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Abstract 
 
 
 

Standards for the development of therapeutically relevant biomarkers and biomarker 
based classification systems are lacking. The literature of prognostic marker studies for 
breast cancer is inconsistent and few such markers have been adopted for widespread use 
in clinical practice. This is problematic as many patients are overtreated and many others 
are treated ineffectively. The deficiencies in clinical development of biomarkers may 
become more severe as DNA microarrays and proteomic technologies provide many new 
candidate markers and therapeutics become more molecularly targeted. In this chapter we 
address some common problems with developmental marker studies and provide 
recommendations for the design of clinical studies for the development and validation of 
robust, reproducible and therapeutically relevant biomarkers and biomarker based 
classification systems. The design of validation studies is addressed for (i) identifying 
node negative breast cancer patients who do not require systemic chemotherapy; (ii) 
identifying node positive breast cancer patients who do not benefit from standard 
chemotherapy; and (iii) identifying node positive breast cancer patients who benefit from 
a new molecularly targeted therapeutic.  
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1. Introduction 

Breast cancer is a heterogeneous set of diseases. Although substantial progress has been 

made in the treatment of breast cancer, many patients are over-treated and many undergo 

intensive chemotherapy with little apparent benefit. The literature on prognostic factors in 

breast cancer, although voluminous, is inconsistent 1. The process of how to develop 

biomarkers that are robust, reproducibly measured, and therapeutically has not been well 

established. Although many prognostic factors have been studied, treatment selection has 

remained based primarily on the traditional components of TNM stage and hormone 

receptor levels. This discrepancy between an inconsistent research literature and clinical 

practice will become even more problematic as DNA microarray and proteomic 

technologies provide new markers and therapeutics become more molecularly targeted. 

The objectives of this chapter are to provide information that facilitates the development 

of biomarkers for selection of the best treatment for each patient. We will use the term 

biomarker to include predictive classification systems based on protein or RNA transcript 

profiles measured using technology such as DNA microarrays.  

 
 
2. Pitfalls in Developmental Studies 
 
Most biomarkers are developed using archived tumor specimens, and many of the 

problems that exist in the marker literature derive from the retrospective nature of these 

studies. Clinical drug trials are generally prospective, with patient selection criteria, 

primary endpoint, hypotheses and analysis plan specified in advance in a written 
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protocol. The consumers of clinical trial reports have been educated to be skeptical of 

data dredging to find something “statistically significant” to report in clinical trials. They 

are skeptical of analyses with multiple endpoints or multiple subsets, knowing that the 

chances of erroneous conclusions increase rapidly once one leaves the context of a 

focused single hypothesis clinical trial. Marker studies are generally performed with no 

written protocol, no eligibility criteria, no primary endpoint or hypotheses and no defined 

analysis plan. The patient population is often very heterogeneous and represents 

individuals for whom archived specimens are available. The patients are often not treated 

in a single clinical trial and represent a mixture of stages. Consequently, the overall 

population often does not represent a therapeutically meaningful group and the 

biomarkers identified may be of prognostic relevance, but less likely to be of predictive 

relevance for selecting therapy. Often the marker may be prognostic because it is 

correlated with disease stage or some other known prognostic marker. Broad populations 

are also often heterogeneously treated and so finding that a marker is prognostic in such a 

population may be difficult to interpret. Prognostic markers that do not have therapeutic 

implications are rarely used. The heterogeneous nature of the population also often 

results in multiple subset analyses of more therapeutically meaningful sub-populations. 

