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DNA microarrays are a potentially powerful technology for improving diagnostic classification, treatment selection and therapeutics
development. There are, however, many potential pitfalls in the use of microarrays that result in false leads and erroneous
conclusions. This paper provides a review of the key features to be observed in developing diagnostic and prognostic classification
systems based on gene expression profiling and some of the pitfalls to be aware of in reading reports of microarray-based studies.
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The literature of prognostic markers for patients with cancer is
vast, but most proposed markers are either not reproducibly
established as prognostic in a medically relevant context or not
widely used in clinical practice. Broadly accepted good practice
standards for the development of prognostic markers and
prognostic classification systems do not exist (Simon and Altman,
1994). Some of the problems that exist in the prognostic marker
literature derive from the nonprospective nature of most marker
studies. Clinical drug trials are generally prospective, with patient
selection criteria, primary end point, hypotheses and analysis plan
specified in advance in a written protocol. The consumers of
clinical trial reports have been educated to be skeptical of data
dredging to find something ‘statistically significant’ to report in
clinical trials. They are skeptical of analyses with multiple end
points or multiple subsets, knowing that the chances of erroneous
conclusions increase rapidly once one leaves the context of a
focused single hypothesis clinical trial. Prognostic marker studies
are generally performed with no written protocol, no eligibility
criteria, no primary end point or hypotheses and no defined
analysis plan. The analysis is often much less structured, the
patient population more heterogeneous, and there are many subset
analyses.

Most of the problems that have hindered the development and
acceptance of prognostic markers exist also for classification
systems based on DNA microarray expression profiles. For
example, there are multiple platforms and protocols for measuring
expression profiles, and most studies do not evaluate either
interlaboratory assay reproducibility or intralaboratory reprodu-
cibility on multiple samples of the same tissue specimen. Some of
the problems that have hindered the development of reliable
prognostic markers are exacerbated in DNA microarray studies.
Owing to the number of genes available for analysis, microarray
data can be a veritable fountain of false findings unless appropriate
statistical methods are utilised.

DNA microarray experiments require planning (Simon and
Dobbin, 2002). Planning is driven by experimental objectives.
Good DNA microarray experiments have clear objectives. These
objectives do not usually involve gene-specific mechanistic
hypotheses. Nevertheless, successful studies are not unfocused
searches for interesting patterns that provide clear answers to un-
asked questions. One type of objective commonly encountered in
DNA microarray experiments is identification of genes differen-
tially expressed among predefined classes of samples. We will refer
to this as class comparison. A related objective that is often relevant
for medical studies is the development of a mathematical function
that can accurately predict the biologic group, diagnostic category
or prognostic stage of a patient based on an expression profile of
the diseased tissue from that patient. This will be referred to as
class prediction. With these objectives, the sample classes are
defined in advance independently of the gene expression data.

The classes used for class comparison may represent different
tumour types and the focus may be identifying the gene expression
correlates of that tumour type classification. The classes in class
prediction studies often represent prognostic or response groups
for patients who have received a particular therapy. For example,
Wang et al (2002) developed a gene-expression-based predictor of
whether a patient with advanced melanoma would respond to IL2-
based treatment. Such predictors can be developed using data from
phase II studies and the predictors can be used to select patients
for phase III trials of the new treatment.

In some problems of prognostic prediction, the outcome is a
continuous measurement rather than a categorical class variable.
For example, Rosenwald et al (2002) and Shipp et al (2002)
developed gene-expression-based prognostic predictors for pa-
tients with diffuse large B-cell lymphoma receiving doxorubicin-
based combination chemotherapy. Many of the methodologic
issues pertinent to class prediction are also important for
prognostic prediction. For simplicity of exposition, however, we
will primarily refer to the problem of class prediction here.

Class discovery is fundamentally different from class comparison
or class prediction in that no classes are predefined. Usually, class
discovery in cancer studies is for the purpose of determiningReceived 27 May 2003; revised 28 July 2003; accepted 8 August 2003

*Correspondence: R Simon; E-mail: rsimon@nih.gov

British Journal of Cancer (2003) 89, 1599 – 1604

& 2003 Cancer Research UK All rights reserved 0007 – 0920/03 $25.00

www.bjcancer.com



whether discrete subsets of a disease entity can be defined based
on the gene expression profiles. This is different from determining
whether the expression profiles correlate in some way with some
already known diagnostic classification. An example of class
discovery was the study by Bittner et al (2000) examining
expression profiles for advanced melanomas. Alizadeh et al
(2000) also performed class discovery in examining the expression
profiles of patients with diffuse large B-cell lymphoma.

