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DNA microarrays are powerful tools for studying biological
mechanisms and for developing prognostic and predictive classi-
fiers for identifying the patients who require treatment and are
best candidates for specific treatments. Because microarrays
produce so much data from each specimen, they offer great
opportunities for discovery and great dangers or producing
misleading claims. Microarray based studies require clear objec-
tives for selecting cases and appropriate analysis methods. Effec-
tive analysis of microarray data, where the number of measured
variables is orders of magnitude greater than the number of cases,
requires specialized statistical methods which have recently been
developed. Recent literature reviews indicate that serious prob-
lems of analysis exist a substantial proportion of publications. This
manuscript attempts to provide a non-technical summary of the
key principles of statistical design and analysis for studies that
utilize microarray expression profiling.

Published by Elsevier Ltd.

Introduction

DNA microarray technology has found broad use in basic and translational cancer research. Our
objective here is to provide a non-technical summary of the key principles of statistical design and
analysis for studies that utilize microarray expression profiling. Because microarrays produce so much
data from each specimen, they offer great opportunities for discovery and great dangers or producing
misleading claims. Effective analysis of microarray data, where the number of measured variables is
orders of magnitude greater than the number of cases, requires specialized statistical methods which
have recently been developed. The literature review by Dupuy and Simon studies relating gene
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expression profiles to cancer outcome found serious problems of analysis in approximately 50% of
publications [1]. Here we will attempt to provide a non-technical summary of the key principles of
statistical design and analysis for studies that utilize microarray expression profiling and illustrate
some of the important analysis principles using BRB-ArrayTools software [2].

Platform specific data pre-processing

DNA microarrays are assays for quantifying the types and amounts of mRNA transcripts present in
a collection of cells. The chemical and physical mechanisms by which this quantification is accom-
plished varies widely among microarray platforms. In many cases the mRNA extracted from a sample of
cells is reverse transcribed to fluorescently labeled complementary DNA (cDNA). The labeled cDNA is
then placed on a solid surface on which strands of polynucleotide probes have been attached in
specified positions. The labeled cDNA molecules hybridize to the probes to which they share sufficient
sequence complementarity and the quantity of cDNA bound to each polynucleotide probe is quantified
by illuminating the solid surface with laser light of a frequency tuned to the fluorescent label employed
and measuring the intensity of fluorescence over each probe on the array. This intensity of fluorescence
should be approximately proportional to the number of molecules of cDNA bound to the probe. Dual
label microarrays often co-hybridize labeled transcripts from a specimen of interest with differently
labeled transcripts from a reference source of RNA. For each probe represented on the array, a relative
measure of abundance of the corresponding transcripts in the specimen of interest relative to the
common reference source is obtained. This relative intensity is often expressed as a ratio or log ratio.
Affymetrix GeneChips� have oligonucleotide probes lithographically synthesized directly on the
silicon surface of the array. Consistent probe geometry and sample circulation minimize probe specific
inter-array variability and so single label protocols are generally used with GeneChips�.

The ‘‘pre-processing’’ steps of analysis of array data are somewhat platform specific. Because the
lithographically synthesized probes in GeneChips� are relatively short and not error-free, multiple
probes are used for each transcript target and a summary measure of intensity per ‘‘probe set’’ is
computed as a pre-processing step. Various methods of robust model based statistical estimation have
been developed for such probe set summaries as reviewed by Irizarry et al. [3]. BRB-ArrayTools
incorporates a platform-specific data importer for many popular platforms, including Affymetrix.cel
files. It provides options for several of the probe-set summarization methods.

For a variety of technical reasons, the overall level of fluorescence intensity differs among arrays.
The adjustment for such differences in overall intensity of single label arrays is called normalization.
The simplest kind of normalization involves multiplicatively transforming all the intensities on each
array by a factor so that all arrays have the same median probe intensity. More sophisticated methods
such as quantile normalization essentially replace a probe intensity which is in the p’th intensity
percentile on an array by the intensity of the p’th percentile of a selected reference array [4]. All such
methods assume, however, that the variation across arrays of most probes is due to technical factors,
not true biological effects. When this assumption is not appropriate, normalization should be based on
probes for housekeeping genes considered uniformly expressed for the specimens under analysis.
Normalization of data from dual label arrays is different than for single label arrays. For dual label
arrays it is the log ratio of intensities that must be adjusted for inter-array technical variation in the
relative intensity of the two labels. The simplest approach is to scale the ratios on each array so that the
median log-ratio over the probes on the array is zero. Another commonly used approach lets the scale
factor be intensity level dependent. Normalization methods are reviewed by Park et al. [5].

