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Introduction

Randomized cl inical  tr ials  have been key for the 
development of a reliable evidence based medicine. 
Randomized trials generally evaluate a treatment relative 
to a control regimen for a broadly defined population 
of patients traditionally defined based on primary site, 
histologic diagnosis, stage and number of prior treatments. 
One limitation of randomized clinical trials is that they 
have also led to the over-treatment of broad populations of 
patients, most of whom don’t benefit from the drugs and 
procedures shown to have statistically significant average 
treatment effects. 

Tumors of a primary site in many cases represent a 
heterogeneous collection of diseases that differ with regard 
to the mutations that cause them and drive their invasion. 
The heterogeneous nature of tumors of the same primary 
site offers new challenges for drug development and clinical 
trial design. Physicians have always known that cancers of 
the same primary site were heterogeneous with regard to 
natural history and response to treatment. Today we have 
better tools for characterizing the tumors biologically and 
using this characterization in the design and analysis of 
clinical trials that utilize this information prospectively. 

Presently, most oncology drugs are being developed 
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for defined molecular targets. In some cases the targets 
are well understood and there is a compelling biological 
basis for restricting development to the subset of patients 
whose tumors are characterized by deregulation of the drug 
target. For other drugs there are multiple targets and more 
uncertainty about how to measure whether a drug target is 
driving tumor invasion in an individual patient (1). It is clear 
that the primary analysis of the new generation of oncology 
clinical trials must consist of more than just treating broad 
patient populations and testing the null hypothesis of no 
average effect. But it is also clear that the tradition of post-
hoc data dredging subset analysis is not an adequate basis 
for predictive oncology. For establishing practice standards 
and for drug approvals we need prospective analysis plans 
that provide for both preservation of the type I experiment-
wise error rate and for focused predictive analyses that can 
be used to reliably select patients in clinical practice for use 
of the new regimen (2-4). The type I experiment-wise error 
rate is the probability of making any false positive claim (for 
the overall population or any subset) based on the analysis 
of the clinical trial. These two primary objectives involve 
co-development of a drug and a companion diagnostic. 

The ideal approach to co-development of a drug 
and companion diagnostic involves (I) identification 
of a predictive biomarker based on understanding the 
mechanism of action of the drug and the role of the drug 
target in the pathophysiology of the disease. A predictive 
biomarker is a biological measurement that indicates 
whether the patient is likely to respond to the particular 
drug. It is distinguished from a prognostic biomarker which 
may indicate the pace of progression of the underlying 
disease. This biological understanding should be validated 
and refined by pre-clinical studies and early phase clinical 
trials. The predictive biomarkers for successful cancer drugs 
have generally involved a single gene or protein rather than 
a multivariate classifier. Multivariate classifiers have found 
use as prognostic indicators that reflect a combination of 
the pace of the disease and the effect of standard therapy (5). 
They can identify which patients have such good prognosis 
with conservative management that they do not require 
more aggressive treatment. Multivariate classifiers have 
rarely been used as predictive biomarkers for response to 
specific drugs, however, because their use often reflects an 
incomplete understanding of the mechanism of action of 
the drug or the role of its molecular target; (II) development 
of an analytically validated test for measurement of the 
relevant biomarker. Analytically validated implies that the 
test accurately measures what it is supposed to measure, 

or if there is no gold-standard measurement, that the 
test is reproducible and robust; (III) use of the defined 
test to design and analyze a new clinical trial to evaluate 
the effectiveness of the investigative drug and how the 
effectiveness relates to the biomarker value. 

Phase II trials

Candidate predictive biomarkers are often evaluated in 
traditional phase II trials for patients with tumors of a 
single primary site. Pusztai and Hess (6) and Jones and 
Holmgren (7) have described extensions of Simon’s two-
stage single arm phase II design to accommodate a single 
binary candidate marker. These designs are focused 
primarily on ensuring that promising activity of the drug 
is not missed in cases where its activity is restricted to test-
positive patients, and yet excessive numbers of patients 
are not required in cases where its activity is sufficiently 
broad that the marker is not needed. Freidlin et al. (8) have 
described a design for use with a single binary biomarker in 
a randomized phase II design that enables one to determine 
whether the drug should be developed in a phase III 
enrichment trial, an all-comers trial, or dropped from 
further development. 

