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Abstract

Purpose: Many anticancer therapies benefit only a subset of treated patients and may be overlooked by
the traditional broad eligibility approach to design phase III clinical trials. New biotechnologies such as
microarrays can be used to identify the patients that are most likely to benefit from anticancer therapies.
However, due to the high-dimensional nature of the genomic data, developing a reliable classifier by the
time the definitive phase III trail is designed may not be feasible.

Experimental Design: Previously, Freidlin and Simon (Clinical Cancer Research, 2005) introduced the
adaptive signature design that combines a prospective development of a sensitive patient classifier and a
properly powered test for overall effect in a single pivotal trial. In this article, we propose a cross-valida-
tion extension of the adaptive signature design that optimizes the efficiency of both the classifier devel-
opment and the validation components of the design.

Results: The new design is evaluated through simulations and is applied to data from a randomized
breast cancer trial.

Conclusion: The cross-validation approach is shown to considerably improve the performance of the
adaptive signature design. We also describe approaches to the estimation of the treatment effect for the

identified sensitive subpopulation. Clin Cancer Res; 16(2); 691-8. ©2010 AACR.

Due to the molecular heterogeneity of most human
cancers, only a subset of treated patients benefit from a
given therapy. This is particularly relevant for the new gen-
eration of anticancer agents that target specific molecular
pathways (1-3). Genomic (or proteinomic) technologies
such as microarrays provide powerful tools for identifying
a genetic signature (diagnostic test) for patients who are
most likely to benefit from a targeted agent. Ideally, such
diagnostic test should be developed and validated before
commencing the definitive phase III trial (4). However,
due to the complexity of signaling pathways and the large
number of genes available for analysis, the development
of a reliable diagnostic classifier using early nonrando-
mized phase II data is often not feasible. Conducting a
phase III randomized clinical trial (RCT) requires consid-
erable time and resources. Therefore, clinical trial designs
that allow combining the definitive evaluation of a new
agent with the development of the companion diagnostic
test can considerably speed up the introduction of new
cancer therapies.

Previously, the adaptive signature design (ASD) has
been proposed for settings where a signature to identify
sensitive patients is not available (5). The design combines

Authors' Affiliations: 'Biometric Research Branch, Division of Cancer
Treatment and Diagnosis, National Cancer Institute, Bethesda,
Maryland and 2Department of Mathematics and Statistics, Queen's
University, Kingston, Ontario, Canada

Corresponding Author: Boris Freidlin, Biometric Research Branch, EPN-
8122, National Cancer Institute, Bethesda, MD 20892. Phone: 301-402-
0640; Fax: 301-402-0560; E-mail: freidlinb@ctep.nci.nih.gov.

doi: 10.1158/1078-0432.CCR-09-1357

©2010 American Association for Cancer Research.

the prospective development of a pharmacogenomic diag-
nostic test (signature) to select sensitive patients with a
properly powered test for overall effect. It was shown that
when the proportion of patients sensitive to the new drug
is low, the ASD substantially reduces the chance of false
rejection of effective new treatments. When the new treat-
ment is broadly effective, the power of the adaptive design
to detect the overall effect is similar to that of the tradi-
tional design.

The signature component of the ASD carries out signa-
ture development and validation on the mutually exclu-
sive subgroups of patients (e.g., half of the study
population is used to develop a signature and another half
to validate it). Although the conceptual simplicity of this
approach is appealing, it also limits its power as only half
of the patients are used for signature development and
half for validation. This is especially relevant in the present
setting because (a) signature development in high dimen-
sional data requires large sample sizes, and (b) when the
fraction of sensitive patients is low, a large number of pa-
tients needs to be screened to identify the sufficient num-
ber of sensitive patients to achieve acceptable power.