Pre-processing may also include ‘‘filtering’’ out probes with low intensity or minimal variation among
the arrays being analyzed and thresholding intensity levels on dual label arrays to a lower limit of detection
so that computed log-ratios are not extreme. Pre-processing should not, however, be based on differential
expression among any phenotypes or classes as that may seriously bias subsequent analyses [6].

Objectives of microarray studies

Effective microarray experiments require careful planning based on clear objectives [7]. The
objective drives the selection of specimens and the specification of an appropriate analysis strategy [7].
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The large numbers of genes whose expressions can be measured in a single hybridization creates an
even greater than usual need for careful planning of the methods of analysis so that biologically
meaningful conclusions, rather than spurious associations are reported.

The objectives of many studies utilizing DNA microarrays can be categorized as either gene
discovery, class prediction, or class discovery. Gene discovery, also called class comparison, focuses on
determining which genes are differentially expressed among samples representative of pre-defined
classes. The classes may represent different tissue types, diseased tissue or normal tissue of the same
cell type, or the same tissue under different experimental conditions. The defining characteristic of
gene finding/class comparison is that the classes are defined independently of the expression profiles.
For example, Korn et al. [8] evaluated expression profiles from breast tumors pre and post chemo-
therapy to identify those genes whose expression was modified by treatment. Yang et al. [9]. studied
gene expression changes in metastatic breast tumors pre and post Erlotinib treatment. Sotiriou et al.
[10] evaluated genes whose expression was correlated with clinico-pathological characteristics of
breast tumors. Desai et al. [11] evaluated genes differentially expressed among different transgenic
mouse models of breast cancer. The phrase gene discovery is somewhat more general than class
comparison as it can include finding the genes whose expression is correlated to a quantitative
measurement or a survival time.

With class prediction the emphasis is on developing a computable function that can be used to
predict which class a new specimen belongs to based on its expression profile. This usually requires
finding which genes are informative for distinguishing the pre-defined classes, estimating the
parameters of the mathematical function used, and estimating the accuracy of the predictor [7,12].
Class prediction is important for medical problems of diagnostic classification, prognostic prediction
and treatment selection. For example, van’t Veer [13] and van De Vijver [14] developed and evaluated
predictors of which patients with primary breast cancer are at high risk for recurrence after local
treatment alone. Ma et al. [15] developed such a predictor for patients with estrogen receptor positive
primary breast cancer who received Tamoxifen monotherapy after local therapy. Ayers et al. [16]
developed a predictor of complete pathologic response to neoadjuvant chemotherapy in patients with
breast cancer. Jansen et al. [17] developed a predictor of response to Tamoxifen for patients with
metastatic breast cancer.

Class discovery is different than gene finding or class prediction because it does not involve any pre-
defined classes. Instead, it involves grouping together of specimens based on similarity of their
expression profiles with regard to the genes represented on the array. Cluster analysis algorithms are
used for generating the groups. Cluster analysis algorithms are called ‘‘unsupervised’’ because the
grouping is not driven by any phenotype external to the expression profiles, such as tissue type, stage,
grade or response to treatment. The objective of clustering expression profiles of tumors is to deter-
mine new disease classifications. For example, Perou [18] characterized expression profiles of primary
breast tumors into four patterns which they called basal-like, luminal-like, Erb-B2þ, and normal-like.
Cluster analysis is an exploratory analysis method, however, and even random expression profiles can
be clustered. It is generally difficult to evaluate the meaningfulness of a set of clusters except by
comparing them with regard to existing phenotypes [19]. Cluster analysis is over-utilized, however, and
in many cases it provides misleading results [1]. Most cancer studies involving microarray expression
profiling really have class comparison or class prediction objectives. For such studies, ‘‘supervised
methods’’ are usually more effective [7].