With multiple analyses, the chance of false positive conclusions increases. Many 

biomarker studies perform analyses for many candidate biomarkers and several endpoints 

as well as for various patient subsets. Consequently, the chance for erroneous conclusions 

increases multiplicatively. The multiplicity problem is even more severe when one 

considers that there are usually multiple ways of quantifying biomarker level and many 

possible mathematical models for combining biomarker measurements.  
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Many of the problems that have hindered the development and acceptance of predictive 

single protein biomarkers also apply for biomarkers based on DNA microarray 

expression profiles2. There are multiple platforms and protocols for measuring expression 

profiles, and microarray research studies almost never evaluate inter-laboratory assay 

reproducibility. Microarray expression profiles in research studies are generally 

performed at one time so that reagent variability is minimized and it is almost never 

demonstrated that the models are predictive for tumor specimens collected and assayed at 

other times. This is of particular concern for printed cDNA microarrays where there may 

be substantial variability among batches of printed slides and batches of reference RNA.  

 

Because of the number of genes available for analysis, microarray data can be a veritable 

fountain of false findings unless appropriate statistical methods are utilized. For example, 

in comparing expression profiles of 10,000 genes for tumor specimens selected from 

patients who have responded to a specified treatment to those for non-responders, the 

expected number of false positive genes that are statistically significantly (p<0.05) 

differentially expressed between the two groups is 500. This is true regardless of whether 

the expression levels for different genes are correlated. Consequently, more stringent 

methods for assessing differential expression must be used. Some studies do not use 

statistical significance at all and just identify genes as differentially expressed based on 

fold-change statistics; that is the ratio of the average expression level in responders to the 

average in non-responders, ignoring variability entirely. Others base their analyses on 

visual inspection of graphical data displays. Such methods are clearly problematic.  
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The unstructured nature of retrospective studies of biomarkers would not be so 

problematic if they were followed by structured prospective validation studies that tested 

specific hypotheses about predictive biomarkers. Such prospective trials are rarely 

performed, however, because they are difficult to accomplish. Consequently, before 

discussing the design of such prospective trials, we will make some suggestions about a 

more structured approach to retrospective studies.  

 

3. Structured Retrospective Studies 

 There is a role for exploratory studies in which multiple biomarkers and multiple ways 

of combining biomarkers into predictive models are examined so long as one has an 

adequate way of evaluating the result. A major problem with many retrospective studies 

is that they attempt to use the same set of data to both develop hypotheses (biomarkers) 

and to test those hypotheses. This problem is particularly severe when the number of 

candidate hypotheses examined in the exploratory stage is large.  

 

In trying to determine which genes are differentially expressed in comparing responders 

to a given therapy to non-responders, the number of hypotheses equals the number of 

genes examined. The Bonferonni method of adjusting for multiple testing requires that 

the p value calculated for comparing expression of a specific gene i in responders to non-

responders, say pi,  be adjusted based on the number of genes (N) examined. For 

microarray studies, N could be 10,000 or greater. The Bonferonni method tries to 

eliminate all false positives. For microarray studies, less conservative methods that 
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control the number of false discoveries (false positives), or the proportion of claimed 

positives that are false positives (false discovery rate) 3. These same ideas apply if, for 

example, we are examining which genes are prognostic for survival or disease-free 

survival on a particular treatment. 

  
For assessing statistical significance, adjustments such as those described in the 

preceding paragraph can be applied to adjust for the fact that we don’t have a specific 

hypothesis to test, but rather are in a hypothesis development mode. The adjustment is 

based on treating the problem as one of testing all possible hypotheses. For retrospective 

biomarker studies in which a number of biomarkers are examined, such adjustments to 

statistical significance should be applied. In many cases, however, statistical significance 

is not the best measure of biomarker value. A better measure is the extent to which the 

biomarker model enables us to predict whether the patient will respond to the treatment 4.  

 

For binary outcomes like response and non-response, the best measure of predictive 

accuracy is the number of correct predictions. For quantitative outcomes such as survival 

or disease-free survival, measurement of predictive accuracy is more complex. In many 

cases, it is reasonable to approximate quantitative outcomes in a binary manner, good 

outcome or poor outcome. In other cases, measures such as described by Korn and Simon 

5 are used.  