In this article, we describe an extension of the ASD in
which signature development and validation are embed-
ded in a complete cross-validation procedure. This allows
the use of virtually the entire study population in both sig-
nature development and validation steps. We develop a
procedure that preserves the study-wise type I error while
substantially increasing the statistical power for establish-
ing a statistically significant treatment effect for an identi-
fied subset of patients who benefit from the experimental
treatment. We also examine approaches to estimation of
treatment effect for the identified sensitive subset.
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Translational Relevance

Traditional broad eligibility approaches to design
definitive randomized clinical trials may overlook
new targeted anticancer therapies that benefit only a
subset of treated patients. The proposed clinical trial
design provides an effective and valid approach to
combining the prospective development of a classifier
for patients who are most likely to benefit from a tar-
geted agent with a properly powered test for overall
treatment effect in a single phase III clinical trial. This
can help to dramatically accelerate the development of
new anticancer therapies.

Materials and Methods

The final stage of clinical drug development usually re-
quires showing that the addition of the new agent to the
standard treatment is beneficial in an RCT that randomly
assigns patients to the combination of the new and stan-
dard treatment (arm E) or the standard treatment alone
(arm C).

The following presentation is expressed in terms of a
predictive classifier based on DNA microarray gene ex-
pression signatures, but the design is easily adapted to
classifier development based on single nucleotide poly-
morphism genotyping, proteomic profiling, or even selec-
tion from single gene or protein candidate classifiers. For
the development based on gene expression data, we have
used the following modeling assumptions: among H eval-
uated genes, there is a subset of L predictive (“sensitivity”)
genes. The identities of the predictive genes are unknown,
but responsiveness to treatment is influenced by the pre-
dictive genes through the following model. The model is
based on a binary response end point as in the ASD but is
easily generalized to a proportional hazards model for
survival or disease-free survival model. For a given patient,
let p denote the probability of response, t denote the treat-
ment indicator (¢t = 0 for arm C and ¢ = 1 for arm E), and
x1,...,x; denote the levels of expression for the L unknown
predictive genes. Then

log(L) =p +NHExq + . LEx + oyt +

1-p
+ yoixL (1)

where \ is the treatment main effect that all patients expe-
rience regardless of their gene expression levels, §; is main
effect for the i'" sensitivity gene, and v; is the treatment-ex-
pression interaction effect that reflects the degree by which
the difference in treatment arms is influenced by the i
sensitivity gene expression level. To simplify the presenta-
tion main effects and the treatment expression, interac-
tions for the nonpredictive genes are assumed to be 0.

If the interaction parameters are positive, patients who
overexpress the predictive genes have a higher probability

of response on arm E compared with arm C. We assume
that a fraction of the patient population overexpresses
some (but not necessarily all) of the predictive genes.
These patients are called “sensitive.”

First, we briefly describe the original ASD. Then, the cross-
validated version of the design (CVASD) is introduced.

ASD design. Consider designing a phase III trial with an
overall type I error a. Similar to the traditional RCT design,
the ASD is based on randomizing a total of N patients be-
tween the two treatment arms. At the completion of the
trial, the final analysis begins with an overall comparison
between the new and the standard treatment arms using
the data from all N patients. If the comparison is signifi-
cant at a prespecified significance level a; (a;< o), then
the new treatment is considered beneficial for the broad
population of patients. Otherwise, the design proceeds
to the signature development/validation stage. The study
patients are divided into two cohorts: (a) the signature val-
idation cohort (often called the test or validation data set)
that contains M patients and (b) the signature develop-
ment cohort (often called the training data set) that con-
tains the remaining N-M patients. Using the development
cohort patients only, a signature, which tries to identify
patients that have better outcomes on the new therapy
than the standard therapy, is developed. The signature is
then applied to the validation cohort, and “signature-
positive” patients called “sensitive patients” are identified.
Outcomes for patients in the sensitive subset of the valida-
tion cohort who received the new therapy are compared
with the outcomes for patients in the sensitive subset of
the validation cohort who received the standard therapy.
A statistical significance test is done at the significance
threshold o, = @ - a; to ensure that overall type I error
of the design is no greater than o = a; + ;. The allocation
of the experiment-wise significance level a between the
overall and subset tests in a particular implementation
of the design should be based on the strength of the exist-
ing evidence for the distribution of the new drug activity in
study population. To preserve the ability of the procedure
to detect an overall effect, we recommend setting «; in the
50% to 80% of the o range. For example, with 80% to
20% allocation setting, o; = 0.04 and o, = 0.01 corre-
sponds to a procedure-wise a level of 0.05.