Study design

Clear objectives are essential for the design of effective microarray studies. The objectives indicate
the kinds of samples that should be included and the number of such samples. The statistical power for
identifying differentially expressed genes or for developing classifiers is generally determined by the
number of biological replicates in each class. These are distinguished from technical replicates which are
just repeat assays of the same RNA samples. For most commercial microarray platforms, random
technical variation is small relative to biological variation and so there is little value in obtaining
technical replicates of RNA extractions [20]. Systemic variation over time remains a problem, however,
for some platforms and so it is important to perform the assays in a manner that does not confound
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phenotype classes with assay performance. For example, in comparing expression of p53 mutant cell
lines to p53 wild type cell lines, one should avoid assaying all the mutants with one set of reagents on
one week and the wild type cell lines with a different set of reagents on another week. If a large number
of samples are to be assayed, the phenotype classes should be intermixed in the group assayed at each
time. Pooling samples is generally not advantageous [21]. Although the number of arrays may be
reduced by pooling, the number of samples needed may be substantially increased. When dual-label
arrays are used, there are additional design issues to be addressed; e.g. whether to use a common
reference RNA or to pair the samples from different classes for co-hybridization on each array. Dobbin
et al. provide a thorough discussion of this issue including ways of avoiding the need for performing
dye-swap technical replicates [22]. Dobbin and Simon provide formulas and graphs for determining
the number of experimental/biological replicates needed for class comparison problems [23] or for
developing a predictive classifier [24].

Gene finding (class comparison)

In the earliest microarray studies, investigators performed class comparison by examining fold
change differences for each gene between a microarray of a single specimen from one class and
a specimen of the other class. This is not really meaningful, however, because the comparison may
reflect sample differences or assay differences, rather than class differences. Using replicate arrays for
measuring expression for one sample from each of two classes does not help much. Such technical
replicates do not satisfy the crucial need for studying multiple tumors of each type. Individual
microarrays of independent biological replicates from each phenotype class of interest is generally
needed, not assay replicates of the same RNA specimen or microarrays of pooled biological replicates
[7,20].

Often the genes are ranked with regard to their degree of differential expression among the classes,
and a cut-point determined on the ranking in order to control the number of false positive claims. If
there are two classes, the absolute value of a standard t statistic could be used for the ranking. The t
statistic is the difference in the class specific means of log expression divided by an estimate of the
standard error of the difference. If there are few samples per class, however, the ranking will be
unstable because the estimates of within-class variation, made separately for each gene, will be too
imprecise. Improved methods based on t statistics which borrow variance information among genes
are recommended if there are less than 10 samples per class. [25,26] These methods are called regu-
larized t-tests, random variance t-tests or empirical Bayes t-tests. They are also applicable for cases
with more than two classes. They are based on the assumption that the within class variances for
different genes come from the same distribution, but not that they are equal.

Although standard statistical methods like regularized t-tests are often used for creating the
ranking, the novel aspect of this analysis that must be taken into account is that there are generally tens
of thousands of genes analyzed. Hence, more stringent standards of statistical significance for claiming
differential expression must be used. If, for example, there are 10,000 genes represented on the array,
then in comparing expression for samples from two classes, one would expect 500 false positive claims
of statistical significance at the traditional 5% significance level (0.05�10,000). This is not acceptable.
By using a stringent threshold of significance the number of false positive findings can be limited;
a threshold of p< .001 results in 1 false positive gene per 1000 genes analyzed on average.

In comparing gene expression profiles among classes, biostatisticians today generally prefer
reporting the ‘‘false discovery rate’’ (FDR) for the comparison as a whole rather than the statistical
significance level for individual comparisons [27]. The false discovery rate is the proportion of false
positives among the genes claimed to be differentially expressed among the classes. For example,
suppose one claims a gene to be differentially expressed if the univariate significance level is less than
0.001. Then for 10,000 genes analyzed the expected number of false positives is about 10 (since most of
the 10,000 of genes are not expected to be differentially expressed). If there are 40 genes for which the
univariate significance level is less than 0.001, then the false discovery rate is about 10/40 or 25%; that
is, one in four of the reported genes are likely to be false positives.