Cluster analysis is useful for class discovery, but is generally not
appropriate or effective for class comparison or class prediction.
Cluster analysis refers to an extensive set of methods of
partitioning samples into groups based on the pairwise distances
of their expression profiles. Cluster analysis is considered an
unsupervised method because class membership indicators are not
utilised. The pairwise distance measures between expression
profiles are generally computed with regard to the complete set
of genes represented on the array, or those that are well measured
with sufficient intensity. The genes that distinguish particular
classes may be few in number relative to the full set of genes.
Consequently, the pairwise distances used in cluster analysis will
often not reflect the influence of these relevant genes. This
accounts for the poor results often obtained in attempting to use
cluster analysis for class prediction. Even if the classes do group
into clusters based on an unsupervised distance metric, the
analysis does not provide a useful class predictor that can be used
for new cases.

Our objective here is to highlight important aspects of the
process of developing and evaluating gene-expression-based class
predictors. Many of the recommended methods for developing and
evaluating gene-expression-based classifiers are available in the
BRB-ArrayTools software available without charge for noncom-
mercial purposes from the National Cancer Institute (Simon and
Peng-Lam, 2003).

COMPONENTS OF CLASS PREDICTION

One component of developing a class predictor is determining
which genes to include in the predictor. This is generally called
‘feature selection’ or, in the context of microarray prediction, gene
selection. Usually, including too many ‘noise variables’ in the
predictor reduces the accuracy of prediction. It also makes
interpretation and future use of the predictor more difficult. A
noise variable is a variable that is not related to the class being
predicted. Feature selection is particularly important in microarray
studies because the number of noise variables may be orders of
magnitude greater than the number of relevant variables. The
influence of the genes that actually distinguish the classes may be
lost among the noise of the more numerous noise genes unless we
select the informative genes to be utilised by the class predictor.

The second main component of a class predictor is complete
specification of the mathematical function that will provide a
predicted class label for any given expression vector. There are
many kinds of predictor functions as will be discussed in section
‘Class prediction algorithm’.

The third component of developing a class predictor is
parameter estimation. Most kinds of predictors have parameters
that must be assigned values before the predictor is fully specified.
These parameters are in many ways equivalent to the regression
coefficients of ordinary linear regression. The machine learning
literature calls the process of specifying the parameters ‘learning
the data’ but it is equivalent to fitting the parameters of a nonlinear
regression model. Even neural network models are really nonlinear
regression models, although they are often represented as some-
thing more exotic (Faraggi and Simon, 1995).

For many kinds of predictors, there is also a cut-point that must
be specified for translating a quantitative predictive index into a
predicted class label (e.g., 0 or 1) for binary class prediction

problems. Completely specifying the predictor means specifying all
of these aspects of the predictor, the type of predictor, the genes
included and the values of all parameters.

ESTIMATING ACCURACY OF A CLASS PREDICTOR

The most important requirement for a class predictor is that it
predict accurately. Neils Bohr supposedly said: ‘Prediction is
difficult, particularly the future.’ But it is the future that we want to
predict. We want to be able to predict class membership for future
samples whose class membership we do not know. For example,
Wang et al (2002) wanted to predict response to IL2-based
treatment as a way of selecting treatments for individual patients
in the future. The current samples are available to help us estimate
how accurate the class predictor we develop will be for future
predictions. We must be careful about how we use the current
samples to estimate accuracy, however, or our estimates may be
erroneous and misleading, as discussed below.

How can we develop a proper estimate of the accuracy of class
prediction for future samples? For a future sample, we will apply a
fully specified predictor developed using the data available today.
If we are to emulate the future predictive setting in developing our
estimate of predictive accuracy, we must set aside some of our
samples and make them completely inaccessible until we have a
fully specified predictor that has been developed from scratch
without utilising those set aside samples.