There are many more complicated phase II settings, 
where no natural cut-point of the biomarker is known in 
advance, or where there are multiple candidate biomarkers. 
The BATTLE I trial in NSCLC is an example of a phase II 
clinical trial in which four different tests were evaluated in 
the context of four different drug regimens (9). Treatment 
assignment among the four regimens was randomized, but 
the randomization weights varied as the trial went along 
according to which treatment had the best performance 
within each of the four biomarker strata using freedom from 
progressive disease at week 8 as the endpoint. There were 
two main objectives of the adaptive randomization. One was 
to efficiently screen four treatments in four pre-determined 
strata of NSCLC patients. The second objective was to 
provide patients with a trial in which they could feel that 
the design was adapting to assign them the drug regimen 
that was best for their form of the disease. Korn and 
Freidlin (10) have raised questions about the effectiveness of 
such response adaptive randomization designs for reducing 
the number of patients receiving what turns out to be a less 
active regimen and Simon (2) has raised questions about 
how efficient this design is relative to use of optimal two-
stage designs for each drug-stratum combination. The 
I-SPY 2 phase II design being conducted in breast cancer 
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also uses an adaptive design with pre-specified biomarker 
strata and multiple treatments (11). 

Phase IIa basket discovery trials

Large tumor sequencing studies (12) like the Cancer 
Genome Project in the UK and The Cancer Genome 
Atlas (TCGA) in the US have identified recurrent genomic 
changes in a variety of primary tumor sites. These data 
provide a scientific basis for treatment of individual 
patients based on the biological characterization of their 
tumors. There are, however, many challenges in moving 
tumor genomics to clinical oncology. These include 
challenges of logistics, ethics, bioinformatics, study design, 
regulatory, analytical assay validation and interdisciplinary 
collaboration. Moving genomics to therapeutics involves 
using drugs for new indications and dealing with 
uncertainties about which mutations in a given gene effect 
the function of the protein product, which are important 
for the invasive properties of the tumor and which should 
be considered “actionable” for administration of a drug 
that was developed for somewhat different mutations in 
a different primary site. There is much yet to learn about 
effective matching of drugs to genomically characterized 
tumors (13). Treating patients with drugs selected 
based on current knowledge to block the de-regulation 
caused by genomic alterations can, however, provide a 
database for improving our knowledge of how to combine 
tumor genomics with therapeutics. It may be much less 
informative to treat patients without prospective biological 
characterization and hope to correlate responses to post-
hoc assessed genomic tumor alterations although the latter 
approach may be useful for trying to understand unusually 
good responses to standard treatments.

“Umbrella” discovery trials include patients with 
advanced cancer of multiple primary disease sites which 
are resistant to standard treatment (14). The patients have 
their tumor DNA sequenced and it is determined (based on 
a pre-specified algorithm) whether an actionable mutation 
is present. Actionable means that a drug is available whose 
range of molecular targets ‘mesh’ with the genomic 
alterations of the tumor in a way that suggest treatment 
may result in benefit for that patient. The evidence that a 
drug is actionable for a given mutation varies and is often 
based on biological or pre-clinical data or on data in a 
different tumor type. The rules of actionability should be 
prospectively defined. Basket trials have only a single drug 
available and attempt to discover the types of patients for 

whom the drug should be developed in later phase studies. 
In other cases, multiple drugs are available. In some cases 
the trial is randomized in which outcome on drugs matched 
based on actionability rules are compared to outcome on 
drugs selected based on physicians choice without genomic 
characterization data. Other trials do not use a control arm. 

