generally substantial
biases entailed in using the same data for model development
and testing without proper use of resampling (34, 38), and
these biased reports are prevalent in the oncology literature
(39). BRB-ArrayTools is available for downloading online.1

Important issues in the preprocessing of microarray data are
discussed by Owzar et al. (40) in this series.

In this article, we will focus on the use of predictive classifiers
in the design of phase III trials to determine whether a new
drug is effective and how its effectiveness relates to the classes
defined by a predictive classifier. In some cases, we will use the
phrase diagnostic test to cover predictive classifiers defined
either by single genes/proteins or predictive classifiers based on
combining the expression levels of multiple genes in defined
manners with defined cutoff points to establish predictive
classes.

Enrichment Design

The objective of a phase III pivotal clinical trial is to evaluate
whether a new drug, given in a defined manner, has medical
utility for a defined set of patients. Pivotal trials test prespecified
hypotheses about treatment effectiveness in specified patient
population groups. The role of a predictive biomarker classifier
is to specify the population of patients. The process of classifier

development may be exploratory and subjective, but the use of
the classifier in the pivotal trial must not be.

Figure 1 shows a design in which a diagnostic test is used to
define eligibility for a randomized clinical trial comparing a
new drug to a control regimen. This approach was used for the
development of trastuzumab. Patients with metastatic breast
cancer whose tumors expressed HER2 at a 2+ or 3+ level based
on an immunohistochemistry test were eligible for randomi-
zation (41). The clinical trial randomized 469 patients but the
number of patients whose tumors were tested was not stated. If
75% of patients had available specimens and adequate tests
and 25% of patients with adequate tests were HER2 positive,
then f2,500 patients would have to be screened to obtain 469
eligible for randomization.

Simon and Maitournam (42 – 44) studied the efficiency of
this approach relative to the standard approach of randomizing
all patients without measuring the diagnostic. They found
that the efficiency of the enrichment design depended on the
prevalence of test-positive patients and on the effectiveness
of the new treatment in test-negative patients. For binary
end point trials, they showed that the ratio of number of
patients to be randomized for the standard trial (nS) compared
with the number randomized in the enrichment trial (nE) is
approximately

nS=nE � f=ðprevþ ð1� prevÞ��=�þÞ2 ðAÞ

where prev is the proportion of patients who are test positive;
d - is the treatment effectiveness for test-negative patients;
and d+ is the treatment effect for test-positive patients. The
variable f is a constant that does not depend on the prevalence
or treatment effects; it is generally close in value to 1 unless
the control response rate is very low. In cases where the new
treatment is completely ineffective in test-negative patients,
the formula above simplifies to approximately 1/prev2. Often,
however, it is unrealistic to expect that the treatment will
be completely ineffective for test-negative patients. The
treatment may have some effectiveness for test-negative
patients either because the assay is imperfect for measuring
deregulation of the putative molecular target or because the
drug has off-target effects. Because these alternatives cannot
generally be distinguished, there is little value in decomposing
d - into these components. However, because of the limited
specificity of the test, d - may not be zero. If the new treatment
is half as effective in test-negative patients as in test-positive
patients, then the right-hand side of Eq. A simplifies to
approximately 4/(prev + 1)2. This equals f2.56 when 25% of
the patients are test positive, indicating that the enrichment
design reduces the number of required patients to randomize
by a factor of 2.56.

To obtain nE test-positive patients for randomization, one
must screen approximately nE/prev patients. Simon and
Maitournam also compared the enrichment design to the
standard design with regard to the number of screened patients.
These methods of sample size planning for the design of
enrichment trials are available online.2 The web-based pro-
grams are available for binary, survival or disease-free survival,

1http://linus.nci.nih.gov/brb 2 http://linus.nci.nih.gov/brb
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or uncensored quantitative end points. The planning takes into
account the performance characteristics of the tests and
specificity of the treatment effects. The programs are easy to
use and provide comparisons to standard nonenrichment
designs based on the number of randomized patients required
and the number of patients needed for screening to obtain the
required number of randomized patients.