There are powerful multivariate methods for comparing expression profiles between classes and
identifying differentially expressed genes in a manner that controls the FDR and takes into account the
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correlation among the genes [28,29]. The multivariate test of Korn et al. is similar in spirit to the very
popular SAM method of Tusher et al. The former permits somewhat greater control over the statistical
confidence with which the proportion of false discoveries is limited to the target level. Both the
multivariate permutation test and SAM are available in BRB-ArrayTools. For this software SAM was re-
programmed in FORTRAN and so it is much faster than other available versions.

Most of the methods used for finding genes whose expression is correlated with a phenotype can be
used with categorical phenotypes, quantitative phenotypes or survival time phenotypes. The measure
of correlation used for each gene varies depending on the type of phenotype of interest. For categorical
phenotypes the multivariate methods such as SAM and the multivariate test of Korn et al. are based on
computing regularized t-tests for each gene. For survival time phenotypes p values from univariate
proportional hazards regression analyses can be used.

Cluster analysis is often used in a potentially misleading way for identifying differentially expressed
genes. Investigators may generate a gene list using an inadequately stringent univariate significance
level of 0.05 or 0.01. The samples are then clustered with regard to the expression profiles for the
selected genes. The fact that the samples from the classes are separated in this cluster analysis is taken
as validation that the genes are really differentially expressed. This supervised form of cluster analysis
is invalid. If one generates expression profiles for two classes using random numbers with no real
difference between the two classes, there will be about 500 false positives per 10,000 genes. If one
clusters the randomly generated samples with regard to those selected genes that were found
significant at the 0.05 level, the samples will be separated [1].

Finding differentially expressed sets of genes

One problem encountered in the analysis of gene expression data is biologically interpreting lists of
genes identified as differentially expressed among compared classes. Although many software pack-
ages provide biological annotations for the genes found differentially expressed, a more recent
approach compares the classes with regard to the expression of pre-defined biologically meaningful
gene sets. There are several advantages to this approach in addition to ease of interpretation. Since the
number of gene sets tested is generally much less than the number of genes represented on the array,
the magnitude of the multiple comparison problem is reduced. Also, expression patterns of genes in
a gene set can reinforce each other and do not have to be individually significant at a very stringent
level as required for the post-hoc annotation methods.

There is a large variety of such Gene Set Enhancement methods [30,31] which provide a score for
summary differential expression for each gene set. BRB-ArrayTools provides four such methods [32]
and a wide variety of pre-defined gene sets including Gene Ontology groups, genes in annotated
metabolic or signaling pathways, genes on the same chromosome arm, genes that are targets of the
same transcription factor, genes containing the same protein domain and genes on the same experi-
mentally determined signature of response to pathway activation or silencing.

Time-course expression data

Time course data is also used for gene finding although there are really no pre-defined classes or
phenotypes. Typically gene expression is measured at intervals following an experimental intervention
and the objective is to identify genes whose expression is changing with time. For example, BRB-
ArrayTools fits a quadratic function to the time course of individual genes and tests whether the linear
and quadratic coefficients are both zero. Those statistical significance levels are used to control the false
discovery rate using the method of Benjamini and Hochberg [27]. Those genes are clustered to sort
them into sets showing similar patterns over time and a heat map is provided. The time-course analysis
tool also provides for identifying genes whose variation with time differs based on some other
phenotype such as treatment. A line plot of average gene expression over time for each phenotype
group is provided for each gene with a significant interaction between time course and phenotype.
Specialized software for supervised time course analysis is also provided by Storey [33] and by
Leek [34].
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Predictive classifier development

A class predictor, or predictive classifier, is a computable function which can be used to predict a class
from an expression profile. Predictive classifiers can be of considerable importance for guiding treat-
ment selection in medicine although several levels of validation are needed before such classifiers are
‘‘ready for prime time’’ [35]. In developing a predictive classifier the emphasis should be on predictive
accuracy, sensitivity, specificity, and positive and negative predictive values, not on controlling the false
discovery rate, goodness of fit to the data, or the statistical significance of regression coefficients.