 

It is not valid to use the same set of data for selecting a predictive marker or developing a 

predictive model and for measuring predictive accuracy. The estimate of predictive 

accuracy computed on the same data used to select the marker or develop the model is 
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called the resubstitution estimate and is known to be biased 6. The bias is extreme when 

the number of candidate markers is larger than the number of cases. For example, Simon 

et al. 6 showed that for two classes (e.g. responders and non-responders) that have no 

genes that are truly differentially expressed in microarray expression profiles of 

thousands of genes, one can almost always find a predictive model that has a 

resubstitution estimate of accuracy of 100%. Such a model would be useful for future 

data, but would appear to give perfect predictions for the cases used to develop the 

model.  

 

How can we develop a proper estimate of the accuracy of class prediction for future 

samples? For a future sample, we will apply a fully specified predictor developed using 

the data available today. If we are to emulate the future predictive setting in developing 

our estimate of predictive accuracy, we must set aside some of our samples and make 

them completely inaccessible until we have a fully specified predictor that has been 

developed from scratch without utilizing those set aside samples.   

 

To properly estimate the accuracy of a predictor for future samples, the current set of 

samples must be partitioned into a training set and a separate test set. The test set 

emulates the set of future samples for which class labels are to be predicted. 

Consequently the test samples cannot be used in any way for the development of the 

prediction model. This means that the test samples cannot be used for estimating the 

parameters of the model and they cannot be used for selecting the gene set to be used in 

the model. It is this later point which is often overlooked.  
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The most straightforward method of estimating the accuracy of future prediction is the 

split-sample method of partitioning the set of samples into a training set and a test set as 

described in the previous paragraph. Rosenwald et al. 7 used this approach successfully in 

their international study of prognostic prediction for large cell lymphoma. They used two 

thirds of their samples as a training set. Multiple kinds of predictors were studied on the 

training set. When the collaborators of that study agreed on a fully specified prediction 

model, they accessed the test set for the first time. On the test set there was no adjustment 

of the model, re-defining of cutoff values or fitting of parameters. They merely used the 

samples in the test set to evaluate the predictions of the model that was completely 

specified using only the training data. 

 

Cross-validation is an alternative to the split sample method of estimating prediction 

accuracy 8. Cross-validation can only be used when there is a well defined algorithm for 

predictive model development. In such cases, cross-validation can be more efficient than 

the split-sample method for estimating prediction accuracy. There are several forms of 

cross-validation. Here we will describe leave-one-out cross-validation (LOOCV) in the 

context of a class predictor based on gene expression levels determined by DNA 

microarray analysis. LOOCV starts like split-sample cross validation in forming a 

training set of samples and a test set. With LOOCV, however, the test set consists of only 

a single sample; the rest of the samples are placed in the training set. The sample in the 

test set is placed aside and not utilized at all in the development of the class prediction 

model. Using only the training set, the informative genes are selected and the parameters 

of the model are fit to the data. Let us call M1 the model developed with sample 1 in the 
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test set. When this model is fully developed, it is used to predict the class of sample 1. 

This prediction is made using the expression profile of sample 1, but obviously without 

using knowledge of the true class of sample 1. Symbolically, if 1x denotes the complete 

expression profile of sample 1, then we apply model M1 to 1x to obtain a predicted class 

. This predicted class is compared to the true class label c1̂c 1 of sample 1. If they 

disagree, then the prediction is in error. Then a new training set – test set partition is 

created. This time sample 2 is placed in the test set and all of the other samples, including 

sample 1, are placed in the training set. A new model is constructed from scratch using 

the samples in the new training set. Call this model M2 . Model M2 will generally not 

contain the same genes as model M1. Although the same algorithm for gene selection and 

parameter estimation is used, since model M2 is constructed from scratch on the new 

training set, it will in general not contain exactly the same gene set as M1. After creating 

M2, it is applied to the expression profile 2x  of the sample in the new test set to obtain a 

predicted class . If this predicted class does not agree with the true class label c2ĉ 2 of the 

second sample, then the prediction is in error.  