When fewer than half of the patients are test positive and
the new treatment is relatively ineffective in test-negative
patients, the number of randomized patients required for an
enrichment design is often dramatically smaller than the
number of randomized patients required for a standard
design. This was the case for trastuzumab. The enrichment
design that led to approval of trastuzumab was conducted in
469 patients with metastatic breast cancer whose tumors
overexpressed HER2 based on immunohistochemical analysis
in a central laboratory. The results were highly significant with
regard to several end points including 1-year survival rate
(78% versus 67%). The trial of 469 patients provides 90%
power for detecting a 13.5% improvement in the 1-year
survival rate above a baseline of 67% with a two-sided 5%
significance level. If benefit from the drug was limited to the
25% of patients expected to be test positive, then the overall
improvement in 1-year survival rate would be only 3.375% for
a standard design and a total of f8,050 patients would be
required for 90% power to detect such a small effect. This is
17.2 times as many patients as for the enrichment design, in
good agreement with the ratio of 16 computed from the
approximate form of Eq. A with f = 1. If the test-negative
patients benefit half as much as the test-positive patients, then
1,254 total patients would be required for 90% power with the
standard design. This is 2.7 times as many for the enrichment
design but is much less than the number required for
screening with the enrichment design.

Focusing initial development on test-positive patients can
lead to clarity in determining who benefits from the drug. If the
enrichment design establishes that the drug is effective in test-
positive patients, the drug could be later developed in test-
negative patients. This is preferable to testing new drugs in

heterogeneous populations resulting in false-negative results for
the overall population.

The enrichment design is particularly appropriate for con-
texts where there is such a strong biological basis for believing
that test-negative patients will not benefit from the new drug
that including them would be unethical. In many situations,
the biological basis is not compelling. Although our under-
standing of the molecular target of a drug is often flawed, we do
not really want to be including test-negative patients in a
clinical trial to show that a treatment that we do not believe will
work for them actually does not work. This is particularly true
when the drug has adverse effects. If the treatment is shown to
be effective in test-positive patients and if there is a robust assay
for the test, then it could be argued that medical utility has been
shown for the new treatment and for the test. If, however, the
test requires approval as a medical device, then either biological
or empirical evidence that the new drug is not effective in test-
negative patients will be required. In some cases, this might be
achieved using data from phase II single arm studies that did
not restrict entry based on the classifier.

Including Both Test-Positive and Test-Negative
Patients

Instead of using the predictive classifier as an exclusion
criterion, both test-positive and test-negative patients may be
included and randomized between the new treatment and
control groups as indicated in Fig. 2 (45 – 47). It is essential that
an analysis plan be predefined in the protocol for how the
predictive classifier will be used in the analysis. It is not
sufficient to just stratify the randomization with regard to the
classifier without specifying a complete analysis plan. In fact,
for many statisticians, stratification of the randomization is not
essential for inference; its main importance is that it ensures
that only patients with adequate specimens and interpretable
test results will enter the trial.

It is important to recognize that the purpose of this design is
to evaluate the new treatment in the subsets determined by the

Fig. 1. Flow diagram of the enrichment
design in which a prognostic or predictive
classifier is used to restrict eligibility to a
randomized phase III clinical trial comparing
a new treatment to a control regimen.
Tissue is obtained from all consenting
patients who would be eligible for the
corresponding phase III trial if the classifier
was not used.The binary classifier is
measured from the collected specimen.
The binary classifier may be based on a
single gene or protein or may be based on
measurements of large number of genes or
proteins as discussed in ‘‘Prognostic and
Predictive Classifiers.’’ In either case, the
threshold for test positivity is determined
in advance. Patients who are classifier
positive are then randomized to receive the
new treatment or the control regimen.
Classifier-negative patients are not treated
on the study.
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prespecified classifier. The purpose is not to modify the
classifier. If the classifier is a composite gene expression – based
classifier, the purpose of the design is not to reexamine the
contributions of each component. If one makes any such
changes, then an additional phase III trial may be needed to
evaluate treatment benefit in subsets determined by the new
classifier. In moving from post hoc correlative science to
reliable predictive medicine, it is important to strictly separate
the data used for developing classifiers from the data used for
testing treatment effects in subsets determined by those
classifiers. Only by honoring this principle can reliable
conclusions be achieved. The process of classifier development
can be exploratory, but the process of evaluating treatments
should not be; it should be based on testing prespecified
hypotheses in prespecified patient groups.
Analysis plan: analysis of test negatives contingent on

