
BRB-ArrayTools Workshop

• Overview of gene expression analysis (2hr) 

• Individual consultation as needed
– Biometric Research Branch statisticians
– BRB-ArrayTools Development Team



http://linus.nci.nih.gov/brb

• http://linus.nci.nih.gov/brb
– Powerpoint presentations and audio files
– Reprints & Technical Reports
– BRB-ArrayTools software
– BRB-ArrayTools Data Archive



Assumptions

• You are somewhat familiar with BRB-
ArrayTools

• You have brought your own laptop
• You have installed BRB-ArrayTools
• You have imported (collated) your data 

into BRB-ArrayTools



BRB-ArrayTools 3.5 alpha

• Available on cd for you to try if you’d like
• Contains

– Data import wizzard
– Data analysis wizzard
– Enhanced survival risk-group prediction tool



Take Time to Clarify Your Specific 
Objectives

• Study Design
• Analysis Strategy



Good Microarray Studies Have 
Clear Objectives

• Class Comparison
– Find genes whose expression differs among 

predetermined classes
• Class Prediction

– Prediction of predetermined class (phenotype) 
using information from gene expression profile

• Class Discovery
– Discover clusters of specimens having similar 

expression profiles
– Discover clusters of genes having similar 

expression profiles



Class Comparison and Class 
Prediction

• Not clustering problems
– Global similarity measures generally used for 

clustering arrays may not distinguish classes
– Don’t control multiplicity or for distinguishing 

data used for classifier development from 
data used for classifier evaluation

• Supervised methods
• Requires multiple biological samples from 

each class



Levels of Replication

• Technical replicates
– RNA sample divided into multiple aliquots and re-

arrayed
• Biological replicates

– Multiple subjects 
– Replication of the tissue culture experiment



• Biological conclusions generally require 
independent biological replicates. The 
power of statistical methods for microarray 
data depends on the number of biological 
replicates.

• Technical replicates are useful insurance 
to ensure that at least one good quality 
array of each specimen will be obtained.



Microarray Platforms for 
Developing Predictive Classifiers

• Single label arrays
– Affymetrix GeneChips

• Dual label arrays
– Common reference design
– Other designs



Common Reference Design
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• The reference generally serves to control 
variation in the size of corresponding spots 
on different arrays and variation in sample 
distribution over the slide.

• The reference provides a relative measure of 
expression for a given gene in a given 
sample that is less variable than an absolute 
measure. 

• The reference is not the object of 
comparison.

• The relative measure of expression will be 
compared among biologically independent 
samples from different classes.





Balanced Block Design

A1

A2

B2 A3

B3

B4

A4

RED

B1GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B





Class Comparison Blocking

• Paired data
– Pre-treatment and post-treatment samples of same 

patient
– Tumor and normal tissue from the same patient

• Blocking
– Multiple animals in same litter
– Any feature thought to influence gene expression

• Sex of patient
• Batch of arrays



Technical Replicates

• Multiple arrays on alloquots of the same 
RNA sample

• Select the best quality technical replicate 
or

• Average expression values 



Simple Control for Multiple Testing

• If each gene is tested for significance at level α
and there are n genes, then the expected 
number of false discoveries is n α .
– e.g. if n=1000 and α=0.001, then 1 false discovery
– To control E(FD) ≤ u
– Conduct each of k tests at level α = u/k



False Discovery Rate (FDR)
• FDR = Expected proportion of false 

discoveries among the tests declared 
significant 

• Studied by Benjamini and Hochberg 
(1995):



Not rejected Rejected Total

True null 
hypotheses

890 10 
False 

discoveries

900

False null 
hypotheses

10 90
True 

discoveries

100

100 1000



If you analyze n probe sets and 
select as “significant” the k genes 

whose p ≤ p*

• FDR ~ n p* / k



Limitations of Simple Procedures

• p values based on normal theory are not 
accurate in the extreme tails of the distribution

• Difficult to achieve extreme quantiles for 
permutation p values of individual genes

• Multiple comparisons controlled by adjustment 
of univariate (single gene) p values may not take 
advantage of correlation among genes 



Additional Procedures

• “SAM”  - Significance Analysis of Microarrays
– Tusher et al., PNAS, 2001
– Estimate FDR
– Statistical properties unclear

• Multivariate permutation tests
– Korn et al., 2001 (http://linus.nci.nih.gov/brb)

– Control number or proportion of false discoveries
– Can specify confidence level of control



Multivariate Permutation Procedures
(Korn et al., 2001)

Allows statements like:
FD Procedure: We are 95% confident that the 

(actual) number of false discoveries is no 
greater than 5.

