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SUMMARY. Estimating diagnostic accuracy without a gold standard is an important problem in medical
testing. Although there is a fairly large literature on this problem for the case of repeated binary tests, there
is substantially less work for the case of ordinal tests. A noted exception is the work by Zhou, Castelluccio,
and Zhou (2005, Biometrics 61, 600-609), which proposed a methodology for estimating receiver operating
characteristic (ROC) curves without a gold standard from multiple ordinal tests. A key assumption in
their work was that the test results are independent conditional on the true test result. I propose random
effects modeling approaches that incorporate dependence between the ordinal tests, and I show through
asymptotic results and simulations the importance of correctly accounting for the dependence between
tests. These modeling approaches, along with the importance of accounting for the dependence between
tests, are illustrated by analyzing the uterine cancer pathology data analyzed by Zhou et al. (2005).
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1. Introduction

The lack of gold standard diagnostic truth often complicates
evaluation of diagnostic accuracy for new medical tests. In
some cases, gold standard evaluation may be too costly to
obtain, while in others, a method for establishing true disease
status may not exist. Modeling diagnostic accuracy without
a gold standard test remains an active area of biostatistics
research. A majority of the work in this area involves esti-
mating the diagnostic accuracy of binary tests (i.e., sensi-
tivity and specificity) without a gold standard test. Albert
and Dodd (2004) discussed a number of latent class model-
ing approaches for binary tests which express the joint dis-
tribution of test results conditional on the true disease status
with different models. They showed that estimates of diag-
nostic accuracy may be sensitive to the choice of the model
for the conditional joint distribution. Further, they showed
that it is difficult to distinguish between these different mod-
els with a small number of binary tests. A natural question
is whether there are similar inferential problems with ordinal
tests as compared with binary tests. Because ordinal vari-
ables contain more information than binary variables, there
is the possibility that we may be able to better distinguish
between competing models for the dependence structure be-
tween tests with a small number of ordinal rather than binary
tests. For ordinal tests, interest is in estimating receiver oper-
ating characteristic (ROC) curves rather than sensitivity and
specificity. Specific questions that might be asked include the
following: (i) are estimators of ROC curves robust to model-
ing assumptions about the dependence between tests, and (ii)
can we distinguish between models for the dependence struc-
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ture based on data from only a limited number of ordinal
tests?

There has been limited work on modeling ROC curves with-
out a gold standard from repeat continuous or ordinal tests.
Henkelman, Kay, and Bronskill (1990) proposed a maximum
likelihood method based on a multivariate normal mixture.
Choi et al. (2006) proposed a Bayesian modeling approach for
estimating ROC curves from two normally distributed tests
that are assumed to be correlated. Zhou, Castelluccio, and
Zhou (2005) proposed a nonparametric estimation procedure
for estimating the ROC curve from repeat ordinal tests. This
approach is very flexible in parameterizing the mean struc-
ture, but it assumes conditional independence between tests
(i.e., tests are independent conditional on the gold standard
test). This article proposes random effects models for esti-
mating ROC curves from multiple ordinal tests on the same
subject. These approaches incorporate dependence between
tests through the random effects.

I begin with a random effects model which extends the
model for binary tests proposed by Qu, Tan, and Kutner
(1996) to ordinal test data, and I then discuss models where
the random effects distribution is non-Gaussian. These mod-
els fit into a broader framework of random effects models for
repeated ordinal data, whereby the probability of an ordinal
response is modeled with fixed and random effects, which are
additive on the cumulative probit or cumulative logit scale.
For many of these models, the ordinal responses are charac-
terized by thresholding a latent continuous variable (with cut-
points corresponding to ordinal categories), which is modeled
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with a linear mixed model (Harville and Mee, 1984; Hedeker
and Gibbons, 1994; Tutz and Hennevogl, 1996). More recent
literature includes Bayesian approaches for increased numer-
ical stability (Ishwaran, 2000), easier implementation (Qiu,
Song, and Tan, 2002), and more general random effects distri-
butions (Kottas, Muller, and Quintana, 2005). Ishwaran and
Gatsonis (2000) presented a general class of ordinal random
effects models with applications to correlated ROC analyses
when true disease status is known. In this article, the focus is
on developing approaches for correlated ROC analyses when
disease status is unknown. Because the unknown disease sta-
tus is treated as a latent variable, this article is related to a
broad literature in latent class models for discrete data (e.g.,
Lazarsfeld and Henry, 1968; Goodman, 1974; Espeland and
Handelman, 1989; Formann, 1992; Uebersax, 1999).