The randomized discovery designs address two distinct 
questions (14). One is the testing of the null hypothesis 
that the policy of trying to match the drug to the genomics 
of the tumor is no more effective than a physicians’ choice 
strategy without using any tumor characterization beyond 
that used for standard of care. Whereas most clinical trials 
evaluate a single drug or regimen, the null hypothesis for 
multi-drug umbrella trials relates to a matching policy 
for a given set of drugs and biomarkers available for the 
study. This makes it particularly important to obtain a 
broad enough menu of potent inhibitors of their targets. 
The policy is also determined by the type of genomic 
characterization performed and by the “rules” for matching 
drug to tumor. If the matching is done by a tumor board 
and is not rule-based or if the rules change frequently, the 
pragmatic value of the clinical trial will be limited. It may 
also be difficult for regulatory bodies to approve use of 
investigational drugs for use as decided by a tumor board 
rather than in a more rule-based manner. Consequently, 
it is important that the policy of treatment-assignment 
by genomic characterization be transparent and that the 
duration of the trial be short so that the rules do not change 
frequently. The use of a randomized control group ensures 
that comparisons of progression free survival (PFS) between 
the matched group and the control group are not biased by 
differences in patient characteristics or biases in assessment 
of progression. The proof-of-principle embodied by the 
null hypothesis may be more meaningful, however, in a 
multi-drug trial of a single histologic category than in cases 
where a wide range of primary sites of disease are included. 

A second objective of the randomized studies is the 
screening of individual drugs used in specific tumor contexts. 
For some primary sites a gene may be mutated sufficiently 
frequently for the study to provide an adequate phase II 
evaluation of the drug for that new indication (13). In many 
cases, however, the available patient numbers will not be 
adequate for a proper phase II evaluation. Nevertheless, 
the trial may serve to screen for drug-mutation matches for 
which there is a substantial degrees of activity. These leads 
must be confirmed in an expanded cohort of a follow-up  
trial (13). In this discovery mode, assessment of activity 
of a drug against tumors with a given gene mutated must 
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take into account the possibility that the primary site may 
indicate a genomic context which may modulate activity of 
the drug against the alteration. 

The non-randomized trials are sometimes called “N of 1”  
trials in the sense that each patient is different and the 
outcome of treatment must be evaluated individually in 
terms of the individual characterization of his or her tumor. 
This nomenclature can be misleading, however. The  
“N of 1” approach traditionally referred to a design in which 
individual patients were treated sequentially for multiple 
courses with either a test drug or control, with the sequence 
of treatment or control determined by randomization. This 
is clearly not possible for cancer studies however. The only 
endpoint clearly interpretable for non-randomized studies 
is objective tumor response. Tumors generally do not 
shrink spontaneously, and so an objective tumor response 
can usually be attributed to the effect of the drug. Durable 
objective responses for patients with far advanced metastatic 
disease are generally rare and can be used for discovering 
promising ways to target molecularly characterized tumors. 
PFS is much less interpretable in non-randomized studies. 
The pace of disease can vary substantially even in advanced 
cases and so comparing PFS between different subsets of 
patients is hazardous. PFS is subject to measurement error 
and ascertainment bias depending on the frequency of 
surveillance. For a patient who has a PFS prior to entry on 
study of eight weeks, a PFS ratio (relative to the PFS on 
the previous treatment) in excess of 1.3 may only mean that 
progression was not declared at the first eight week follow-
up of the genomic based study. This is not strong evidence 
of an effective treatment effect.

Phase III targeted (enrichment) designs

Designs in which eligibility is restricted to those patients 
considered most likely to benefit from the experimental 
drug are called “targeted designs” or “enrichment designs.” 
With an enrichment design, an analytically validated 
diagnostic test is used to restrict eligibility for a randomized 
clinical trial comparing a regimen containing a new drug 
to a control regimen. This approach has now been used for 
pivotal trials of many drugs whose molecular targets were 
well understood in the context of the disease. Prominent 
examples include trastuzumab (15), vemerafinib (16), and 
crezotinib (17). 