FDP Procedure:  We are 95% confident that 
the (actual) proportion of false discoveries 
does not exceed .10.



t-test Comparisons of Gene 
Expression for gene j

• xj~N(µj1 , σj
2)  for class 1

• xj~N(µj2 , σj
2)  for class 2

• H0j: µj1 = µj2



Estimation of Within-Class 
Variance

• Estimate separately for each gene
– Limited degrees-of-freedom (precision) unless number of 

samples is large
– Gene list dominated by genes with small fold changes and 

small variances
• Assume all genes have same variance

– Poor assumption
• Random (hierarchical) variance model

– Wright G.W. and Simon R. Bioinformatics19:2448-2455,2003
– Variances are independent samples from a common distribution; Inverse gamma 

distribution used
– Results in exact F (or t) distribution of test statistics with increased 

degrees of freedom for error variance
– For any normal linear model

2
jσ









Gene Set Expression Comparison

• Compute p value of differential expression for each gene 
in a gene set (k=number of genes)

• Compute a summary (S) of these p values
• Determine whether the value of the summary test 

statistic S is more extreme than would be expected from 
a random sample of k genes (probe-sets) on that 
platform

• Two types of summaries provided
– Average of log p values
– Kolmogorov-Smirnov statistic; largest distance between the 

cumulative distribution of the p values and the uniform 
distribution expected if none of the genes were differentially 
expressed



Gene Set Expression Comparison

• p value for significance of summary 
statistic need not be as extreme as .001 
usually, because the number of gene sets 
analyzed is usually much less than the 
number of individual genes analyzed

• Conclusions of significance are for gene 
sets in this tool, not for individual genes



Comparison of Gene Set 
Expression Comparison to O/E 
Analysis in Class Comparison

• Gene set expression tool is based on all 
genes in a set, not just on those 
significant at some threshold value

• O/E analysis does not provide statistical 
significance for gene sets









Statistical Methods Appropriate for 
Prediction are Different than Those 

Appropriate for Gene Finding

• Demonstrating statistical significance of prognostic 
factors is not the same as demonstrating predictive 
accuracy.

• Demonstrating goodness of fit of a model to the data 
used to develop it is not a  demonstration of predictive 
accuracy.

• Statisticians are used to inference, not prediction
• Most statistical methods were not developed for p>>n 

prediction problems



Components of Class Prediction

• Feature (gene) selection
– Which genes will be included in the model

• Select model type 
– E.g. Diagonal linear discriminant analysis, 

Nearest-Neighbor, …
• Fitting parameters (regression coefficients) 

for model
– Selecting value of tuning parameters



Feature Selection

• Genes that are differentially expressed among the 
classes at a significance level α (e.g. 0.01) 
– The α level is selected only to control the number of genes in the 

model



Feature Selection

• Small subset of genes which together give 
most accurate predictions 
– Combinatorial optimization algorithms

• Genetic algorithms

• Little evidence that complex feature 
selection is useful in microarray problems
– Failure to compare to simpler methods
– Some published complex methods for 

selecting combinations of features do not 
appear to have been properly evaluated



Linear Classifiers for Two 
Classes
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Linear Classifiers for Two Classes

• Fisher linear discriminant analysis
– Requires estimating correlations among all genes 

selected for model
• Diagonal linear discriminant analysis (DLDA) 

assumes gene expressions are uncorrelated
• Compound covariate predictor (Radmacher) 

and  Golub’s method are similar to DLDA in 
that they can be viewed as weighted voting of 
univariate classifiers 



Linear Classifiers for Two Classes

• Compound covariate predictor
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Linear Classifiers for Two Classes

• Support vector machines with inner 
product kernel are linear classifiers with 
weights determined to separate the 
classes with a hyperplain that minimizes 
the length of the weight vector



Support Vector Machine
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When p>>n 

• It is always possible to find a set of 
features and a weight vector for which the 
classification error on the training set is 
zero.

• Why consider more complex models?



Myth

• Complex classification algorithms such as 
neural networks perform better than 
simpler methods for class prediction.



• Artificial intelligence sells to journal 
reviewers and peers who cannot 
distinguish hype from substance when it 
comes to microarray data analysis. 

• Comparative studies have shown that 
simpler methods work as well or better for 
microarray problems because they avoid 
overfitting the data. 



Other Simple Methods

• Nearest neighbor classification
• Nearest k-neighbors
• Nearest centroid classification
• Shrunken centroid classification



Nearest Neighbor Classifier

• To classify a sample in the validation set, 
determine it’s nearest neighbor in the training 
set; i.e. which sample in the training set is its 
gene expression profile is most similar to.
– Similarity measure used is based on genes 

selected as being univariately differentially 
expressed between the classes

– Correlation similarity or Euclidean distance 
generally used 

• Classify the sample as being in the same 
class as it’s nearest neighbor in the training 
set



Nearest Centroid Classifier
• For a training set of data, select the genes that are 

informative for distinguishing the classes
• Compute the average expression profile (centroid) of 

the informative genes in each class
• Classify a sample in the validation set based on 

which centroid in the training set it’s gene expression 
profile is most similar to.