In Section 2, I develop random effects models for estimat-
ing ROC curves without a gold standard. In Section 3, I show
that the asymptotic bias occurs if we assume conditional in-
dependence when in fact there is strong dependence between
tests. More generally, it is shown that assuming the correct de-
pendence between tests is important for estimating diagnostic
accuracy. Fortunately, unlike with binary tests, one can more
easily distinguish between competing models for the depen-
dence between tests with a small number of ordinal tests. In
Section 4, simulations demonstrating the importance of incor-
porating dependence between tests are presented. In Section
5, I illustrate these approaches with a study on assessing the
accuracies of seven specific pathologists in detecting carci-
noma in situ of the uterine cervix. These data were used by
Zhou et al. (2005) for estimating rater-specific ROC curves
using a nonparametric approach under a conditional inde-
pendence assumption. Using the proposed models, I show the
importance of correctly modeling the dependence structure
for estimating the ROC curve without a gold standard in this
application. A discussion follows in Section 6.

2. Random Effects Models

Let Y; = (Ya, Yis,..., YY) be a vector of J ordinal test
results for the ith subject (i = 1, 2, 3,...,I), where Y}
takes on the ordinal values 1 to K. The joint distribution can
be expressed by marginalizing over the latent true disease
status. Specifically, the marginal distribution of Y; can be
written as

P(Y;|d; = )P(di = 1), (1)
=0

where d; is the unknown disease status for the ith subject,
P(Y; | d;) is the joint distribution of Y; conditional on d;, and
P(d; = 1) is the probability of disease, which is commonly
referred to as disease prevalence. The remaining part of this
section is concerned with modeling P(Y; | d;).

In the next subsection, the situation in which a common
ROC curve across all J tests is estimated is discussed.

2.1 A Common ROC Curve across J Tests or Raters

This structure is sensible when the test can be considered
as replicate tests or ratings. For example, a single test is re-
peated J times. In this case, we can parameterize P(Y;|d;)
as a cumulative probit random effects model, which exploits

the ordinal nature of the data. Specifically, we can model the
conditional distribution as

<I>’1{P(Y¢j Sk‘dhbd“i)} = Cy, k + by, s, (2)

where Cy, j, are monotonically nondecreasing cutpoints (i.e.,
—00 = Cop < Cpy < Chy £+ < Cpgy < Cog =
and —oo = Ciy < C1p < -+ < Ci g1 £ C g = o for
d; = 0 and 1, respectively) and by, ; is a random effect which
characterizes the dependence in the conditional distribution
P(Y;|d;). Further, ®(z) and ®!(z) denote the cumulative
and inverse cumulative distributions of a standard normal.
The cumulative probit link function has been discussed by
McCullagh and Nelder (1989) and has commonly been used
for regression modeling of univariate and multivariate ordi-
nal data. Cumulative probit random effects models have a
natural interpretation corresponding to the thresholding of a
continuous underlying latent random variable which is mod-
eled with a linear mixed model. The random effect by, ; varies
by individual 4, and its distribution depends on the true
disease status (d;). There are a number of choices for the
random effects distribution: first, a Gaussian random effects
(GRE) model can be developed whereby by, ; = o4,b;, and
where b; has a standard normal distribution. Such a random
effects model generalizes the approach of Qu et al. (1996)
for analyzing binary test data to ordinal test data. For the
GRE model, the conditional distribution of Y; (Y; | d;) can be
expressed as

P(Y;|d;)

J
= /H {q)(cdivyij + b) - ¢(Cdi7yij -1+ b) }‘bodi(b) db,
(3)

where ¢, (b) is a normal density with mean zero and vari-
ance 0. Equation (3) needs to be evaluated numerically. I
have evaluated (3) using Gaussian quadrature with 50 Gaus-
sian quadrature points (Abramowitz and Stegun, 1972). The
conditional independence model is a special case of the GRE
model when ¢y = o7 = 0. In other words, equation (2) re-
duces to the conditional independence model when by, ; =
0, for all d; and i. The GRE model is similar to the ran-
dom effects model for ordinal data proposed by Kottas et
al. (2005), whereby the random effects distribution is speci-
fied as a finite mixture (FM) of normals. It is also closely re-
lated to the probit latent class model proposed by Uebersax
(1999).