significance in test positives. The simplest analysis plan would
consist of separate comparisons of the new treatment to the
control in the test-positive and test-negative patients. In cases
where a priori one does not expect the treatment to be effective
in the test-negative patients unless it is effective in the test-
positive patients, one might structure the analysis in the
following manner: Compare treatment versus control in test-
positive patients using a threshold of significance of 5%. If the
treatment difference in test-positive patients is not significant,
do not perform statistical significance test in negative patients.
Otherwise, compare treatment to control in the test-negative
patients using a threshold of statistical significance of 5%. This
sequential approach controls the overall type I error at 5%.

With this analysis plan, the number of test-positive patients
required is the same as for the enrichment design, denoted nE

above. When that number of patients are accrued, there will be
approximately nE/prev total patients and approximately

n - = (1 - prev) nE/prev test-negative patients. One should make
sure that the nE is large enough that there is expected to be an
adequate number of test-negative patients for analysis. With a
time-to-event end point like survival or disease-free survival, the
planning will be somewhat more complex. For example,
suppose we wish to have 90% power in the test-positive patients
for detecting a 50% reduction in hazard for the new treatment
versus control at a two-sided 5% significance level. This requires
f88 events of test-positive patients. At the time that there are
E+ events in test-positive patients, there will be approximately
E - events in the test-negative patients and they are related by:

E� ¼ Eþ
��
�þ

� �
1� prev

prev

� �
: ðBÞ

In Eq. B the symbols k - and k+ denote the event rates in the
test-negative and test-positive control groups at the time that
there are E+ events in the test-positive group. If the control
group event rates at that time are the same in the test-negative
and test-positive strata, then the ratio of k ’s in Eq. B will a have
value of 1. If E+ is 88, if the prevalence of test-positive patients
is 25%, and if the control group event rates are equal, then E -

will be f264 at the time of analysis. This will provide f90%
power for detecting a 33% reduction in hazard at a two-sided
significance level of 5%. This power calculation is conditional
on the expected number of events, however. To control the
power more adequately, the time of analysis of the test-negative
patients should be delayed until this number of events is
obtained in that subset. On average, the trial will not be delayed
compared with the enrichment design, but a large number of
test-negative patients will be randomized, treated, and followed
up on the study rather than excluded as for the enrichment

Fig. 2. Flow diagram in which a predictive classifier is used to structure the primary analysis of a randomized phase III clinical trial comparing a new treatment to a control
regimen.Tissue is obtained from all consenting patients who would be eligible for the corresponding phase III trial if the classifier was not used.The binary classifier is
measured from the collected specimen.The binary classifier may be based on a single gene or protein or may be based onmeasurements of large number of genes or proteins
as discussed in ‘‘Prognostic and Predictive Classifiers.’’ In either case, the threshold for test positivity is determined in advance. Both classifier-positive and classifier-negative
patients are randomized to receive either the new treatment or control regimen. Stratifying the randomization to ensure balance is recommended, but what is most
essential is that tissue and an adequate test result are obtained from all patients and that a primary statistical analysis plan is established that describes exactly how the
classifier results will be used in the treatment comparison. Several such analysis plans are described in ‘‘Including BothTest-Positive andTest-Negative Patients’’.
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design. If the proportion of test-positive patients was 50%
instead of 25%, then at the time that there are 88 events in test-
positive patients, there will be about an equal number of events
in test-negative patients, assuming that control group event
rates are equal. Hence, one will not have 90% power for
detecting a 33% reduction in the hazard in test-negative patient;
one will only have 90% power for detecting a 50% reduction.
It is possible that at that time, a futility analysis in the test-
negative patients will indicate that there is unlikely to be a
medically important treatment effect in test-negative patients. If
the futility analysis does not support such a conclusion, one
should continue to follow up test-negative patients and
perform the final analysis at a time when there are substantially
more events. This may necessitate planning the trial to accrue
continually until there are 88 events in the test-positive group
and possibly continuing accrual of test-negative patients if the
results are significant in the positive group.