A large variety of algorithms for developing a clas-
sifier based on patients accrued during stage 1 could
be envisioned. To illustrate the adaptive designs, we
use an approach based on machine learning voting
methods (6).

Step 1: Using data from stage 1 patients, for each gene j,
fit the single gene logistic model logit(p) = u + Ajt + Bt
xj. Note the genes that have treatment-expression in-
teraction (3;) that is significant at a predetermined
level 7.

Step 2: Classify stage 2 patients as sensitive or nonsensi-
tive to the new treatment based on the genes with sig-
nificant interactions in Step 1. Patient in stage 2 is
designated sensitive if the predicted new versus con-
trol arm odds ratio exceeds a specified threshold (R)
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for at least G of the significant genes j (that is,
e N+ By > R)

A list ® of plausible sets of the three tuning parameters
(7 R, G) should be identified prospectively based on the
range of feasible models. Freidlin and Simon (5) described
the selection of tuning parameter set from the list.

CVASD design. Because the signature development and
the subset effect testing stages of the ASD are done on
two nonoverlapping subpopulations, the nominal signifi-
cance level of the entire signature development testing pro-
cedure is preserved at the nominal «, level. However, this
conceptual simplicity results in the loss of efficiency (be-
cause only a portion of the trial patients contributes to each
stage). To allow a more efficient use of all available data,
the CVASD uses cross-validation approach for the signature
development and subset effect testing. A K-fold cross-vali-
dation for an N-patient trial proceeds as follows: first, the
trial population is split into an M-patient validation cohort
and an (N-M)-patient development cohort (where M = N/
K). Let D, denote the set of patients in the k" development
cohort, and V;, as the set of patients in the corresponding
validation cohort. For each Dy, (k = 1,...,K), a predictive sig-
nature is developed. The signature is applied to identify a
sensitive patient subset S, of V}.. This procedure is repeated
K times over all M-patient-nonoverlapping validation co-
horts V;, (and the corresponding D;,). Each study patient ap-
pears in exactly one of the validation cohorts.

At the end of the cross-validation procedure, each of the
study patients is classified as either sensitive or not. The

sensitive patient subset of the entire study population is
identified as S = U,Ile Si. The outcomes for the sensitive
patients who received the experimental therapy can be
compared with the outcomes for the sensitive patients
who received the standard therapy. Because this subset
of sensitive patients is obtained by cross-validation, the
standard asymptotic theory does not apply. We use a per-
mutation method (7) to obtain a valid P value for a given
test statistic T (where T is testing presence of treatment ef-
fect in the sensitive patient subset). The permutation dis-
tribution can be approximated by a resampling-based
approach. First, statistic T is evaluated on the observed
data. Then, a permuted data set is constructed by random-
ly permuting treatment labels. The entire cross-validation
procedure is repeated for the permuted data set and the
corresponding test statistic T* is computed. This procedure
is repeated for B permuted data sets. The permutation
P value is given by

1 + number of permutations where T* > T
1+B ’

It is important for all steps of the signature development
algorithm (including the selection of tuning parameters) to
be incorporated into each loop of the cross-validation
procedure for each permuted data set to obtain a valid
P value (7, 8). In CVASD, this is accomplished as follows:
a list ® of plausible tuning parameter sets (1, R, G) is pre-
specified; then on each (N-M)-patient development co-
hort Dy, a nested inner loop of K-fold cross-validation is