The FM model is an alternative approach for incorpo-
rating conditional dependence between tests, whereby de-
pendence is incorporated with an FM as compared with a
continuous mixture in the GRE model. Specifically, condi-
tional on d; = 0, a fraction 7y of individuals will always
be rated with the lowest rating (rating = 1 in our exam-
ple), and the remainder with probability 1 — 7y are subject
to equation (2) with a conditional independence structure.
Similarly, conditional on d; = 1, a fraction 7; of individu-
als will always be rated with the highest rating (rating =
5 in our example), and the remainder with probability
1 — n; will be subject to equation (2) with a condi-
tional independence structure. The FM model generalizes an
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FM model proposed for binary tests (Albert et al., 2001).
For the FM model with five ordinal categories as in our ex-
ample, the conditional distribution of Y; given d; can be ex-

pressed as follows. If Y; = (1, 1,...,1) and d; = 0, then
J
(Y|d—0)—770+1*770H (Co,1)- (4)
If Yvz # (1, 1 ,1), and db = O7
J
P(Yi|d;i =0) = (1= m) [[{®(Cou,) = ®(Co,1)}-
(5)
If Yi =5 (5, 5,...,5)/ and dl = 1,
J
P(Yildi=1)=m+0-nm) [[{1-aC} (6
j=1

Last, if Y; # (5, 5,...,5) and d; = 1,

J
(Y|d71 1_771H Olylj

® (Clvyufl) }
(7

Note that when 7, or 7, is positive, the FM model accounts for
positive conditional dependence between tests. This follows by
noting that cov(yy, ys |d; = 1) = (K 4+ C)*ni(1 — n,), where
C =30 H(CLy) — @(Cri)}

A generalization of both the GRE and FM models is a
combined model in which both types of heterogeneity are in-
corporated into the random effects distribution. Specifically,
conditional on d; = 0,

400 with probability 7y
bo i = { 3 (8)
N(0,02) with probability 1 — ng

where N(0, o ) denotes a normal distribution with mean 0
and variance o%. Conditional on d; = 1,

—00 with probability
b { O
N(0,0%) with probability 1 —n,

The GRE model is a special case of the combined model (8)
and (9) when ny = n; = 0. Further, the FM model results
when o, = 0y = 0. Primarily the GRE and FM models will
be considered in this article.

The model parameters themselves are usually not of di-
rect interest. Focus is on obtaining model-based estimates
of the ROC curve. For a general random effects distribu-
tion, the coordinates of the ROC curve, corresponding to
(1-Specificity, Sensitivity) at each of the ordinal categories
(k=1, 2, 3,...,K), can be expressed as ([1 — E{P(Y; <
k|d; = 0)}] E{P( i >k|d; = 1)}), which can be evaluated
as ([1 — E{®(Cox —|— boi)}, 1 — E{®(C1x + b1,i)}]), where
the expectation is taken over the random effects distribution.

The area under the ROC curve (AUC), which is an important
summary measure of the ROC curve, can be expressed as

K-1 K

I=k+1

K
1
52 Yy =k|d; =0)P(Y; = k|d; =1),

(10)

where

P(Yy; =k|d;) = E{®(Ca, k + ba,.i)} — E{®(Cu, k-1 + ba, )}

(11)

Under the more general combined GRE/ FM model 8)
and (9), E{®(Ca, » + by, i)} = (1= 14,)2(Ca, 1 //1 + 05,) +
na;I(d; = 0), where I(z) is an indicator function that is
equal to 1 when the condition z is met and is otherwise
equal to 0. Under a GRE assumption, E{®(Cy, 1 + ba, )} =
®(Cq, k/\/1+07). Under an FM model, E{®(Cq,x +
ba; i)} = (1 —nq,)®(Ca; k) + 14, I(d; = 0). For conditional in-
dependence, equation (10) reduces to the expression for AUC
developed by Zhou et al. (2005).