To estimate properly the accuracy of a predictor for future
samples, the current set of samples must be partitioned into a
training set and a separate test set. The test set emulates the set of
future samples for which class labels are to be predicted.
Consequently, the test samples cannot be used in any way for
the development of the prediction model. This means that the test
samples cannot be used for estimating the parameters of the model
and they cannot be used for selecting the gene set to be used in the
model. It is this latter point that is often overlooked.

The most straightforward method of estimating the accuracy of
future prediction is the split-sample method of partitioning the set
of samples into a training set and a test set as described in the
previous paragraph. Rosenwald et al (2002) used this approach
successfully in their international study of prognostic prediction
for large cell lymphoma. They used two-thirds of their samples as a
training set. Multiple kinds of predictors were studied on the
training set. When the collaborators of that study agreed on a fully
specified prediction model, they accessed the test set for the first
time. On the test set there was no adjustment of the model or
fitting of parameters. They merely used the samples in the test set
to evaluate the predictions of the model that was completely
specified using only the training data.

Cross-validation is an alternative to the split sample method of
estimating prediction accuracy (Radmacher et al, 2002). There are
several forms of cross-validation. Here, we will describe leave-one-
out cross-validation (LOOCV) as depicted in Figure 1. LOOCV
starts like split-sample cross-validation in forming a training set of
samples and a test set. With LOOCV, however, the test set consists
of only a single sample; the rest of the samples are placed in the
training set. The sample in the test set is placed aside and not
utilised at all in the development of the class prediction model.
Using only the training set, the informative genes are selected and
the parameters of the model are fit to the data. Let us call M1 the
model developed with sample 1 in the test set. When this model is
fully developed, it is used to predict the class of sample 1. This
prediction is made using the expression profile of sample 1, but
obviously without using knowledge of the true class of sample 1.
Symbolically, if x1 denotes the complete expression profile of
sample 1, then we apply model M1 to x1 to obtain a predicted class
ĉ1. This predicted class is compared to the true class label c1 of
sample 1. If they disagree, then the prediction is in error. Then a
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new training set – test set partition is created. This time sample 2
is placed in the test set and all of the other samples, including
sample 1, are placed in the training set. A new model is
constructed from scratch using the samples in the new training
set. Call this model M2. Model M2 will generally not contain the
same genes as model M1. Although the same algorithm for gene
selection and parameter estimation is used, since model M2 is
constructed from scratch on the new training set, it will in general
not contain exactly the same gene set as M1. After creating M2, it is
applied to the expression profile x2 of the sample in the new test
set to obtain a predicted class ĉ2. If this predicted class does not
agree with the true class label c2 of the second sample, then the
prediction is in error.

The process described in the previous paragraph is repeated n
times, where n is the number of biologically independent samples.
Each time it is applied, a different sample is used to form the
single-sample test set. During the steps, n different models are

created and each one is used to predict the class of the omitted
sample. The number of prediction errors is totalled and reported as
the leave-one-out cross-validated estimate of the prediction error.

At the end of the LOOCV procedure, you have constructed n
different models. They were only constructed in order to estimate
the prediction error associated with the type of model constructed.
The model that would be used for future predictions is the one
constructed using all n samples. That is the best model for future
prediction and the one that should be reported in the publication.
The cross-validated error rate is an estimate of the error rate to be
expected in use of this model for future samples assuming that the
relationship between class and expression profile is the same for
future samples as for the currently available samples. With two
classes, one can use a similar approach to obtain cross-validated
estimates of the sensitivity, specificity.

The cross-validated prediction error is an estimate of the
prediction error associated with the algorithm for model building
used. It is not an estimate constructed for a specific model. If we
use all of the data to select genes and construct a specific model,
there is no independent data left to estimate validly prediction
error. A commonly used invalid estimate is called the resubstitu-
tion estimate. You use all the samples to develop a model M. Then
you predict the class of each sample i using its expression profile
xi; ĉi¼M(xi). The predicted class labels are compared to the true
class labels and the number of errors are totaled.