Development of a predictive classifier requires specification of (i) the mathematical/computational
function used to relate an expression profile to a class; (ii) the genes whose expression levels are
utilized in the prediction; and (iii) the parameters; e.g. the weights placed on expression levels of
individual genes and cut-points used in the prediction [7,36]. It is often not recognized that a predictive
classifier is not just a set of genes, it is a completely specified computable function that can be used to
classify individual patients whose expression profiles are determined.

The development of a predictive classifier is similar to the development of a statistical regression
function, except that the former predicts class identifier rather than a continuous value. Statistical
regression models are generally built using data in which the number of cases (n) is large relative to the
number of candidate variables (p). In the development of class predictors using gene expression data,
however, the number of candidate predictors is generally orders of magnitude greater than the number
of cases. This has two important implications. One is that only simple class prediction functions should
be considered because functions with too many degrees of freedom will over-fit the data and predict
poorly for independent samples [37]. The second important implication is that the data used for
evaluating the class predictor must be distinct from the data used for developing it. It is almost always
possible to develop a class predictor even on completely random data which will fit the training data
almost perfectly but be completely useless for prediction with independent data [6].

A wide variety of algorithms have been used effectively with DNA microarray data for class
prediction. Many predictive classifiers are based on linear discriminants of the form

lð xÞ ¼
X

i˛G

wixi (1)

where xi denotes the log-ratio or log-intensity for the i’th gene, wi is the weight given to that gene, and
the summation is over the set G of genes selected for inclusion in the class predictor. For a two-class
problem, there is a threshold value d, and a sample with expression profile defined by a vector x of
values is predicted to be in class 1 or class 2 depending on whether lðxÞ as computed from equation (1)
is less than the threshold d or greater than d respectively.

Linear discriminant classifiers differ with regard to how the weights are determined. The oldest
form of linear discriminant is Fisher’s linear discriminant. The weights are selected so that the mean
value of lðxÞ in class 1 is maximally different from the mean value of lðxÞ in class 2. The squared
difference in means divided by the pooled estimate of the within-class variance of lðxÞwas the specific
measure used by Fisher. To compute these weights, one must estimate the correlation between all pairs
of genes that were selected in the feature selection step. The study by Dudoit et al. [38]. indicated that
Fisher’s linear discriminant analysis did not perform well unless the number of selected genes was
small relative to the number of samples. The reason is that in other cases there are too many corre-
lations to estimate and the method tends to be un-stable and over-fit the data.

Diagonal linear discriminant analysis is a special form of Fisher linear discriminant analysis in which
the correlation among genes is ignored. By ignoring such correlations, one avoids having to estimate
many parameters, and obtains a method which generally performs better when the number of samples
is small. Golub’s weighted voting method [39] and the Compound Covariate Predictor of Radmacher
et al. [36] are similar to diagonal linear discriminant analysis and tend to perform well when the
number of samples is small. They compute the weights based on the univariate prediction strength of
individual genes and ignore correlations among the genes.

Support vector machines are very popular in the machine learning literature. Although they sound
very exotic, linear kernel support vector machines do class prediction using a predictor of the form of
equation (1). The weights are determined by optimizing a mis-classification rate criterion with
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a penalty for large weights which tends to prevent over-fitting [40]. Although there are more complex
forms of support vector machines, they appear to be inferior to linear kernel SVM’s for class prediction
with large numbers of genes [41].

In the study of Dudoit et al. [37,38], the simplest methods, diagonal linear discriminant analysis, and
nearest neighbor classification, performed as well or better than the more complex methods. Nearest
neighbor classification is based on a set G of genes selected to be informative for discriminating the
classes and a distance function dðx; y Þwhich measures the distance between the expression profiles x
and y of two samples. The distance function utilizes only the genes in the selected set G. To classify
a sample with expression profile y , compute dðx; y Þ for each sample x in the training set. The predicted
class of y is the class of the sample in the training set which is closest to y with regard to the distance
function d. The distance function is usually either the standard Euclidean distance or one minus the
correlation between the expression profiles x and y . A variant of nearest neighbor classification is
nearest centroid classification in which the new expression profile y is compared to the mean
expression profile for the training samples of each class. Those mean expression profiles are called
centroids. The shrunken centroid method of Tibshirani et al. is a popular and effective form of nearest
centroid classification which incorporates both automatic selection of the gene set G and adjustment of
class specific centroids to account for the bias of gene selection [42].