2.2 Rater-Specific ROC Curves

In this subsection, I generalize the random effects models to
allow for different ROC curves for each of the J tests or raters.
One parsimonious model would be to introduce rater-specific
effects to the cumulative probit random effects model (2) as

J
<l€|d“bd )} Cd k+zﬁd7 rj+bd i3

r=2

e {P(Yy
(12)

k=1,2,3,...,K— 1, where I, is an indicator function that
is equal to 1 if the condition z is met. The regression coef-
ficients Ba,,» (Bo,2, Bo,3,- -, 80,5 and P12, Br3, ..., 01,s) allow
for rater-specific shifts in the cutpoints depending on d; for
raters 2 to J relative to rater 1. Model (12) assumes that
both the random effects and rater effects act on the cumula-
tive probability of an ordinal response in an additive fashion
on the probit scale. One could generalize model (12) so that
we estimate the cutpoints separately for each rater. For this
model,

o {P(Ys

where for each rater the cutpoints are constrained to be mono-
tonically nondecreasing (i.e., for each rater j, —oo = Cy g ; <
Corj; < <Cok-1; < COK] =00 and —o0o = Cyp; <
01’1’]‘ S S Cl,Kfl,J S CI,K,J = oo for d = 0 and 1 re-
spectively) and by, ; is a random effect as described previ-
ously. Zhou et al.’s (2005) nonparametric conditional inde-
pendence approach is an alternative parameterization to (13)
when there are no random effects. Thus, model (13) can be
thought of as a generalization of Zhou et al.’s nonparametric
approach, which allows for conditional dependence between
tests.

< k|d;, by, z)} Ca kj + ba i (13)
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2.3 Estimation

The log likelihood can be written as log L = 2;1 log L;,
where

K K K
logL; = Z Z T Z Livi=ir izsevin)}

ii=1dg=1  iy=1

X log{P(l’Z = (il,ig, e ,iJ))},
where P(Y;) is given by equation (1). The log likelihood
log L = Zle log L; can be maximized using a quasi-Newton—
Rhaphson technique by using GAUSS (Aptech Systems, 1992).
As with other latent class models (Zhou et al., 2005, for ex-
ample), the likelihood (14) is invariant to a relabeling of the
latent variable (e.g., d = 0 corresponding to a positive gold
standard test). Thus, there are two solutions which maximize
equation (14). Fortunately, in most cases, only one of the so-
lutions provides reasonable prevalence and ROC curve esti-
mates.

Although estimators of the standard errors for both esti-
mates of the ROC curve and estimates of the AUC could
be derived from variance estimates of the model parame-
ters (as is suggested by Zhou et al., 2005) using the delta
method, I propose using a bootstrap. The bootstrap (Efron
and Tibshirani, 1993) is a flexible approach that avoids the
laborious delta method calculations required for more com-
plex models. Specifically, I constructed a bootstrap sample of
I vectors of ordinal tests (Y, Y5, ..., Y}), where each vector
is drawn with replacement from the original set of I vectors,
Y:, Y5,...,Y; (Moulton and Zeger, 1989). Standard errors
for parameter estimates were estimated with 800 resampled
datasets. The choice of 800 bootstrap datasets was based on
the results and recommendations of Booth and Sarkar (1998),
who showed that this number was sufficient to achieve a rel-
ative error in the variance estimate of less than 10% with
probability 95%.