Table 1. Empirical power: ASD and CVASD as a function of the subset treatment effect, 10% of patients
are sensitive
Test ASD CVASD (10-fold cross-validation)
Ninety percent response in sensitive patients on the experimental arm and 25% in all other patients
Overall 0.05 level test 0.301 0.291
Overall 0.04 level test 0.261 0.256
Sensitive subset 0.01 level test 0.495 0.880
Overall power 0.605 0.909
Eighty percent response in sensitive patients on the experimental arm and 25% in all other patients
Overall 0.05 level test 0.232 0.240
Overall 0.04 level test 0.203 0.209
Sensitive subset 0.01 level test 0.202 0.661
Overall power 0.348 0.714
Seventy percent response in sensitive patients on the experimental arm and 25% in all other patients
Overall 0.05 level test 0.177 0.183
Overall 0.04 level test 0.147 0.155
Sensitive subset 0.01 level test 0.066 0.371
Overall power 0.191 0.450
Sixty percent response in sensitive patients on the experimental arm and 25% in all other patients
Overall 0.05 level test 0.121 0.129
Overall 0.04 level test 0.105 0.107
Sensitive subset 0.01 level test 0.015 0.135
Overall power 0.115 0.229
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Table 2. Empirical power: ASD and CVASD as
a function of the fraction of sensitive patients,
70% response in sensitive patients on the ex-
perimental arm and 25% in all other patients

Test ASD CVASD (10-fold
cross-validation)

Twenty percent of patients are sensitive

Overall 0.05 level test 0.518 0.503
Overall 0.04 level test 0.478 0.471
Sensitive subset 0.01 level test 0.192 0.588
Overall power 0.543 0.731
Thirty percent of patients are sensitive
Overall 0.05 level test 0.846 0.838
Overall 0.04 level test 0.822 0.808
Sensitive subset 0.01 level test 0.295 0.723
Overall power 0.836 0.918
Forty percent of patients are sensitive
Overall 0.05 level test 0.969 0.961
Overall 0.04 level test 0.962 0.955
Sensitive subset 0.01 level test 0.412 0.812
Overall power 0.963 0.972

applied to obtain a set of sensitive patients corresponding
to each of the parameter sets. The tuning parameter set
corresponding to the sensitive subset with smallest P value
(for the difference between arms) is selected for use in the
corresponding development cohort. Finally, to ensure the
strict validity and reproducibility of the procedure, patient
allocation to the cross-validation cohorts Dy and V;, (k= 1,
...,K) should be prospectively defined.

Results

We conducted a simulation study to evaluate the perfor-
mance of ASD and CVASD with K = 10 (10-fold cross-
validation). We assumed a 10,000-gene array with L =
10 predictive genes. A previous simulation study indicated
that the design performance is similar over a range of va-
lues of L (5). Gene main effects, §;, were assumed to be 0.
Treatment-expression interaction levels were kept constant
across predictive genes (y = y; = v, =,..., = ;). An inter-
cept (p) value corresponding to a control arm response
rate of 25% was used (previous simulation suggested sim-
ilar results for other intercept values; ref. 5). The simula-
tions were based on 1,000 replications and B = 99 (see
the Appendix A for more details).

The simulations are reported in Tables 1 to 6 and repre-
sent a clinical trial in which N = 400 patients were ran-
domized between the experimental and control arms.
Both CVASD and ASD procedures use 80% to 20% o-level
split with an overall 0.05 (two sided) significance level
(corresponding to a; = 0.04 and a, = 0.01). We tabulated
the empirical powers of the overall arm comparison at
0.05 and 0.04 significance levels, and of the comparison

in the selected sensitive subset at 0.01 two-sided signifi-
cance levels. In addition, the overall empirical power of
the adaptive designs is calculated as the percentage of re-
plications with either positive overall 0.04 level test or
positive 0.01 level sensitive subset test. Because ASD and
CVASD simulations were run independently, we report the
empirical power for the overall tests for each procedure
separately (note that the small discrepancies between the
power of the overall 0.05 or 0.04 level tests for the two
procedures reflect the random variation in the simulation
results).