 

The process described in the previous paragraph is repeated n times where n is the 

number of biologically independent samples. Each time it is applied, a different sample is 

used to form the single-sample test set. During the steps, n different models are created 

and each one is used to predict the class of the omitted sample. The number of prediction 

errors is totaled and reported as the leave-one-out cross-validated estimate of the 

prediction error.  
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At the end of the LOOCV procedure you have constructed n different models. They were 

only constructed in order to estimate the prediction error associated with the type of 

model constructed. The model that would be used for future predictions is one 

constructed using all n samples. That is the best model for future prediction and the one 

that should be reported in the publication. The cross-validated error rate is an estimate of 

the error rate to be expected in use of this model for future samples assuming that the 

relationship between class and expression profile is the same for future samples as for the 

currently available samples. With two classes, one can use a similar approach to obtain 

cross-validated estimates of the sensitivity, specificity. 

 

Leave-one-out cross validation is applicable only in settings where there is an algorithm 

for the development of a predictive model. In many studies, the analysis is less 

algorithmic and many kinds of prediction models are explored. For such studies, it is best 

to use the split sample approach of setting aside at least one third of the samples as a test 

or validation set. The samples in the test set should not be used for any purpose other than 

testing the final model developed in the training set. Specifically, the test set samples 

should not be used for limiting the set of genes to be considered in detail in the training 

set. The samples in the test set should not be accessed until a single model is identified 

based on training set analyses as the model to be tested.  

 

LOOCV can be used to evaluate risk group predictors using survival or disease-free 

survival data. Suppose we wish to identify patients in a low-risk group with 10 year 

disease-free survival greater than 90%. Consider the leave-one-out training set in which 
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observation i is left out in the test set. A disease-free survival model Mi is developed for 

the training set. For example, the model might be a proportional hazards regression 

model which predicts disease-free survival based on the expression profile and/or 

standard prognostic factors. The model Mi is applied to the left-out specimen i to obtain a 

prediction of the probability that the i’th patient has 10-year disease-free survival greater 

than 90%. Let yi = 1 if this probability is greater than 50%. This process is repeated for 

all of the leave-one-out training sets. Then, the Kaplan-Meier disease-free survival curve 

estimate is computed and plotted for the patients predicted to be of very low-risk, those 

with yi = 1. The adequacy of the model is judged by whether the estimated 10-year 

disease-free survival for the identified low-risk group is in fact in excess of 90%. An 

approach similar to this was used for developing a classification system based on survival 

for patients with renal cancer by Vasselli et al. 9 

 

One of the common errors in retrospective studies of biomarkers is that the statistical 

significance of the biomarker is evaluated rather than the predictive accuracy of the 

biomarker 4. We have indicated above how predictive accuracy can be evaluated in a 

manner that avoids the bias of the re-substitution estimate. But even this is not sufficient. 

New biomarkers are often correlated with existing prognostic factors. The retrospective 

study must provide strong evidence that the new marker is substantially more predictive 

than the currently available prognostic factors. This can be addressed by computing the 

split-sample or cross-validated error rate for a model consisting of current prognostic 

factors and then computing the split-sample or cross-validated error rate for a model 

consisting of current prognostic factors plus the new candidate markers. Only if the latter 
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is substantially greater than the former with regard to a therapeutically relevant prediction 

will a prospective validation study be warranted.  

 

4. Validation Studies 

Assuming that the initial study is performed properly with attention to the statistical 

principles described in previous section, it might be considered a phase II study, and the 

next step should be to conduct a phase III study that is focused on testing the specific 

classifier developed by the initial study 10. The phase III study should be conducted with 

a written protocol. The phase III trial should be designed to test the biomarker classifier 

developed in the previous study. The classifier should be fully specified in the protocol. If 

the biomarker is expression profile based, the specification must include the genes used, 

the mathematical form of the classifier, parameter values and cut-off thresholds for 

distinguishing the classes or prognostic groups.  