Other Methods

• Top-scoring pairs
– Claim that it gives accurate prediction with 

few pairs because pairs of genes are selected 
to work well together

• Random Forrest
– Very popular in machine learning community
– Complex classifier



When There Are More Than 2 
Classes

• Nearest neighbor type methods

• Decision tree of binary classifiers



Decision Tree of Binary Classifiers

• Partition the set of classes {1,2,…,K} into two disjoint subsets S1 and 
S2

• Develop a binary classifier for distinguishing the composite classes 
S1 and S2

• Compute the cross-validated classification error for 
distinguishing S1 and S2

• Repeat the above steps for all possible partitions in order to find the 
partition S1and S2 for which the cross-validated classification error is 
minimized

• If S1and S2 are not singleton sets, then repeat all of the above steps 
separately for the classes in S1and S2 to optimally partition each of 
them











































Evaluating a Classifier

• “Prediction is difficult, especially the 
future.”
– Neils Bohr

• Fit of a model to the same data used to 
develop it is no evidence of prediction 
accuracy for independent data.



Evaluating a Classifier
• Fit of a model to the same data used to develop 

it is no evidence of prediction accuracy for 
independent data
– Goodness of fit vs prediction accuracy

• Demonstrating statistical significance of 
prognostic factors is not the same as 
demonstrating predictive accuracy

• Demonstrating stability of identification of gene 
predictors is not necessary for demonstrating 
predictive accuracy



Evaluating a Classifier
• The classification algorithm includes the 

following parts:
– Determining what type of classifier to use
– Gene selection
– Fitting parameters
– Optimizing with regard to tuning parameters

• If a re-sampling method such as cross-validation 
is to be used to estimate predictive error of a 
classifier, all aspects of the classification 
algorithm must be repeated for each training set 
and the accuracy of the resulting classifier 
scored on the corresponding validation set 



Split-Sample Evaluation

• Training-set
– Used to select features, select model type, determine 

parameters and cut-off thresholds
• Test-set

– Withheld until a single model is fully specified using 
the training-set.

– Fully specified model is applied to the expression 
profiles in the test-set to predict class labels. 

– Number of errors is counted
– Ideally test set data is from different centers than the 

training data and assayed at a different time



Leave-one-out Cross Validation

• Omit sample 1
– Develop multivariate classifier from scratch on 

training set with sample 1 omitted
– Predict class for sample 1 and record whether 

prediction is correct



Leave-one-out Cross Validation

• Repeat analysis for training sets with each 
single sample omitted one at a time

• e = number of misclassifications 
determined by cross-validation

• Subdivide e for estimation of sensitivity 
and specificity



• Cross validation is only valid if the test set is not used in 
any way in the development of the model. Using the 
complete set of samples to select genes violates this 
assumption and invalidates cross-validation.

• With proper cross-validation, the model must be 
developed from scratch for each leave-one-out training 
set. This means that feature selection must be repeated 
for each leave-one-out training set. 

• The cross-validated estimate of misclassification error is 
an estimate of the prediction error for model fit using 
specified algorithm to full dataset

• If you use cross-validation estimates of prediction error 
for a set of algorithms indexed by a tuning parameter 
and select the algorithm with the smallest cv error 
estimate, you do not have a valid estimate of the 
prediction error for the selected model



Prediction on Simulated Null Data

Generation of Gene Expression Profiles
• 14 specimens (Pi is the expression profile for specimen i)
• Log-ratio measurements on 6000 genes
• Pi ~ MVN(0, I6000)
• Can we distinguish between the first 7 specimens (Class 1) and the last 7 

(Class 2)?

Prediction Method
• Compound covariate prediction (discussed later)
• Compound covariate built from the log-ratios of the 10 most differentially 

expressed genes.



Number of misclassifications
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Simulated Data
40 cases, 10 genes selected from 5000

Method Estimate Std Deviation
True .078
Resubstitution .007 .016
LOOCV .092 .115
10-fold CV .118 .120
5-fold CV .161 .127
Split sample 1-1 .345 .185
Split sample 2-1 .205 .184
.632+ bootstrap .274 .084



DLBCL Data

Method Bias Std Deviation MSE

LOOCV -.019 .072 .008

10-fold CV -.007 .063 .006

5-fold CV .004 .07 .007

Split 1-1 .037 .117 .018

Split 2-1 .001 .119 .017

.632+ bootstrap -.006 .049 .004



Simulated Data
40 cases

Method Estimate Std Deviation
True .078
10-fold .118 .120
Repeated 10-fold .116 .109
5-fold .161 .127
Repeated 5-fold .159 .114
Split 1-1 .345 .185
Repeated split 1-1 .371 .065