Simon et al (2003) performed a simulation to examine the bias
in estimated error rates for class prediction (see their supplemental
information for a full description of the simulation). Two types of
LOOCV were studied: one with removal of the left out specimen
prior to selection of differentially expressed genes and one with
removal of the left out specimen prior to computation of gene
weights and the prediction rule but after gene selection. They also
computed the resubstitution estimate of the error rate. In a
simulated data set, 20 gene expression profiles of length 6000 were
randomly generated from the same distribution. In all, 10 profiles
were arbitrarily assigned to ‘Class 1’ and the other 10 to ‘Class 2’,
creating an artificial separation of the profiles into two classes.
Since no true underlying difference exists between the two classes,
class prediction will perform no better than a random guess for
future biologically independent samples. Hence, the estimated
error rates for simulated data sets should be centred around 0.5
(i.e., 10 misclassifications out of 20).

Without using cross-validation, an astounding 98.2% of the
simulated data sets resulted in an estimate of zero misclassifications
even though no true underlying difference exists between the two
groups. Moreover, the maximum number of misclassified profiles
using the resubstitution method was only one. Cross-validating the
prediction rule after selection of differentially expressed genes from
the full data set does little to correct the bias of the resubstitution
estimator: 90.2% of simulated data sets still resulted in zero
misclassifications. It is not until gene selection is also subjected to
cross-validation that the estimate of error rate was in line with our
expectation: the median number of misclassified profiles jumps to
11, although the range is large (0–20).

The simulation results underscore the importance of cross-
validating all steps of predictor construction in estimating the
error rate. A study of breast cancer also illustrates the point: van’t
Veer et al (2002) predicted clinical outcome of patients with
axillary node-negative breast cancer (metastatic disease within 5
years vs disease-free at 5 years) from gene expression profiles, first
using the resubstitution method and then using a fully cross-
validated approach. The investigators controlled the number of
misclassified recurrent cases (i.e., the sensitivity of the test) in both
situations, so here we focus attention on the difference in
estimated error rates for the disease-free cases. The improperly
cross-validated method and the properly cross-validation result in
estimated error rates of 27% (12 out of 44) and 41% (18 out of 44),
respectively. The improperly cross-validated method results in a

i = i + 1 

Select informative genes (features) using 
current training set. 

Compare predicted class to 
actual class for sample i. If they
disagree count it as an error 

If i > number of 
biologically independent 
samples then end 

Initialise i = 0 

Omit i th sample 
to create training 
set   

Fit model Mi to training set data using 
informative genes 

Predict class of omitted  sample i 
using model Mi ;  

Figure 1 Schematic diagram of leave-one-out cross-validation
(LOOCV).
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seriously biased underestimate of the error rate, probably largely
due to overfitting the predictor to the specific data set. While van’t
Veer et al (2002) report both estimates of the error rate, the
properly cross-validated estimate was reported only in the
supplemental results section on the website and the invalid
estimate received more attention. Another example of this
occurred in a study where classification trees were built from
gene expression data to classify specimens as normal colon or
colon cancer (Zhang et al, 2001). The authors used a procedure
that only cross-validated steps that occurred after selection of
genes for inclusion in the predictor from the full data set. As our
simulation shows, not subjecting gene selection to cross-validation
can result in a large bias. Other examples of incorrect use of cross-
validation are described by Ambroise and McLachlan (2002).
There are numerous articles in the most prominent journals,
written by both biologists and by methodologists, which make
claims for gene expression classifiers and for new classification
algorithms, which are invalid because they have cross-validated
improperly.

CLASS PREDICTION ALGORITHMS

Feature selection

The most commonly used approach to feature selection is to
identify the genes that are differentially expressed among the
classes when considered individually. For example, if there are two
classes, one can compute a t-test or a Mann–Whitney test for each
gene. The log-ratios or log-signals are generally used as the basis of
the statistical significance tests. The genes that are significantly
differentially expressed at a specified significance level are selected
for inclusion in the class predictor. The stringency of the
significance level used controls the number of genes that are
included in the model. If one wants a class predictor based on a
small number of genes, the threshold significance level is made
very small. Issues of multiple testing or false positives are not
really relevant, however, because the objective is just to select
features for inclusion in the model; no particular claim is made
about the selected genes. Similarly, it does not really matter
whether the assumptions of the t-test are strictly satisfied, because
the P-values are merely used as a convenient index for selecting
genes. Some methods do not use P-values at all but merely select
the n most differentially expressed genes, and specify n arbitrarily.