 

The phase III study should attempt to perform the assays in a manner as similar as 

possible to the way it would be performed broadly outside of a research setting if the 

diagnostic classifier were adopted. Consequently, attention is required in determining 

whether the same platform should be used for the phase III trial as for the phase II trial. If 

the platform is changed, then clearly some intermediate study will be needed to translate 

the classification algorithm from use on the phase II platform to the platform used in the 

phase III trial.  
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Even if there is not a change in platform, an intermediate study may be required to 

prepare the classifier for use with multiple laboratories performing the assay. The phase 

II trial may have had all of the assays performed at a single location by a research 

laboratory and it may be advisable to conduct the phase III trial in a manner more similar 

to the way it would be performed if the classifier were adopted for national use. 

Generally this will mean that several laboratories will be conducting the assays. 

Consequently, the protocol for the phase III study should specify procedures to be used 

for conducting the assay. It is also useful to conduct intermediate studies of inter-

laboratory reproducibility of the assays. Unless inter-laboratory reproducibility is 

sufficiently high, it is not advisable to proceed with the phase III trial.  

 

If the biomarker classifier was developed using a dual-label microarray platform, then 

use of the classifier in other laboratories requires that they use the same common 

reference RNA as was used for the initial study. Since different batches of the common 

reference will be utilized for classifying subsequent patients, calibration studies will 

generally be required to ensure that the expression profile of the common reference does 

not change and to adjust the classifier for small changes.  

 

Conducting the validation study as a prospective trial is desirable for many reasons. One 

can never be sure that the patients for whom one has adequate preserved tissue are 

representative of the population of patients presenting for treatment. It is difficult to 

assure that a retrospective cohort was adequately staged and treated, and the data 

available may be incomplete. It is also difficult to assess whether a diagnostic procedure 
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is practical unless it is studied in the real-time context of presenting patients who need to 

be evaluated and treated. Prospective accrual is also important for evaluating the 

diagnostic classifier in the context of real-time tissue handling.  Table 1 from Simon and 

Altman 10 indicates some important design features of prospective validation studies. 

 

The objective of the validation trial of a predictive marker is to test the hypothesis that 

the marker is useful for treatment selection. This is often a more complex objective than 

validation of a prognostic marker, where the objective is to determine whether the marker 

can separate the uniformly staged and treated patients into groups of differing outcome. 

There are some cases, discussed below, where prognostic markers are also predictive 

markers. Our focus is on predictive markers and we will consider three breast cancer 

scenarios.  

 

4.1 Identifying Node Negative Patients Who Do Not Require Chemotherapy 

 

Our first scenario is a putative marker for identifying node negative patients whose 

prognosis on local therapy and possibly Tamoxifen is so good that they do not require 

chemotherapy. The retrospective study for development of such a marker would have 

probably been based on archived tumors of node negative patients who did not receive 

chemotherapy. A tissue microarray of a large number of such specimens, with associated 

clinical follow-up data, can provide a valuable resource for ensuring that the marker is 

sufficiently promising to warrant evaluation in a prospective clinical trial if the classifier 

is not RNA transcript profile based.  A marker of this type meets the definition of a 

 15



prognostic marker, but it can also be a predictive marker if it enables us to determine 

which node negative patients do not require chemotherapy.  

 

The theoretically optimal trial design would be to randomize candidate node negative 

patients to receive or not receive chemotherapy and then to validate whether the marker 

identifies those who do not benefit from chemotherapy. The candidate node negative 

patients might be those with tumors 1-3 cm in diameter without known poor prognostic 

features such as hormone receptor negativity. This is probably not a feasible approach, 

however, because chemotherapy has already been established as being effective for much 

of the candidate population.  