Dudoit et al. also studied some more complex methods such as classification trees and aggregated
classification trees. These methods did not appear to perform any better than the simpler methods.
Ben-Dor et al. [41] also compared several methods on several public datasets and found that nearest
neighbor classification generally performed as well or better than more complex methods.

The models described above are generally applied with the gene set G specified by identifying the
genes that are differentially expressed among the classes when considered individually. For example, if
there are two classes, one can compute a regularized t-test for each gene. The log-ratios or log-
intensities are generally used as the basis of the statistical significance tests. The genes that are
significantly differentially expressed at a specified significance level are selected for inclusion in the
class predictor. The stringency of the significance level used controls the number of genes that are
included in the model. If one wants a class predictor based on a small number of genes, the threshold
significance level is made very small. Issues of multiple testing or false positives are not really relevant,
however, because the objective is just to select features for inclusion in the model and the threshold
significance level is just a ‘‘tuning parameter’’. Some methods do not use p values at all but merely
select the k most differentially expressed genes, and specify k arbitrarily or by optimizing using cross-
validation.

Several authors have developed methods to identify optimal sets of genes which together provide
good discrimination of the classes [43–46]. Some of these kinds of algorithms are very computationally
intensive. Several independent evaluations have, however, indicated that the increased computational
effort of these methods is not warranted [47,48].

Predictive classifier validation

Analytical validation

At least three levels of validation should be distinguished. First is analytical validation of an assay for
measuring the classifier. Analytical validation has traditionally meant that the assay accurately
measures what it claims to measure. This presumes, however, the existence of a gold standard way of
measuring the true value. For gene expression based predictive classifiers, there is usually no gold
standard. Whereas an RT-PCR assay might be accepted as a gold standard for measuring gene
expression of an RNA sample, this ignores questions of the representativeness of the RNA sample for
the target tissue prior to biopsy. For assays in which there is no gold standard, analytical validation
generally means reproducibility and robustness. Sometimes robustness of the assay is distinguished
from robustness of tissue handling.

Careful development of an analytically validated assay is important for all later steps of validation.
Dobbin et al. reported that in order to ensure good inter-laboratory reproducibility in using the
Affymetrix GeneChip system, a pilot study and development of a common protocol was necessary [49].
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In classifying the risk of recurrence for patients with node negative and estrogen receptor positive
breast cancer receiving Tamoxifen treatment, the investigators utilized DNA microarray gene expres-
sion profiling to identify the informative genes, but then transferred to an RT-PCR platform based on
primers for use with paraffin embedded formalin fixed tissue. They performed detailed studies on
sources of variation of the assay in order to assure reproducibility of results [50].

Clinical validation/correlation

Most reports describing the development of a predictive classifier based on gene expression do not
address analytical validation, they address clinical correlation sometimes referred to as clinical vali-
dation. For predictive classifiers developed from microarray gene expression data, it is essential to
separate the cases used for developing the classifier from the cases used for evaluating the classifier.
With traditional regression modeling where the number of candidate variables is much less than the
number of cases, separation of training and validation cases is often not practiced. Failure to observe
this key separation principle with microarray based classifiers, however, results in enormous bias in the
resulting estimate of predictive accuracy [6].

The most straightforward way of ensuring separation is the split-sample method of partitioning the
set of samples into a training set and a test set. Rosenwald et al. [51] used this approach successfully in
their international study of prognostic prediction for large B cell lymphoma. They used two thirds of
their samples as a training set. Multiple kinds of predictors were studied on the training set. When the
collaborators of that study agreed on a single fully specified prediction model, they accessed the test set
for the first time. On the test set there was no adjustment of the model or fitting of parameters. They
merely used the samples in the test set to evaluate the predictions of the model that was completely
specified using only the training data.