Several authors have developed methods to identify optimal sets
of genes that together provide good discrimination of the classes
(Bo and Jonassen, 2002; Kim et al, 2002; Deutsch, 2003; Ooi and
Tan, 2003). These algorithms are generally very computationally
intensive, some requiring a large cluster of parallel computers.
Unfortunately, it is not clear whether the increased computational
effort of these methods is warranted. In some cases, the claims
made do not appear to be based on properly cross-validated
calculations; all of the data being used to select the genes and
cross-validation used only for fitting the parameters of the model.
Studies comparing the performance of such methods to the
simpler univariate methods are needed.

Some investigators have used linear combinations of gene
expression values as predictors (Khan et al, 2001; West et al, 2001).
Principal components are the orthogonal linear combinations of
the genes showing the greatest variability among the cases. The
principal components are sometimes referred to as singular values
(Alter et al, 2000). Using principal components as predictive
features provides a vast reduction in the dimension of the
expression data, but has two serious limitations. One is that the
principal components are not necessarily good predictors. The
second problem is that measuring the principal components
requires measuring expression of all the genes and this may not be
desirable for clinical application.

Algorithm specification

Many algorithms have been used effectively with DNA microarray
data for class prediction. Dudoit et al (2002) compared several
algorithms using publicly available data sets. The algorithms
compared included several variants of linear discriminant analysis,
nearest neighbour classification and several variants of classifica-
tion trees. A linear discriminant is a function

lðxÞ ¼
X

i2F

wixi ð1Þ

where xi denotes the log-ratio or log-signal for the ith gene, wi is
the weight given to that gene, and the summation is over the set F
of features (genes) selected for inclusion in the class predictor. For
a two-class problem, there is a threshold value d, and a sample
with expression profile defined by a vector x of values is predicted
to be in class 1 or 2 depending on whether l(x) as computed from
equation 1 is less than the threshold d or greater than d
respectively.

There are a large number of class predictors based on linear
discriminants of the form shown in (1). They differ with regard to
how the weights are determined. The oldest form of linear
discriminant is Fisher’s linear discriminant. The weights are
selected so that the mean value of l(x) in class 1 is maximally
different from the mean value of l(x) in class 2. The squared
difference in means divided by the pooled estimate of the within-
class variance of l(x) was the specific measure used by Fisher. To
compute these weights, one must estimate the correlation between
all pairs of genes that were selected in the feature selection step.
The study by Dudoit et al indicated that Fisher’s linear
discriminant analysis did not perform well unless the number of
selected genes was small relative to the number of samples. The
reason is that in other cases there are too many correlations to
estimate and the method tends to be unstable and overfit the data.

Diagonal linear discriminant analysis is a special case of Fisher
linear discriminant analysis in which the correlation among genes
is ignored. By ignoring such correlations, one avoids having to
estimate many parameters, and obtains a method that performs
better when the number of samples is small. Golub’s weighted
voting method (Golub et al, 1999) and the Compound Covariate
Predictor of Radmacher et al (2002) are similar to diagonal linear
discriminant analysis and tend to perform very well when the
number of samples is small. They compute the weights based on
the univariate prediction strength of individual genes and ignore
correlations among the genes.

Support vector machines (SVMs) are very popular in the
machine learning literature. Although they sound very exotic,
linear kernel support vector machines do class prediction using a
predictor of the form of . The weights are determined by
optimising a misclassification rate criterion, however, instead of
a least-squares criterion as in linear discriminant analysis
(Ramaswamy et al, 2001). Although there are more complex forms
of support vector machines, they appear to be inferior to linear
kernel SVMs for class prediction with large numbers of genes
(Ben-Dor et al, 2000).