 

An alternative study design is to withhold chemotherapy from a subset of node negative 

patients selected based on marker status to be of particularly low risk. If their outcomes 

were sufficiently good relative to some standard, then the marker would be accepted as 

useful. The standard might be based on outcomes for node negative patients that are 

similar with regard to standard prognostic factors in other studies. It may also be useful to 

compare outcome for the selected patients (M+) to the outcome for the patients of the 

same series who did not have such predicted good prognosis (M-). The latter patients 

would have received chemotherapy, but their outcome even with chemotherapy may not 

be as good as the M+ patients without chemotherapy. If that is the case, then the value of 

the marker for withholding chemotherapy will have been demonstrated. 
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An alternative approach would be to randomize patients selected as low risk based on 

marker status (M+) to either receive or not receive chemotherapy. The marker would be 

validated if the randomized trial demonstrated that there was no clinically significant 

benefit of chemotherapy in the selected subset of patients. This would have to be a very 

large clinical trial, however. The benefit of chemotherapy would only be expected to 

reduce the hazard or recurrence by approximately 25% and with a very low event rate 

this is equivalent to a very small difference in absolute disease-free survival. The 

randomized trial asks a different question than the strategy described in the previous 

paragraph. The randomized trial asks whether there is a benefit of treatment. For very 

good prognosis patients, however, a statistically significant treatment effect may be of 

questionable clinical significance. Consequently, the randomized trial may not answer the 

most relevant question.    

 

Table 2 shows criteria of Gasparini et al. 11 for the adoption into clinical practice of new 

prognostic markers for use in treatment selection for patients with node negative breast 

cancer.  

 

4.2 Identifying Node Positive Patients Who Do Not Benefit From A Chemotherapy 

Regimen 

 

Consider now a putative marker that permits the identification of patients who do not 

benefit from a chemotherapy regimen which has been standard treatment. Let T denote 

the chemotherapy regimen, and let S denote local therapy or local therapy plus 
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Tamoxifen. The retrospective study used to develop the marker may have been based on 

tissue from a randomized trial of T vs S. In some cases the marker may be based on 

finding a signature of patients who do not respond to T in metastatic disease trials.  

 

The ideal validation trial would probably be a randomized trial of S versus T for patients 

with node positive breast cancer. One could analyze such a trial by seeing whether the 

benefit of T versus S depended on the marker level. Such a trial would generally be 

impractical, however, because T or some other kind of chemotherapy is standard 

treatment for node positive patients. It might be possible, however, to randomize patients 

to receive or not receive one or more courses of T pre-operatively, and to correlate 

marker result with biological response to T as assessed from the surgical specimen.  

 

A second strategy would be to use chemotherapy T on all patients after measuring the 

marker. One could then determine prospectively whether the marker level correlates with 

outcome. This is a strategy analogous to that recommended in section 4.1. Here, however, 

one is trying to determine whether the marker identifies a group of such poor disease-

free-survival on standard treatment T that the chemotherapy is judged non-worthwhile 

even in the absence of a control group not receiving chemotherapy. This strategy may be 

less satisfactory for judging poor prognosis in absolute terms than it was in 4.1 for 

judging good prognosis.   

 

A third strategy would be to randomize the patients to marker based versus non-marker 

based therapeutic management. The non-marker based management would assign T to all 
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patients. The marker based management would assign T to all except those predicted 

based on the marker to be non-responsive (M-). One way of conducting such a trial is to 

measure the marker only for those patients assigned to marker based management. The 

value of the marker is determined by measuring the outcome for the marker based 

management arm to the outcome for the non-marker based management arm. This is, 

however, a very inefficient trial design. Because most patients in both arms of the trial 

will be receiving the same treatment, the average treatment difference will be very small 

between the arms and a huge sample size will be required. The situation is even more 

problematic because it is a therapeutic equivalence trial in the sense that failure to find a 

statistically significant difference leads to the adoption of the new treatment approach, in 

this case marker based treatment assignment.  