(14)

3. Asymptotic Bias for Misspecified Random
Effects Distribution

I examine the asymptotic bias in misspecifying the depen-
dence structure between tests. For simplicity, I will consider

the situation in which all ROC curves are constant across
four raters or tests (J = 4). The approach is similar to the
one taken for assessing asymptotic bias for misspecified ran-
dom effects distribution for repeated binary tests (Albert and
Dodd, 2004). The misspecified maximum likelihood estima-
tor for the model parameters, denoted as é*, converges to the
value 6, where

0" = argmaxg Fr{log L, (Y;,0)}, (15)

and log Ly, (Y;0) is the individual contribution to the log like-
lihood under the assumed model M and the expectation is
taken with respect to the true model 7. An expression for
Er{log Ly (Y5, 0)} is provided in the Appendix. The notation

Er(log Lar) = Er{log L(Y, 0)}o—o- (16)

denotes the expectation (with respect to the true model T)
of the individual contribution to the log likelihood under the
assumed model M when evaluated at 6*. By the invariance
property of maximum likelihood, the maximum likelihood es-
timator of the AUC converges to AUC* (as I — o0), where
AUC* = g(0*) and g relates the parameters 6 to the AUC by
(10).

Initially, I will examine the asymptotic bias of the AUC
(defined as AUC* — AUC') for a model which assumes condi-
tional independence when the true model is a GRE model.
Table 1 presents AUC* for different model parameters in
which A and B lead to an AUC of 0.9, while C and D lead to
an AUC of 0.8. The parameter values are constructed so that
A and C have the weaker dependence (oy = o7 = 1), while
B and D have stronger dependence (o9 = o1 = 2), between
tests. Results are presented for true prevalences of 20% and
50%. The results show that ignoring the dependence between
tests leads to asymptotically biased estimates of AUC.

I also examined the effect of misspecifying the depen-
dence structure between tests on the AUC. Table 2 shows
the asymptotic bias of the AUC for the GRE model when
the true random effects distribution is a combined GRE/FM
model (8) and (9). The results show that there can be siz-
able asymptotic bias as the random effects distribution de-
parts from a normal distribution. For example, the first row
shows a case in which only 10% of disease-free or diseased

Table 1
Asymptotic bias (AUC* — AUC) in estimating the AUC under an independence model when the true model is a GRE model.
These calculations assume that J = 4, K = 5, and there are no rater-specific differences in the ROC curves.

True
Parameter values® prevalence True AUC AUC* Bias FEgre{log Lore}  Ecre{log Lia}
A. withoy =0, =1 0.2 0.90 0.933 0.033 —3.1829 —-3.3714
0.5 0.90 0.932 0.032 —4.0387 —4.2053
B. with oy = 07 = 2 0.2 0.90 0.960 0.060 —2.4721 —2.8142
0.5 0.90 0.968 0.068 —3.1708 —3.5052
C.withoy =0, =1 0.2 0.80 0.862 0.062 —3.8941 —3.9661
0.5 0.80 0.888 0.088 —4.5877 —4.7286
D. with og = 01y = 2 0.2 0.80 0.939 0.139 —3.3962 —-3.7715
0.5 0.80 0.955 0.155 —4.1361 —4.5843

*All scenarios are based on model (2) where A: Cp1 = 1.0, Cp 2 = 2.9, Co3 = 4.8, Cog = 6.7, C1; = —1.5, C1 o = —1.1, C 3 = —0.6, and
Cia = —0.10; B: Co1 = 2.25, Coz = 3.75, Co.3 = 5.25, Co4 = 6.75, C11 = —2.25, C1p = —1.75, C15 = —1.25, and C1 4 = —.75; C: Co; =
1.0, Cp2 = 0.5, Cp3 =0, C(]74 = —0.5, 0171 = —1.5, C172 = —0.1, C173 = —1.6,and C1 4 = —=3.0; D: Co1 = 1.1, Cp2 = 2.7, Cp2 = 4.3, Cou
=59,C11 = —1.65, C1.5 = —0.65, C15 = 1.65, and C4 = 2.65.
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Table 2
Asymptotic bias (AUC* — AUC) in estimating the AUC with
a GRE when the true random effects distribution is a
combined GRE/FM model (T) given by equations (8) and (9)
with varying ny and ny. These calculations assume that oy =
o1 =2, J=4, K=25, there is a prevalence of 0.2, and there
are no rater-specific differences in the ROC curves. For all
scenarios, Cp1 = 0.5, Cyo = 1.5, Cy3 = 2.0, Cpy = 3.0, Cy 1
= —40, 0172 = —2, 01’3 = —1, and 0174 =0.