Khan et al (2001) reported accurate class prediction among
small, round blue cell tumours of childhood using an artificial
neural network (ANN). The inputs to the ANN were the first 10
principal components of the genes, that is, the 10 orthogonal linear
combinations of the genes that accounted for most of the
variability in gene expression among samples. Their neural
network used a linear transfer function with no hidden layer and
hence it was a linear classifier of the form of equation 1. Most true
artificial neural networks have hidden nodes, nonlinear transfer
functions and individual features as inputs. Such functions would
likely not perform as well as the linear model of Khan et al because
of the number of parameters to be estimated and the greater
opportunity for overfitting the data.
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In the study of Dudoit et al (2002), the simplest methods,
diagonal linear discriminant analysis, and nearest neighbour
classification performed as well or better than the more complex
methods. Nearest neighbour classification is defined as follows. It
depends on a feature set F of genes selected to be useful for
discriminating the classes. It also depends on a distance function
d(x, y) which measures the distance between the expression
profiles x and y of two samples. The distance function utilises only
the genes in the selected set of features F. To classify a sample with
expression profile y, compute d(x, y) for each sample x in the
training set. The predicted class of y is the class of the sample in
the training set that is closest to y with regard to the distance
function d. A variant of nearest neighbour classification is k-
nearest neighbour classification. For example, with 3-nearest
neighbour classification, you find the three samples in the training
set that are closest to the sample y. The class that is most
represented among these three samples is the predicted class for y.
Nearest centroid, classification represents each class by a centroid,
which is the average expression vector for all the arrays in that
class. With nearest centroid classification, the test sample y is
assigned to the class whose centroid it is closest to. The PAM
method of Tibshirani et al (2002) is a variant of nearest centroid
classification.

Dudoit et al also studied some more complex methods such as
Classification Trees and aggregated classification trees. These
methods did not appear to perform any better than diagonal linear
discriminant analysis or nearest neighbour classification. Ben-Dor
et al (2000) also compared several methods on several public data
sets and found that nearest neighbour classification generally
performed as well or better than more complex methods.

Complex methods with large numbers of parameters often fit the
data used to develop the model well, but provide inaccurate
predictions for independent data. This is often referred to as
‘overfitting’ the training data. Complex models have so many
parameters that they can fit all of the random variations in the
training data well. They find predictors and nonlinear functions
that account for the random variations in the training data, but
these discovered relationships do not represent real effects that
exist in independent data; consequently, predictive ability is poor.

Multiple-class prediction

Many of the methods described above are for prediction when
there are two classes. One strategy for multiple-class prediction is
to perform a series of two-class predictions. The multiple-class
prediction problem may be represented as a directed binary graph
such as shown in Figure 2. The root node at the top of the tree
contains all of the classes and partitions them into two subsets
based on a binary classifier. This type of binary separation is
repeated for each subsequent node. Each node separates the set of
classes input to it into two subsets based on a binary class
predictor. The structure of the decision tree may be either
determined based on pre-existing knowledge of the structure of the
tissues being classified, or may be optimised computationally.
There are several advantages to the use of tree structured binary
classifiers. First, the wealth of methods for binary class prediction
may be utilised. The binary decision problem at each node may be
solved by any class prediction algorithm. Second, different feature
(gene) sets may be used at different nodes. This approach does not
require that one set of genes be utilised for the entire multi-class
problem.

There are many alternative approaches to multi-class prediction.
The k-nearest neighbour methods described above are not
restricted to two classes. Since this method generally performs
well and is one of the simplest, it is probably the most favoured of
the non-tree-structured methods.

DISCUSSION

DNA microarrays are a technology that offers great promise for
refining diagnostic classification in ways that will enhance the
efficiency of clinical trials and will enable the appropriate
treatment to be matched to the appropriate patient.
There are, however, major obstacles to the effective use
of this technology. Access to tissue with viable RNA complicates
research studies because the assay cannot be performed
with conventional archived specimens. It also makes tissue
acquisition and handling more difficult in the clinic. Another
limitation is that most laboratories are not equipped to effectively
design studies or analyse the immense amount of noisy data
generated by DNA microarrays. The problems go far beyond data
management, and include the difficulty organisations have in
supporting interdisciplinary collaboration in a manner that brings
the best minds together to educate each other and work creatively
to make biological discoveries and solve important biomedical
problems. The advent of DNA microarray technology has high-
lighted some of the problems in the area of data analysis.
Potentially misleading analyses are published in the best
biomedical journals and there is a plethora of algorithms and
software of limited utility, sometimes questionable validity, and
often based on inadequate understanding of the biological
problems being addressed. These are growing pains, however, in
a field that is dynamic, destined to make important biological
discoveries and potentially revolutionise the process of developing
cancer therapeutics.
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