Several authors have studied the efficiency of the 
‘targeted’ approach relative to the standard approach of 
randomizing all patients without using the biomarker test 

at all (18-22). The efficiency of the enrichment design 
depends on the prevalence of test positive patients and 
on the effectiveness of the new treatment in test negative 
patients. When fewer than half of the patients are test 
positive and the new treatment is relatively ineffective 
in test negative patients, the number of randomized 
patients required for an enrichment design is dramatically 
smaller than the number of randomized patients required 
for a standard design. For example, if the treatment is 
completely ineffective in test negative patients, then the 
ratio of number of patients required for randomization in 
the enrichment design relative to the number required for 
the standard design is approximately 1/γ2 where γ denotes 
the proportion of patients who are test positive (2). The 
treatment may have some effectiveness for test negative 
patients either because the assay is imperfect for measuring 
deregulation of the putative molecular target or because 
the drug has off-target anti-tumor effects. Even if the new 
treatment is half as effective in test negative patients as in 
test positive patients, however, the randomization ratio 
is approximately 4/(γ+1)2. This equals about 2.56 when  
γ =0.25, i.e., 25% of the patients are test positive, indicating 
that the enrichment design reduces the number of required 
patients to randomize by a factor of 2.56. 

The enrichment design was very effective for the 
development of trastuzumab even though the test was 
imperfect and has subsequently been improved. Simon 
and Maitournam (18-20) also compared the enrichment 
design to the standard design with regard to the number of 
screened patients. The methods of sample size planning for 
the design of enrichment trials available on line at http://
brb.nci.nih.gov; the web-based programs are available for 
binary and survival/disease-free survival endpoints. The 
planning takes into account the performance characteristics 
of the tests and specificity of the treatment effects. The 
programs provide comparisons to standard non-enrichment 
designs based on the number of randomized patients 
required and the number of patients needed for screening 
to obtain the required number of randomized patients. 

The enrichment design is appropriate for contexts where 
there is a strong biological basis for believing that test negative 
patients will not benefit from the new drug. In such cases, 
including test negative patients may raise ethical concerns and 
may confuse the interpretation of the clinical trial. 

Phase III biomarker stratified design

When a predictive classifier has been developed but there 
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is not compelling biological or phase II data that test 
negative patients do not benefit from the new treatment, 
it is generally best to include both classifier positive and 
classifier negative in the phase III clinical trials comparing 
the new treatment to the control regimen. In this case 
it is essential that an analysis plan be pre-defined in the 
protocol for how the predictive classifier will be used in the 
analysis. The analysis plan will generally define the testing 
strategy for evaluating the new treatment in the test positive 
patients, the test negative patients and overall. The testing 
strategy must preserve the overall type I error of the trial 
and the trial must be sized to provide adequate statistical 
power for these tests. It is not sufficient to just stratify, i.e. 
balance, the randomization with regard to the classifier 
without specifying a complete analysis plan. The main value 
of “stratifying” (i.e., balancing) the randomization is that 
it assures that only patients with adequate test results will 
enter the trial. Pre-stratification of the randomization is not 
necessary for the validity of inferences to be made about 
treatment effects within the test positive or test negative 
subsets. If an analytically validated test is not available at 
the start of the trial but will be available by the time of 
analysis, then it may be preferable not to pre-stratify the 
randomization process. Several primary analysis plans have 
been described (23-25) and a web based tool for sample 
size planning for some of these analysis plans is available at 
http://brb.nci.nih.gov.

If one has moderate strength evidence that the 
treatment, if effective at all, is likely to be more effective in 
the test positive cases, one might first compare treatment 
versus control in test positive patients using a threshold of 
significance of 5%. Only if the treatment versus control 
comparison is significant at the 5% level in test positive 
patients, will the new treatment be compared to the control 
among test negative patients, again using a threshold of 
statistical significance of 5%. This sequential approach 
controls the overall type I error at 5%. To have 90% power 
in the test positive patients for detecting a 50% reduction 
in hazard for the new treatment versus control at a two-
sided 5% significance level requires about 88 events of test 
positive patients. If at the time of analysis the event rates 
in the test positive and test negative strata are about equal, 
then when there are 88 events in the test positive patients, 
there will be about 88(1-γ)/γ events in the test negative 
patients, where γ denotes the proportion of test positive 
patients. If 25% of the patients are test positive, then there 
will be approximately 264 events in test negative patients. 
This will provide approximately 90% power for detecting a 

33% reduction in hazard at a two-sided significance level of 
5%. In this case, the trial will not be delayed compared to 
the enrichment design, but a large number of test negative 
patients will be randomized, treated and followed on the 
study rather than excluded as for the enrichment design. 