The split-sample method is often used with so few samples in the test set, however, that the
validation is almost meaningless. One can evaluate the adequacy of the size of the test set by computing
the statistical significance of the classification error rate on the test set or by computing a confidence
interval for the test set error rate.

Michiels et al. [52] suggested that multiple training-test partitions be used, rather than just one. The
split sample approach is most useful, however, when one does not have a well defined algorithm for
developing the classifier. When there is a single training set-test set partition, one can perform
numerous exploratory analyses on the training set and utilize biological information about the genes to
develop a classifier and then test that classifier on the test set. With multiple training-test partitions
however, that type of flexible approach to model development cannot be used. If one has an algorithm
for classifier development, it is generally better to use one of the cross-validation or bootstrap
resampling approaches to estimating error rate (see below) because the split sample approach does not
provide as efficient a use of the available data [53].

Cross-validation is an alternative to the split sample method of estimating prediction accuracy [36]
while preserving the key separation principle. With leave-one-out cross-validation, one omits one case
and develops a predictive classifier on the remaining cases n� 1. That classifier is used to classify the
omitted case and one records whether the prediction was correct or not. Then a different case is
omitted, the one omitted the first time is included, and a new classifier is developed from scratch on
the new training set of n-1 cases. That classifier is then used to classify the case omitted and one
records whether the prediction was correct or not. This continues leaving each case out, one at a time,
and the total number of mis-classifications determined. Molinaro et al. describe and evaluate many
variants of cross-validation and bootstrap re-sampling for classification problems where the number of
candidate predictors vastly exceeds the number of cases [53].

The cross-validated prediction error is an estimate of the prediction error associated with appli-
cation of the algorithm for model building to the entire dataset. The model building process must be
repeated from scratch for each loop of the cross-validation and so the process must be completely
algorithmic. In particular, the gene selection must be repeated for each loop of the cross-validation.
Simon et al. [6] showed that if you use the full dataset to select genes, and then cross-validate only the
fitting of the prediction model for those genes, you obtain a highly biased estimate of prediction
accuracy. Their results underscore the importance of cross-validating all steps of predictor construction

R. Simon / Best Practice & Research Clinical Haematology 22 (2009) 271–282278



Author's personal copy

in estimating the error rate. Failure to do this is one of the most common and most serious errors made
in using cross-validation [1].

It can also be useful to compute the statistical significance of the cross-validated estimate of clas-
sification error. This determines the probability of obtaining a cross-validated classification error as
small as actually achieved if there were no relationship between the expression data and class iden-
tifiers. A flexible method for computing this statistical significance was described by Radmacher et al.
[36]. This method of computing statistical significance of cross-validated error rate for a wide variety of
classifier functions is implemented in the BRB-ArrayTools software [2].

Medical utility

The third level of validation of a predictive classifier is determining whether the classifier has medical
utility. A classifier generally has medical utility only if it enables physicians to make better treatment
decisions. Many classifiers are developed using a convenience sample of specimens not selected for
purposes of addressing a question of medical decision making. Consequently they often include
a heterogeneous group of patients who have received a variety of treatments [54]. For example, many
prognostic factor studies in breast cancer include node negative and node positive ER negative and ER
positive patients, those who received cytotoxic chemotherapy and those who received Tamoxifen alone.
Showing that a new classifier is prognostic for such a mixed group generally has little apparent thera-
peutic value and such classifiers are rarely used [55]. It doesn’t make the classifier therapeutically
relevant to show in a multivariate analysis that the new classifier is more statistically significant than
standard prognostic variables. Unless the cases represent the participants of a carefully selected clinical
trial, there may be an insurmountable gap between clinical correlation and medical utility.