Gefitinib is a small-molecule inhibitor of epidermoid
growth factor receptor (EGFR) kinase activity. Two untargeted
phase III trials of standard chemotherapy with or without
gefitinib in chemotherapy naBve patients with advanced non –
small-cell lung cancer failed to show a benefit of gefitinib (48,
49). Provocative reports based on specimens from phase II
trials indicated that response to gefitinib alone in previously
treated patients can be predicted on the basis of somatic
mutations in the tyrosine kinase domain of the EGFR gene but
that the mutations are prevalent in only about 10% to 15% of
western patients (50, 51). A randomized placebo controlled
clinical trial of erlotinib, another EGFR inhibitor, in unselected
patients with non –small-cell lung cancer who had progression
after standard chemotherapy showed a statistically significant
effect on overall survival (52). Post hoc analysis of available
specimens from patients on that clinical trial suggested that
the benefit may have been limited to those with high
polysomy or amplification of EGFR but specimens were
available for a minority of patients (53). To clarify this
situation, a multicenter randomized clinical trial of gefitinib in
non – small-cell lung cancer is being planned that will stratify
but not preselect patients based on EGFR. The planning of this
trial is complicated by the presence of three tests (protein
expression of EGFR, mutation, and amplification of the gene)
and the differences in prevalence of positivity among them.
Using the methods described here, one might size this trial in
the following manner. To be able to detect a 33% reduction
in hazard for the use of gefitinib for fluorescence in situ
hybridization (FISH) – positive cases with 90% power at a 5%
two-sided significance level would require f263 events.
Although amplification of EGFR seems to be a good
prognostic feature, the prognosis of patients with advanced
non – small-cell lung cancer is sufficiently poor that the ratio of
event rates at final analysis in Eq. B can be assumed to be f1.
If the FISH test is positive in f30% of cases, then Eq. B
indicates that when there are 263 events in FISH-positive cases,
there will be, on average, 614 events in FISH-negative cases.
This would provide f90% power for detecting a 23%
reduction in hazard for the use of gefitinib in FISH-negative
patients at a two-sided 5% significance level. Accrual of 1,200
eligible consented patients for testing would provide f960
available for randomization if the assay success rate is 80%. Of

these 960 patients, f30%, or 288, would be expected to be
positive for amplification of EGFR as assessed by FISH, and
f70%, or 672, negative. At the time that the event rate is 90%
(the progression free survival of patients with previously
treated metastatic disease is short), there will be f259
available events in the FISH-positive stratum and f604 events
in the FISH-negative stratum, close to the planned event targets.

Analysis plan: analysis determined by interaction test. The
traditional statistical approach to the analysis of data in which
cases are classified by treatment and by a binary covariate that
may effect treatment efficacy is to first test whether there is a
significant interaction between treatment efficacy (treatment
versus control) and the covariate (test negative and positive).
The interaction test is often done at a threshold (ai) above the
traditional 5% level. If the interaction test is not significant,
then the treatment effect is evaluated overall, not within levels
of the covariate. If the interaction test is significant, then
treatment effect is evaluated separately within the levels of the
covariate (e.g., test-positive and test-negative classes). This is
similar to the test proposed by Sargent et al. (46). In the
example described above with 88 events in test-positive patients
and 264 events in test-negative patients, the interaction test will
have f93.7% power at a one-sided significance level of 0.10
for detecting an interaction with 50% reduction in hazard for
test-positive patients and no treatment effect in test-negative
patients. If the treatment also reduces the hazard by 33% in
test-negative patients, the interaction test has little power, but
that is fine because the overall analysis of treatment effect will
be appropriate in that circumstance.

Computer simulations indicate that the two-stage analysis
plan with a i = 0.10 has the following properties. With 88 test-
positive patients and 264 test-negative patients, the design
detects a significant interaction and detects a significant
treatment effect in test-positive patients in 88% of replications
when the treatment reduces hazard by 50% in test-positive
patients and is ineffective in test-negative patients. If the
treatment reduces hazard by 33% in both test-positive and
test-negative patients, the interaction is nonsignificant and the
overall treatment effect is significant in 87% of cases. The overall
treatment effect refers to the comparison of treatment to control
that includes both test-negative and test-positive patients.