We start by considering a situation where the benefit of
the new drug is restricted to a small fraction of patients:
10% of the eligible patient population that overexpresses
the predictive genes. Table 1 presents the results for a range
of treatment effects. The first panel corresponds to a very
strong subset effect: 90% response rate in sensitive patients
on the experimental arm and a 25% response rate in all
other patients (nonsensitive patients on the experimental
arm and all control arm patients). In both ASD and
CVASD, the overall difference was declared with a 26%
probability (using a 0.04 level overall test). In ASD, the
sensitive subset test was significant (at 0.01 level) in
50% of cases resulting in a 61% overall power for the de-
sign (a 61% probability of either detecting a significant
overall effect or a significant subset effect). For CVASD,
the sensitive subset test was significant (at 0.01 level) in
88% of cases resulting in a 91% overall power (as a refer-
ence, note that in this case, the traditional broad eligibility
design that relies on an overall 0.05 level test has a 30%
power to detect difference between the arms). CVASD
shows a better ability to detect subset effect relative to

Table 3. Empirical power: ASD and CVASD as
a function of the fraction of sensitive patients,
60% response in sensitive patients on the ex-
perimental arm and 25% in all other patients

Test ASD CVASD (10-fold
cross-validation)

Twenty percent of patients are sensitive

Overall 0.05 level test 0.359 0.349
Overall 0.04 level test 0.323 0.313
Sensitive subset 0.01 level test 0.051 0.196
Overall power 0.342 0.421
Thirty percent of patients are sensitive
Overall 0.05 level test 0.620 0.622
Overall 0.04 level test 0.584 0.582
Sensitive subset 0.01 level test 0.047 0.254
Overall power 0.589 0.641
Forty percent of patients are sensitive
Overall 0.05 level test 0.861 0.856
Overall 0.04 level test 0.841 0.829
Sensitive subset 0.01 level test 0.089 0.274
Overall power 0.842 0.843

Clin Cancer Res; 16(2) January 15, 2010

Clinical Cancer Research



Cross-Validated Adaptive Signature Design

Table 4. Empirical power: no subset effect

Test ASD CVASD (10-fold
cross-validation)

No subset effect: 35% response in all patients on the ex-
perimental arm, 25% response rate in all patients on the
control arm

Overall 0.05 level test 0.572 0.594
Overall 0.04 level test 0.534 0.554
Sensitive subset 0.01 level test 0.009 0
Overall power 0.534 0.554
No treatment effect: 25% response in all patients
Overall 0.05 level test 0.050 0.056
Overall 0.04 level test 0.038 0.048
Sensitive subset 0.01 level test 0.001 0
Overall power 0.038 0.048

*When no sensitive patients are identified, the test statistic
is given the lowest possible value.

ASD across the range of treatment effects (Table 1, panels
2-4). In fact, the relative gain in power for CVASD versus
ASD increases as the magnitude of the treatment effect is
reduced. For example, when the response rate in sensitive
patients on the experiment arm is 70%, the sensitive sub-
set test was significant in 37% of cases in CVASD versus
7% in ASD (45% versus 19% overall power). Moreover,
for smaller treatment effects (panels 3 and 4) the power ad-
vantage for the adaptive designs versus the traditional
broad eligibility approach (that relies on overall effect test)
is limited to CVASD.