In the situation where one has more limited confidence 
in the predictive marker, the marker can still be effectively 
used for a “fall-back” analysis. Simon and Wang (25) 
proposed an analysis plan in which the new treatment 
group is first compared to the control group overall. If 
that difference is not significant at a reduced significance 
level (such as 0.03), then the new treatment is compared 
to the control group just for test positive patients. The 
latter comparison uses a threshold of significance of 0.02, 
or whatever portion of the traditional 0.05 not used by 
the initial test. Wang et al. have shown that the power 
of this approach can be improved by taking into account 
the correlation between the overall significance test and 
the significance test comparing treatment groups in the 
subset of test positive patients (26). So if, for example a 
significance threshold of 0.03 has been used for the overall 
test, the significance threshold for used for the subset can be 
somewhat greater than 0.02 and still have the overall chance 
of a false positive claim of any type limited to 5%. Real 
world experience with stratification and enrichment designs 
are described by Freidlin et al. (27) and by Mandrekar and 
Sargent (28). 

Karuri and Simon (29) introduced a phase III design for 
the setting of a single binary biomarker stratification design 
in which futility monitoring of the test negative patients is 
performed based on a joint prior joint distribution for the 
treatment effects in test negative and test positive patients. 
The prior distribution enables the trialist to represent the 
prior evidence that the treatment effect will be reduced 
for test negative patients and use that information in 
monitoring the clinical trial. Although the formulation is 
Bayesian, the rejection region based on posterior probability 
is calibrated so that type I errors satisfy the usual frequentist 
requirements. The Karuri and Simon approach to interim 
monitoring permits earlier termination of accrual of marker 
negative patients than with traditional futility analysis 
methods.

Hong and Simon developed a run-in design which permits 
a pharmacodynamic, immunologic, or intermediate response 
endpoint measured after a short run-in period on the new 
treatment to be used as the predictive biomarker (30). Simon 
et al. (31) described a prospective-retrospective approach to 
using archived tumor specimens for a focused re-analysis 



Simon. Biomarker based clinical trial design

© Chinese Clinical Oncology. All rights reserved. Chin Clin Oncol 2014;3(3):39www.thecco.net

Page 6 of 8

of a randomized phase III trial with regard to a predictive 
biomarker. The approach requires that archived specimens 
be available on most patients, and that an analysis plan 
focused on a single marker be developed prior to performing 
the blinded assays. This approach was used in establishing 
that a K-RAS mutation was a negative predictive biomarker 
for response of colorectal cancer patients to anti-EGFR 
antibodies.

Phase III adaptive 

Jiang et al. (32) reported on a “Biomarker Adaptive 
Threshold Design” for situations where a biomarker 
is available at the start of the trial, but a cut-point for 
converting the value to a binary classifier is not established. 
Tumor specimens are collected from all patients at entry, 
but the value of the biomarker is not used as an eligibility 
criteria. The analysis plan does not stipulate that the assay 
for measuring the index needs to be performed in real time. 
At the final analysis Jiang et al. (32) determine the optimal 
threshold for the biomarker; that is, the threshold that 
identifies the subset of patients for whom the treatment 
effect is maximum, using a pre-specified metric. The 
null distribution of the treatment effect in the optimally 
selected subset was determined by repeating the analysis 
after permuting the treatment and control labels a thousand 
or more times. This permutation analysis automatically 
adjusted for the fact that a full range of thresholds were 
evaluated and automatically adjusts for the correlation of 
the treatment effects among nested subsets. Jiang et al. also 
described a method of obtaining confidence intervals for 
the optimal threshold using bootstrap re-sampling. Since 
the treatment is presumed effective only for patients with 
biomarker above the threshold, the confidence coefficient 
associated with a given biomarker value x can be interpreted 
as the probability that a patient with marker value x benefits 
from the new treatment.