If one were planning a trial to detect a uniform 33%
reduction in hazard with 90% power and 5% two-sided
significance level, one would require f256 events. If 25% of
the cases were test positive and the control group event rates in
test-negative and test-positive patients are about the same, then
at time of analysis there would be f64 events in test-positive
cases and 192 events in test-negative cases. If the treatment
reduces hazard by 33% in both test-positive and test-negative
patients, the interaction is nonsignificant and the overall
treatment effect is significant in f81% of cases. If the treatment
reduces hazard by 50% in test-positive cases and is ineffective in
test-negative cases, then the interaction is significant and the
treatment effect in test-positive cases is significant in 76% of
replications. Thus, even if the trial is sized for detecting a
uniform 33% reduction in hazard, the two-stage analysis plan
will have f76% power for detecting a substantial treatment
effect restricted to the test-positive patients.
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Other analysis plans. Simon and Wang (47) proposed an
analysis plan in which the new treatment group is first
compared with the control group overall. If that difference is
not significant at a reduced significance level a1 (e.g., 0.03),
then the new treatment is compared with the control group just
for test-positive patients. The latter comparison uses a threshold
of significance of a - a1 (e.g., 0.02), or whatever portion of the
total a (e.g., 0.05) is not used by the initial test. This design
emphasizes the overall comparison and provides an incentive
for the sponsor to develop a predictive classifier as a backup
strategy for drug approval. The sample size needs to be set to
provide adequate power for the overall test at the reduced
significance level a1 and for the potential subset analysis at level
a - a1. The targeted treatment effect within the subset would,
however, be greater than the overall treatment effect used for
power calculations. This design is also discussed by Song and
Chi (54) and by George (34) using a refinement of the
significance levels that takes into account the correlation
between the test of overall treatment effect and the treatment
effect within the test-positive subset.

An analysis plan can also be constructed based on the use of
a test statistic to indicate whether the strongest evidence of
treatment effectiveness occurs in the test-positive patients or for
the overall group. Let the estimated treatment effects for test-
positive and test-negative patients be denoted ŷ+ and ŷ -,
respectively. They have variances approximately 4/E+ and 4/E -

respectively. An overall estimate of treatment effect ŷ having
variance 1 can be constructed as a weighted average of these
subset-specific estimates with the weights equal to the
proportion of events in the subsets. Then a test statistic

zmin ¼ minf�̂; �̂þffiffiffiffiffiffiffiffiffiffiffiffi
4=Eþ

p g

indicates the strongest evidence of treatment effectiveness. The
minimum is used in the above formula because a negative log
hazard ratio indicates effectiveness of the new treatment
compared with control. The critical value for assessing the
statistical significance of zmin can be determined based on the
approximate bivariate null distribution of the two components
or based on permutation of the treatment group labels of the
cases.

With 88 test-positive events and 264 test-negative events, the
statistical power of the zmin test is 86.7% if the new treatment
reduces the hazard by 50% in test-positive cases and is
ineffective for test negatives. The statistical power is 95.1% if
the new treatment reduces the hazard by 33% for both test-
positive and test-negative cases. If the trial were planned for a
total of only 256 events, 64 test positive and 192 test negative,
then the statistical power is 70% if the new treatment reduces
the hazard by 50% in the test-positive cases and is ineffective
for the test negatives, and 83.9% if the new treatment reduces
hazard 33% uniformly. These are based on a two-sided
statistical significance level of 5%. The power of the zmin test
does not seem to be superior to that based on a preliminary test
of interaction. Although the zmin test is worthy of more detailed
study, the interaction approach has the advantage of providing
a clearer basis for focusing on either the overall population or
the test-positive subset.