Tables 2 and 3 illustrate ASD and CVASD performance
with increasing fraction of the sensitive patients (strong
subset effect in Table 2 and moderate subset effect in
Table 3). Across the board, CVASD provides an improved
detection of the subset effect. As the sensitive patient frac-
tion increases, so does the ability of an overall test to detect
treatment effect in the entire study population. Thus, in
terms of the overall power, the difference between ASD,
CVASD, and the traditional design becomes smaller for
higher fractions of sensitive patients, and the overall power
is similar when sensitive fraction is 40% or above. For ex-
ample, when 40% of the study patients are sensitive, overall
powers of the ASD, CVASD, and the traditional design are
84%, 84%, and 86%, respectively (Table 3, panel 3).

When all patients benefit equally from the new treat-
ment, both CVASD and ASD correctly indicate the absence
of sensitive subpopulation (Table 4, panel 1). At the same
time, the adaptive procedures preserve the power for detec-
tion of the overall effect. When there is no benefit from the
new therapy (overall or in a subset), the adaptive proce-
dures preserve the overall type I error rate (Table 4, panel 2).

An important issue in the application of an adaptive de-
sign is the interpretation of a positive study. In particular,
it is important to characterize the sensitive subset and to
have an estimate of the treatment effect in the sensitive

subpopulation. Consider a study that used CVASD and
obtained a significant treatment effect in a subpopulation
but not for the overall population. The final classifier to
identify patients that benefit from the new drug is ob-
tained by applying the signature development algorithm
to the entire study population. A relevant measure of the
treatment effect is then the predicted treatment effect in
the future patients that are classified as sensitive by the fi-
nal signature. Two possible estimators for the predicted ef-
fect are (a) the empirical treatment effect observed in
patients identified as sensitive by applying the final signa-
ture to the entire study population (we refer to this as the
resubstitution estimator because it is obtained by applying
the signature to the patients that were used to develop the
signature), and (b) the treatment effect observed in
patients identified as sensitive by K-fold cross-validation
using the tuning parameters selected from the entire study
population (as in the resubstitution estimator above; we
refer to this as CV estimator). The performance of the
two estimators is illustrated in Table 5 for two settings
with 10% fraction of sensitive patients. The table is based
on calculating both the resubstitution and the 10-fold CV
treatment effect estimates on a simulated 400-patient trial.
The treatment effect observed by applying the final signa-
ture to an independent set of 1,000 patients is used as a
reference value for the true predicted effect (“Predicted
rates” column in Table 5). The results were then averaged
over 1,000 simulations. As expected, the resubstitution es-
timate tends to overestimate the predicted effect because it
uses the same data to develop the signature and estimate
the treatment effect. On the other hand, the 10-fold CV
estimate tends to underestimate the predicted effect. The
conservatism presumably results from the suboptimality
of the classifiers developed and optimized based on nested

Table 5. Resubstitution and CV estimates
of the predicted treatment effect in the sensi-
tive subpopulation (10% of the patients are
sensitive)

Predicted Resubstitution Ccv
rates rates rates

Ninety percent response in sensitive patients,
25% response in all other patients

Experimental 90% 91% 87%
arm

Control arm 25% 23% 27%

Difference 65% 68% 60%

Seventy percent response in sensitive patients,
25% response in all other patients

Experimental 74% 88% 65%
arm

Control arm 25% 19% 28%

difference 49% 69% 37%
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Table 6. Results of applying CVASD to Bonnefoi et al. (2007) EORTC 10994 Neoadjuvant breast cancer

Sensitive subset comparison

data

Overall comparison

P =0.79

Arm Observed pCR rate (%) (no of patients)
FEC 42% (66)

TET 45% (58)

P = 0.006*

Arm Estimates of pCR rates in the sensitive subpopulation
Resubstitution (e17)

FEC 20% (15) 29% (14)

TET 100% (8) 83% (12)

*P value based on permutation distribution of the cross-validated treatment effect in sensitive subset.

cross-validation procedure compared with the classifier
developed using the full data set.