Permutation Distribution of Cross-
validated Misclassification Rate of a 

Multivariate Classifier
• Randomly permute class labels and repeat the 

entire cross-validation
• Re-do for all (or 1000) random permutations of 

class labels
• Permutation p value is fraction of random 

permutations that gave as few misclassifications 
as e in the real data



Common Problems With Internal 
Classifier Validation

• Pre-selection of genes using entire dataset

• Failure to consider optimization of tuning 
parameter part of classification algorithm
– Varma & Simon, BMC Bioinformatics 2006

• Erroneous use of predicted class in 
regression model



Incomplete (incorrect) Cross-
Validation

• Publications are using all the data to select 
genes and then cross-validating only the 
parameter estimation component of model 
development
– Highly biased
– Many published complex methods which make strong 

claims based on incorrect cross-validation. 
• Frequently seen in complex feature set selection algorithms
• Some software encourages inappropriate cross-validation



Incomplete (incorrect) Cross-
Validation

• Let M(b,D) denote a classification model developed on a 
set of data D where the model is of a particular type that 
is parameterized by a scalar b. 

• Use cross-validation to estimate the classification error 
of M(b,D) for a grid of values of b; Err(b). 

• Select the value of b* that minimizes Err(b).
• Caution: Err(b*) is a biased estimate of the prediction 

error of M(b*,D).
• This error is made in some commonly used methods



Complete (correct) Cross-
Validation

• Construct a learning set D as a subset of the full set S of 
cases.   

• Use cross-validation restricted to D in order to estimate 
the classification error of M(b,D) for a grid of values of b; 
Err(b). 

• Select the value of b* that minimizes Err(b).
• Use the model M(b*,D) to predict for the cases in S but 

not in D (S-D) and compute the error rate in S-D
• Repeat this full procedure for different learning sets D1 , 

D2 and average the error rates of the models M(bi*,Di) 
over the corresponding validation sets S-Di



Does an Expression Profile Classifier 
Predict More Accurately Than Standard 

Prognostic Variables?

• Not an issue of which variables are significant 
after adjusting for which others or which are 
independent predictors
– Predictive accuracy and inference are different

• The two classifiers can be compared with regard 
to predictive accuracy

• The predictiveness of the expression profile 
classifier can be evaluated within levels of the 
classifier based on standard prognostic 
variables



External Validation

• Should address clinical utility, not just predictive 
accuracy
– Therapeutic relevance

• Should incorporate all sources of variability likely 
to be seen in broad clinical application
– Expression profile assay distributed over time and 

space
– Real world tissue handling
– Patients selected from different centers than those 

used for developing the classifier



Survival Risk Group Prediction
• Evaluate individual genes by fitting single variable 

proportional hazards regression models to log signal or 
log ratio for gene

• Select genes based on p-value threshold for single gene 
PH regressions

• Compute first k principal components of the selected 
genes

• Fit PH regression model with the k pc’s as predictors. Let 
b1 , …, bk denote the estimated regression coefficients

• To predict for case with expression profile vector x, 
compute the k supervised pc’s y1 , …, yk and the 
predictive index λ = b1 y1 + … + bk yk



Survival Risk Group Prediction

• LOOCV loop:
– Create training set by omitting i’th case

• Develop supervised pc PH model for training set
• Compute cross-validated predictive index for i’th

case using PH model developed for training set
• Compute predictive risk percentile of predictive 

index for i’th case among predictive indices for 
cases in the training set 



Survival Risk Group Prediction

• Plot Kaplan Meier survival curves for 
cases with cross-validated risk percentiles 
above 50% and for cases with cross-
validated risk percentiles below 50%
– Or for however many risk groups and 

thresholds is desired
• Compute log-rank statistic comparing the 

cross-validated Kaplan Meier curves



Survival Risk Group Prediction
• Repeat the entire procedure for all (or large 

number) of permutations of survival times and 
censoring indicators to generate the null 
distribution of the log-rank statistic
– The usual chi-square null distribution is not valid 

because the cross-validated risk percentiles are 
correlated among cases 

• Evaluate statistical significance of the 
association of survival and expression profiles 
by referring the log-rank statistic for the 
unpermuted data to the permutation null 
distribution



Survival Risk Group Prediction

• Other approaches to survival risk group 
prediction have been published

• The supervised pc method is implemented 
in BRB-ArrayTools

• BRB-ArrayTools also provides for 
comparing the risk group classifier based 
on expression profiles to one based on 
standard covariates and one based on a 
combination of both types of variables



Sample Size Planning 
References

• K Dobbin, R Simon. Sample size 
determination in microarray experiments 
for class comparison and prognostic 
classification. Biostatistics 6:27-38, 2005

• K Dobbin, R Simon. Sample size planning 
for developing classifiers using high 
dimensional DNA microarray data. 
Biostatistics (In Press)
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