 

A better design is to measure the marker on all patients, and then randomize them to 

marker based treatment versus non-marker based treatment. The evaluation of the marker 

can be performed by comparing outcomes for the M- patients who received 

chemotherapy T on the non-marker based arm but treatment S on the marker based arm. 

This will require a much smaller sample size than the design of the previous paragraph. 

This design is essentially equivalent to randomizing the M- patients to T or S.  

 

4.3 Identifying Node Positive Patients Who Benefit From a Specific Regimen  

Our third scenario is that we have a putative marker that identifies patients whose tumors 

are responsive to a new regimen E when the standard chemotherapeutic regimen is T. 

Many new therapeutics have defined molecular targets and are developed in conjunction 
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with an assay that measures the expression of the target. The most adequate validation 

study is often a randomized clinical trial in which both marker positive and marker 

negative patients are randomized to either standard treatment T or T plus the new 

regimen E. The trial should be large enough so that the new regimen can be evaluated 

separately in the M+ and M- subsets. This requires about twice as many patients as if the 

regimen T+E were to be evaluated overall, without reference to the marker.  

 

If the biological relationship between the marker and the therapeutic is sufficiently 

strong, it may be difficult to justify including marker negative patients in the study. A 

randomized study comparing T to T+E for M+ patients may be very efficient for 

demonstrating the effectiveness of the new treatment E, but it will not really constitute a 

validation of the marker. The development of the therapeutic, supported by the marker  

assay, may, however, be more important than validation of the essentiality of the marker 

for selecting patients.  

 

The least desirable alternative would be to randomize patients between T and T+E 

without measuring the marker. If the marker is important, then such a trial design may be 

very inefficient for evaluating the therapeutic E, and of course, it provides no information 

for validating the marker.  

 

The scenario described here is also applicable to the development of treatment regimens 

in which the molecular target is not known or not known with certainty. Instead of using 

an assay based on the expression of the putative target, one may use a DNA microarray 
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based classifier developed in phase II trials of metastatic disease patients for 

distinguishing responders from non-responders to the new regimen E.  If tumor 

specimens are available from patients treated with the standard treatment T as well as 

those treated with the new treatment E, the classifier can be developed to identify patients 

who are predicted to be more responsive to the new treatment E but not to standard 

treatment T.  
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Table 1:  Guidelines for Validation Studies 10 

 

1. Intra- and inter-laboratory reproducibility of assays should be documented 

2. Laboratory assays should be performed blinded to clinical data and outcome 

3. An inception cohort of patients should be assembled with <15% of patients non-

evaluable due to missing tissue or data. The referral pattern and eligibility criteria 

should be described 

4. Treatment should be standardized or randomized and accounted for in the analysis 

5. Hypotheses should be stated in advance, including specification of prognostic 

factors, coding of prognostic factors, endpoints, and subsets of patients and 

treatments 

6. The sample size and number of events should be sufficiently large that 

statistically reliable results are obtained. Statistical power calculations that 

incorporate the number of hypotheses to be tested and appropriate subsets for 

each hypothesis should be described. There should be at least 10 events per 

prognostic factor examined per subset analyzed. 

7. Analyses should test whether new factors add predictiveness after adjustment for 

or within subsets determined by standard prognostic factors 

8. Analyses should be adjusted for the number of hypotheses to be tested 

9. Analyses should be based on pre-specified cutoff values for prognostic factors or 

cutoffs should be avoided 
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Table 2 : Guidelines for Introduction of New Biomarker for Node Negative Breast 

Cancer into Clinical Practice 11. 

 

1. Favorable previous steps in at least two independent studies 

2. Favorable cost/benefit ratio 

3. Availability of a feasible, reproducible, and sensitive method to detect the 

indicator 

4. Identification of the most appropriate adjuvant therapy for the high-risk subgroup 

of node-negative patients in relation to the indicator used 

5. A proven advantage for the treated node-negative high-risk patients of at least 

20%-25% in relapse-free survival or overall survival versus untreated node-

negative control subjects by at least two independent comparative trials 
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