To illustrate our approach, we searched the National
Center for Biotechnology Information Gene Expression
Omnibus depository for publicly available gene expres-
sion data from a RCT. The only randomized cancer trial
data with both expression and clinical outcome available
that we were able to identify were data on a subset of 124
hormone receptor-negative breast cancer patients treated
on EORTC 10994 (reported in ref. 9 and available at Na-
tional Center for Biotechnology Information Web site).?
EORTC 10994 was a phase III neoadjuvant breast cancer
RCT that compared nontaxane regimen of 5-fluorouracil,
cyclophosphamide, and epirubicin (FEC) with a taxane
regimen of epirubicin and docetaxel (TET). In 66 patients
treated with FEC, 28 had pathologic complete response
(pCR), and in 58 patients treated with TET, 26 had pCR.
CVASD was applied to these data (see Appendix B for de-
tails), and results are presented in Table 6. There was no
overall difference in pCR rates between TET and FEC arms
(pCR rates 45% and 42%, respectively; P = 0.79). The
CVASD algorithm indicated the existence of a significant
(P = 0.0006) sensitive subset where TET is substantially
more effective than FEC: the conservative (CV) estimate
of the treatment effect was 83% pCR (TET) versus 29%
pCR (FEC). Although providing a biological rationale for
the sensitive patient signature is beyond the scope of this
article, we note that two of the probes in the signature
(Hs.310359.0.A1_3p_at and g4507484_3p_a_at) are relat-
ed to the mitogen-activated protein kinase pathway that
has been reported to be associated with anthracycline re-
sistance in hormone receptor-negative breast cancer (10).

3 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6861

As this is a retrospective application of CVASD to a subset
of a reported RCT, these results will need an independent
confirmation.

Discussion

Our results show that the cross-validation approach can
considerably enhance the ASD performance. Cross-valida-
tion permits the maximization of the portion of study pa-
tients contributing to the development of the diagnostic
signature [as shown by Molinaro et al. (11), this is critical
in the high-dimensional data setting where the sample size
or signal to noise ratio is limited]. Cross-validation also
maximizes the size of the sensitive patient subset used to
test (validate) the signature (this is important in settings
where the fraction of the sensitive patients is small).

In this presentation, we used 80% to 20% allocation of
the error rates between the overall and subset tests. This
allocation represents a conservative approach that is aimed
at preserving the ability of detecting the overall treatment
effect without increasing the overall sample size. Depend-
ing on the amount of preliminary evidence that the treat-
ment effect is limited to a subpopulation, one might
allocate a higher proportion (up to 50%) of the overall er-
ror to the subset effect (i.e., using a; = 0.025 and «, =
0.025 for an overall 0.05 level design). The study sample
size could be increased to achieve a desired power for the
overall analysis or for the subset analysis. Sample size de-
pends not only on the proportion of patients in the sensi-
tive subset and the treatment effect in that subset, but also
on aspects of the data used for classifier development. We
plan to study sample size planning for the CVASD.

An important step in interpreting a trial that indicates
that the effect of the new therapy is limited to a subset
of patients is to provide an explicitly defined diagnostic
test to identify the subpopulation of the future patients

Clin Cancer Res; 16(2) January 15, 2010
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that are most likely to benefit and to quantify the benefi-
cial effect in that subpopulation. In the CVASD design, the
final diagnostic test is obtained by applying the signature
development procedure to the entire study population; a
conservative estimate of the treatment effect in the
corresponding subpopulation of the future patients can
be obtained by a 10-fold CV method. Although the con-
servatism of the estimate is preferable to anticonservative
of the resubstitution estimate, in the future, we plan to in-
vestigate the parameters influencing the accuracy of the es-
timator of treatment effect.