Classifiers are sometimes described as either prognostic or predictive. Prognostic factors provide
information about the prognosis of a group of untreated or homogeneously treated patients.
Predictive factors provide information about response or benefit from a specific treatment. Either
kind of classifier derives medical utility, however, if it enables better treatment decisions. For
example, OncotypeDx was developed as a prognostic classifier for patients with node negative,
estrogen receptor positive breast cancer receiving Tamoxifen [50]. It’s medical utility is based on
identifying a subset of such patients whose long term disease-free survival is sufficiently good that
cytotoxic chemotherapy might not be warranted. OncotypeDx is currently being tested in a very large
prospective clinical trial. It can be more difficult to establish medical utility of a predictive classifier.
For example, several major studies have reported gene expression classifiers for outcome following
chemotherapy for diffuse large B cell lymphoma [51,56]. Withholding a potentially curative therapy
from a patient based on an imperfect test where no established alternative therapeutic options are
available is, however, difficult.

Simon et al. [57–59] have discussed prospective clinical trial designs for co-development of new
drugs and companion diagnostics and these will not be reviewed here. Establishing the medical utility
of a classifier for use of an established treatment can be more difficult. Medical utility depends on
a variety of factors including other treatments available, availability of more easily measured predictive
factors and practice standards [12]. It may be more difficult to conduct prospective trials that involve
withholding widely used treatments.

In general, establishing medical utility requires demonstrating that a clinically meaningful measure
of patient benefit is improved based on using the new classifier compared to not using the classifier.
The direct approach would involve randomizing patients to treatment determination based on practice
standards or based on the genomic classifier. The genomic classifier has clinical utility if treatment
outcome is improved overall for the group randomized to classifier based treatment assignment. The
genomic classifier also has clinical utility if outcome is the same for the two randomized groups but the
patients randomized to classifier determined treatment have reduced adverse events, inconvenience
or cost. This kind of prospective clinical trial design is very inefficient and rarely practical. It generally
requires an enormous sample size because many or most patients in both randomization group receive
the same treatment [60,61].

An alternative design is to measure the classifier on all eligible patients and determine before
randomization whether recommended treatment assignment would differ between conventional
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medical guidelines and the classifier based strategy. Then, the only patients randomized are those for
whom the two strategies result in different treatment assignments. This approach entails the cost of
measuring the classifier on all patients, but results in a much smaller clinical trial than that described
above. This is the approach used for the design of the MINDACT clinical trial to prospectively evaluate
the medical utility of a 70 gene expression signature for breast cancer [62]. By measuring the classifier
on all eligible patients one can also compare practice standard treatment to classifier guided treatment
separately for the patient subsets in which the assignments are discordant and that can improve the
usefulness of the study. Nevertheless, such prospective randomized studies generally require very large
numbers of patients and may require long follow-up times until results are available.

In some cases it may be possible to utilize archived tumor samples from patients treated in
a randomized clinical to reasonably simulate the analysis that would have been performed in
a prospective trial. This is a viable strategy only when archived specimens are available for a large
proportion of the patients in an appropriately designed previously conducted randomized trial.
Concern about whether the patients for whom samples are available are representative of the whole is
minimized when adequate archived specimens are available on almost all patients, but even for
prospective randomized trials there is always concern about whether randomized patients are
representative of the entire population of patients. The retrospective strategy is not credible unless the
plan for the retrospective analysis is completely specified in writing prior to performing assays on the
archived specimens. The classifier must be completely determined by data external to the clinical trial
used for retrospective analysis [63]. Because retrospective classification of archived specimens will not
accurately reflect the challenges of tissue handling and assay performance encountered prospectively
in a time frame that enables real-world treatment selection, it is important to separately establish the
analytical validity of the assay for use with archived tissue.

Summary

DNA microarrays provide great opportunity for discovery and development of predictive oncology
but also great opportunity for developing false claims. The review of the literature of use of DNA
microarrays in studies of cancer outcome by Dupuy and Simon indicated that about 50 percent of
studies contained at least one major flaw in the analysis serious enough to raise questions about the
claims. Dupuy and Simon developed guidelines for the analysis of DNA microarray data in conjunction
with outcomes of cancer patients, illustrated by a list of Do’s and Don’ts [1]. BRB-ArrayTools software is
a resource for improving the analysis of microarray expression data that can be useful for both
biomedical investigators and statisticians. There are currently about 9000 registered users of this
software in over 65 countries. It is freely available for non-commercial purposes from the National
Cancer Institute at http://linus.nci.nih.gov/brb.
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