The adaptive threshold design described above enables 
one to conduct the phase III clinical trial without pre-
specifying the cut-point for the biomarker. It provides for 
a valid statistical significance test that has good statistical 
power against alternative hypotheses that the treatment 
effect is limited to patients with biomarker values above 
some unknown level, and it provides a confidence interval 
for estimation of the cut-point. These analyses are, however, 
performed at the end of the trial and accrual during the trial 
is not restricted by biomarker value. Several authors have 
studied adaptive enrichment designs in which eligibility 

criteria change adaptively during the clinical trial based on 
interim outcome results. Wang et al. (33), Rosenblum and 
Van der Laan (34), and Karuri and Simon (29) consider the 
case of two strata, e.g., a biomarker positive stratum and a 
biomarker negative stratum, and adaptively determine when 
to terminate accrual in the biomarker negative stratum. 
Follmann (35) considers the case where there are multiple 
disjoint strata in the population of initially eligible patients 
and one can adaptively drop each stratum from accrual. 
Wang et al. (33) and Simon and Simon (36), studied more 
general models for eligibility modification based on multiple 
candidate biomarkers. The Simon and Simon (36) model 
was very general and developed statistical significance tests 
which remain valid even if outcome distributions change 
during the trial in a manner that depends on the eligibility 
modifications. Such tests are very robust for use in phase 
III clinical trials. Simon and Simon (36) illustrated this 
framework in the setting of adaptive threshold enrichment 
of a single biomarker. 

Designs such as the “adaptive signature design” have been 
developed for adaptive multivariate classifier development 
and internal validation based on high dimensional genomic 
tumor characterization (37). This design employs a “learn 
and confirm” structure in which a portion of the patients are 
used to select the biomarker hypothesis, i.e., to develop an 
“indication classifier” which identifies the target population 
of patients in which the test treatment is most likely to be 
effective, and to use the remainder of the patients to test 
the treatment effect in that subset. The adaptive signature 
design does not modify eligibility criteria. It is adaptive 
in the sense that the treatment effect is tested in a single 
subset determined based on the clinical trial data but 
in a manner that separates classifier development from 
testing of treatment effect. Since the adaptive signature 
design does not use the patients on which the classifier 
was developed for the testing of the treatment effect, it 
thus avoids the inflation of type I error described by Wang 
et al. (38) for other approaches. Scher et al. described the 
use of the adaptive signature design for planning a pivotal 
trial in advanced prostate cancer (39). The key principle 
of the adaptive signature approach is to replace multiple 
significance testing based subset analysis with development 
and internal validation of a single “indication classifier” that 
informs treatment selection for individual patients based on 
their entire vector of covariate values. 

The adaptive signature design approach is very general 
with regard to the methodology applied to the training 
set for identifying the single candidate subset in which 
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treatment effect will be tested in the validation set. 
Many methods of predictive classifier development can 
be developed using the training set. It is important to 
recognize, however, that one is not developing a prognostic 
classifier. The classifier is used to classify patients as likely 
to benefit from the new treatment. Matsui et al. (40) used 
their model to predict a continuous score reflecting the 
expected benefit for the new treatment relative to the 
control rather than just classifying patients into one of two 
subsets. Gu et al. (41) have developed a two-step strategy 
for developing a model for predicting outcome as a function 
of treatment and selected biomarkers. The biomarkers are 
selected using a group lasso approach in which the main 
effects of a biomarker are grouped with the interactions of 
that marker with treatments and can be used with two or 
more treatments. 

Freidlin et al. (42) described further extensions of the 
adaptive signature approach. They use cross-validation to 
replace simple splitting of the trial into a training set and 
test set in order to increase the statistical power.

Conclusions

Recognition of the molecular heterogeneity of human 
diseases such as cancers of a primary site and the tools for 
characterizing this heterogeneity presents new opportunities 
for the development of more effective treatments and 
challenges for the design and analysis of clinical trials. In 
oncology, treatment of broad populations with regimens 
that do not benefit most patients is less economically 
sustainable with expensive molecularly targeted therapeutics 
and less likely to be successful. The established molecular 
heterogeneity of human diseases requires the development 
of new approaches to use randomized clinical trials to 
provide a reliable basis predictive medicine. This paper 
has attempted to review here some prospective designs for 
the co-development of new therapeutics with companion 
diagnostics. 
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