Our approach uses cross-validation for two purposes.
First, to define a valid test of the null hypothesis that
there is no sensitive subgroup of patients that benefit
from the new regimen compared with control. The sec-
ond purpose of the cross-validation is to provide a con-
servative estimate of the treatment effect that would be
seen in the application of the classifier defined based
on the full data set to identify sensitive patients in the
future. This estimate is obtained by conservatively esti-
mating the mean treatment effect in the sensitive
subgroup in the reapplication of the algorithm to resam-
pling the study population. This is analogous to the use
of cross-validation or bootstrap methods for evaluating
the predictive accuracy of simple binary classifiers (12).
Molinaro et al. (11) have shown that CV can provide
similar level of validity while being more efficient than
the split-sample approach (the approach used in the orig-
inal ASD design). As CV and split-sample are methods
for internal validation, however, there is value in external
validation for both methods.

Reselection of the informative genes for different loops
of the cross-validation is essential to the validity of the
approach (13). The fact that the selected gene set may
not be stable when portions of the cases are omitted
does not mean that the classifications are unstable or
that the classifier developed on the full data set will
not predict accurately for independent data. Good ge-
nomic signatures are generally not unique. Due to the
correlation in gene expression levels, different data sets
may result in seemingly different and even nonoverlap-
ping signatures with good predictive characteristics (14).
We have used the method of gene selection and model
building previously developed for the original ASD.
Genes are selected based on their differential effect on
outcome between the two treatment groups (i.e., interac-
tion). A weighted voting classifier based on the selected
genes is used to classify individual patients as sensitive to
the new regimen compared with control. Although this
approach is based on methods widely used in the ma-
chine learning literature, many other approaches are pos-
sible. The current literature on classifier development in
bioinformatics is dominated by methods for binary clas-
sification that is not directly applicable to the RCT set-
ting. In many cases, classification accuracy is more
determined by the difficulty of the problem than by
the gene selection method or classifier type used. This
is not always the case however, and certainly, further re-

search in classifiers for use in the analysis of RCTs with
high dimensional data is warranted.

Appendix A: Simulation Details

In the simulation study, gene expression levels were
generated as follows:

(1) For predictive genes in sensitive patients: using a
multivariate normal distribution with mean 1, vari-
ance 0,2 = 0.25, and correlation p = 0,

(2) For predictive genes in nonsensitive patients: using
multivariate normal distribution with mean 0, vari-
ance o, = 0.01, and correlation p = 0,

(3) For nonpredictive genes: using multivariate normal
with mean 0, variance o,> = 0.25, and correlation p =
0 in all patients.

We used p = 0 as previous simulations showed similar

results with correlated data (5).

To optimize the computation time for the simulation,
instead of fitting individual logistic regression in step 1
of the signature development algorithm, we used the stan-
dardize difference between average gene expressions in re-
sponders versus nonresponders in two arms:

(Tre — TnrE)— (TRC
— Inre)l /[ \/0?(/nre + 1/nnre + 1/nre + 1/nnrc)

Where
Zre(nrE), Tnre(MyrE) Zro(nrce), and Tyrc(nygc)

are mean expression (sample size) for responders on arm
E, nonresponders on arm E, responders on arm C, and
nonresponders on arm C, respectively.

In CVASD, to further limit the simulation time, in the
selection of the tuning parameters in each permutation
run, only the first cross-validation subset, D;, was used
to select tuning parameters that were used throughout that
run. The following list of plausible tuning parameters (7,
R, G) was used; {(0.02,10,4), (0.02, 12, 3), (0.02, 20, 1)}.

Appendix B: Application of CVASD to Bonnefoi
et al. 2007 EORTC 10994 Data

The gene expression data for 124 patients were obtained
on the Affymetrix X3P microarray with 61,000 probe sets
(note that Bonnefoi et al. reported results on 125 patients
but gene expression data on National Center for Biotech-
nology Information Gene Expression Omnibus Web site
was only available on 124 patients). To adjust for the rel-
atively small sample size, the expression data were filtered
by restricting the analysis to the 5,000 probes with the
highest variability. We then applied CVASD using the fol-
lowing list of tuning parameter sets {(0.02,10,4), (0.02,
12, 3), (0.02, 20, 1)}. Sensitive subset P value is based
on 999 permutations.
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