Adaptive Designs

Several phase III designs have been proposed that adaptively
modify the target patient population that serves as the basis for
comparing the new treatment to the control. Wang et al. (55)
described a design that is initially planned to accrue N patients
of which a fraction, f, are test positive according to a predefined
classifier. An interim futility analysis evaluates the effectiveness
of the new treatment for the test-negative patients. If the interim
analysis indicates that establishing the effectiveness of the new
treatment for test-negative patients is futile, then accrual of test-
negative patients stops and the final analysis is restricted to
evaluating the new treatment in test-positive patients. Other-
wise, accrual of test-negative and test-positive patients continues
to the target sample size N . At that time, the new treatment is
evaluated overall and for test-positive patients. Wang et al.
required that a total of N patients be accrued by the end of the
trial, even if accrual of the test-negative patients was terminated
at the interim analysis. In practice, this could make for a very
long clinical trial in the usual case where the proportion of test-
positive cases is relatively small. It also makes it difficult to
properly compare the performance of their design to other
designs that accrue fewer test-positive patients. Early termina-
tion of accrual of test-negative patients can be useful in settings
where end point evaluation is rapid relative to accrual rate (45).
Biomarker adaptive threshold design. Jiang et al. (56)

reported on a ‘‘Biomarker Adaptive Threshold Design’’ for
situations where a predictive index is available at the start of the
trial but a cutoff point for converting the index to a binary
classifier is not established. For example, this design could be
used with a FISH assay for EGFR positivity without prespeci-
fication of the threshold of positivity (57). With their design,
tumor specimens are collected from all patients at entry, but the
value of the predictive index is not used as an eligibility
criterion. Their analysis plan does not stipulate that the assay
for measuring the index needs to be done in real time, although
regulators may prefer that the index be used to stratify the
randomization between the new treatment and control. Jiang et
al. described two analysis plans. Analysis plan A begins with
comparing outcomes for all patients receiving the new
treatment to those for all control patients. If this difference in
outcomes is significant at a prespecified significance level a1

(e.g., 0.03), then the new treatment is considered effective for
the eligible population as a whole. Otherwise, a second-stage
test is done using significance threshold a2 = 0.05 - a1. The
second-stage test involves finding the cutoff point b leading to
the maximum partial log likelihood for treatment effect [S(b)]
when restricted to patients with predictive index at least as large
as b . Jiang et al. evaluated the statistical significance of S(b) by
randomly permuting the labels of which patients were in the
new treatment group and which were controls and determining
the maximized partial log likelihood for the permuted data.
This is done for thousands of random permutations. If the
value S(b) is beyond the 1 - a2’th percentile of this null
distribution created from the random permutations, then the
second-stage test is considered significant.

The advantage of procedure A is its simplicity and that it
explicitly separates the test of treatment effect in the broad
population from the subset selection. However, the procedure
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takes a conservative approach in adjusting for multiplicity of
combining the overall and subset tests. An alternative
analysis plan B, proposed by Jiang et al., does not use a
first-stage comparison of treatment groups overall. Conse-
quently, plan B is more appropriate to settings in which
there is greater expectation that treatment effect will be
limited to a predictive index – defined subset. With analysis
plan B, they determine the cutoff point value b at which
w(b)S(b) is maximized, where w(b) is a predefined weight
function. They use the weight function to give greater
emphasis to the b = 0 subset (i.e., the subset containing all
patients; predictive index is initially normalized to the 0-1
interval). Let T(b) = w(b)S(b) denote the value of the
maximized weighted partial log-likelihood. The statistical
significance of T(b) is determined by generating the null
distribution by repeating the optimization procedure for
many cases of randomly permuted data. With either
procedure A or B, a confidence interval for the optimal
cutoff point b is generated using a bootstrap resampling
procedure. Because the treatment is presumed effective only
for patients with predictive index above the threshold b , the
confidence coefficient associated with a given value x can be
interpreted in a frequentist sense as the probability that a
patient with predictive index value x benefits from the new
treatment relative to control.

Jiang et al. provided an approach to sample size planning for
the biomarker adaptive threshold design. With analysis strategy
A, they propose planning sample size in the traditional manner
for overall comparison of the treatment arms but powering the
trail based on using a significance level a1 (e.g., 0.03). This
involves only a minor increase in sample size compared with
the standard approach but provides only limited power for
detecting biomarker-restricted treatment effects. With analysis
plan B, a larger sample size is used that provides good power
for establishing the statistical significance of treatment effects
restricted to patients with biomarker values above an initially
unknown cutoff point.
Adaptive signature design. For codevelopment of a new

drug and companion diagnostic, it is best to have the
candidate diagnostic completely specified and analytically
validated before its use in the pivotal clinical trials. This is
difficult, however, and in some cases is not feasible,
particularly with multigene expression – based classifiers. Frei-
dlin and Simon (58) proposed a design for a phase III trial
that can be used when no classifier is available at the start of
the trial. The design provides for development of the classifier
and evaluation of treatment effects in subsets determined by
the classifier in a single trial. The analysis plan of the adaptive
signature design is structured to preserve the principle of
separating the data used for developing a classifier from the
data used for evaluating treatment in subsets determined by
the classifier, although both processes are part of the same
clinical trial.

The analysis plan described by Freidlin and Simon is in two
parts as for the design of Simon and Wang (47) described
above. At the conclusion of the trial, the new treatment is
compared with the control overall using a reduced threshold of
significance a1 (e.g., 0.03). A finding of statistical significance at
that level is taken as support of a claim that the treatment is

broadly effective. At that point, no biomarkers have been tested
on the patients, although patients must have tumor specimens
collected to be eligible for the clinical trial.

If the overall treatment effect is not significant at the level
a1, then a second stage of analysis takes place. The patients are
divided into a training set and a testing set. Freidlin and
Simon used a 50-50 split, but other proportions can be used.
The data for patients in the training set are used to define a
single subset of patients who are considered most likely to
benefit from the new treatment compared with the control.
When that subset is explicitly defined, the new treatment is
compared with the control for the testing set patients with
the characteristics defined by that subset. The comparison of
new treatment to control for the subset is restricted to patients
in the testing set to preserve the principle of separating the
data used to develop a classifier from the data used to test
treatment effects in subsets defined by that classifier. The
comparison of treatment to control for the subset uses a
threshold of significance of a - a1 (e.g., 0.02) to ensure that
the overall chance of a false-positive conclusion does not
exceed a (e.g., 0.05).

Friedlin and Simon proposed the adaptive signature design
in the context of multivariate gene expression –based classifiers.
The size of phase II databases may not be sufficient to develop
such classifiers before the initiation of phase III trials (23, 24).
Freidlin and Simon showed that the adaptive signature design
can be effective for the development and use of gene expression
classifiers if there is a very large treatment effect in a subset
determined by a set of signature genes. The power of the
procedure for identifying the subset is limited, however, by
having to test the treatment effect at a very stringent significance
level in subset patients restricted to the testing set not used for
classifier development.

The analysis strategy used by the adaptive signature design
can be used more broadly than in the context of identifying
de novo gene expression signatures. For example, it could be
used when several gene expression signatures are available at
the outset and it is not clear which to include in the final
statistical testing plan. It could also be used with classifiers
based on a single gene but several candidate tests for
measuring the expression or deregulation of that gene. For
example, the focus may be on EGFR but there may be
uncertainty about whether to measure overexpression at the
protein level, point mutation of the gene, or amplification of
the gene (57). In these settings, with a few candidate
classifiers, a smaller training set may suffice instead of the
50-50 split used by Freidlin and Simon.

Conclusions

Developments in cancer genomics and biotechnology are
dramatically changing the opportunities for development of
more effective cancer therapeutics and molecular diagnostics to
guide the use of those drugs. These opportunities can have
enormous benefits for patients and for containing health
care costs. Achieving these gains, however, requires new
approaches to drug development. The current paradigm of
post hoc correlative science is not an adequate basis for the
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development of predictive oncology. This article has attemp-
ted to begin to touch on some alternative approaches for
prospective clinical trial design. Codevelopment of drugs and
companion diagnostics adds complexity to the already
difficult drug development process. Public agencies may have
to play a greater role in funding the development of
diagnostics for the deregulation of signaling pathways, and
regulatory agencies may have to ensure that their policies do

not discourage the development of companion diagnostics.
To move forward will require focus and a national action
plan for removing unnecessary barriers to partnership and
progress.
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