True
To m AUC AUC* Bias ET {lOg LT} ET {lOg LGRE}
0.1 0.1 0.848 0.707 —0.141 —4.3301 —4.3604
0.01 0.01 0.822 0.802 —0.200 —4.2689 —4.2710
04 04 0920 0.802 —-0.118 —3.9189 —3.9543
0.01 0.2 0.848 0.621 —-0.227 —4.2875 —4.2925
0.2 0.01 0.853 0.727 —-0.126 —4.2736 —4.3155
0.2 0.2 0.874 0.677 —0.197 —4.2814 —4.3218

patients are subject to no diagnostic error and the remain-
der follow a GRE dependence structure. In this case, there is
sizable asymptotic bias for estimating AUC (0.707 — 0.848 =
—0.141). Even for a very small departure from a GRE model
(second row in table), in which only 1% of individuals have
no diagnostic error and the remainder follow a GRE model,
there is a nonnegligible asymptotic bias when we incorrectly
assume a GRE model (0.802 — 0.822 = —0.20). Fortunately,
even for a small departure from a GRE model, we are able to
distinguish between a true GRE/FM model and a misspecified
GRE model based on likelihood comparisons. In Table 2, the
expectations of the individual contribution to the log likeli-
hood for the true model, Er(log Lt), were nonnegligibly larger
than these expectations for the misspecified GRE model,
Er(log Lgrg). These results are in contrast to the results for
binary tests (Albert and Dodd, 2004), where the expected
log likelihoods under the correct and incorrect models were
often indistinguishable from each other, suggesting difficulty
in distinguishing between these two conditional dependence
models.

Using simulation studies, the ability to distinguish between
models is discussed in the next section.

4. Simulation

Simulations were performed to examine the robustness of
AUC estimation to the dependence between tests and to ex-
amine the difficulty in choosing the correct dependence struc-
ture. I simulated data according to either the GRE or FM
model, and I fit both the GRE and FM models to realiza-
tions from each simulation scenario. Table 3 shows the results
of simulations under four scenarios. Scenarios A and B are
GRE models with AUC = 0.90 and 0.80, respectively. Sce-
narios C and D are FM models with AUC = 0.90 and 0.80,
respectively. I present results for sample sizes of I = 150 and
I = 500. For the larger sample size (I = 500), estimates of
the AUC are approximately unbiased under the correct de-
pendence structure. However, consistent with the asymptotic
results in the previous section, estimates are biased under a
misspecified dependence structure. For example, for I = 500
with scenario A, estimates of the AUC under the correctly
specified GRE model were nearly unbiased, while estimates

Table 3
Simulation study: estimating AUC under a correct and a
misspecified random effects distribution. Prevalence is 0.20,
J =17, and K = 5 in all simulations. I = 150 and 500. Models
were fit under FM and GRE random effects distributions and
were generated under both of these distributions. For each
scenario, 1000 simulated datasets were generated.

Avg. est. AUC
True random Avg. %
effects True est. AUC (Lgrg >
distribution ~ Scenario® I ~AUC GRE FM  Lpy)
GRE 150 0.90 0.90 0.69 99.8
(0.028) (0.27)
A 500 0.90 0.90 0.70 100
(0.011) (0.26)
GRE B 150 0.80 0.80  0.77 100
(0.04) (0.22)
B 500 0.80 0.80 0.78 100
(0.02) (0.21)
FM C 150 0.90 0.72  0.90 2.2
(0.16) (0.02)
C 500 0.90 0.73 0.90 0.1
(0.17) (0.01)
FM D 150 0.80 0.58  0.77 9.8
(0.06) (0.10)
D 500 0.80 0.55  0.80 0.4
(0.04) (0.02)
#Scenario A is based on (2) with GRE random effects and Cp1 =
1.0, Cop = 2.9, Co = 4.8, Coy = 6.7, C1q = —1.5, Crp = —1.1,

Ci,3=—-06,and C; 4 = —0.1, and oy = o1 = 1. Scenario B is based
on (2) with GRE random effects and Cp,1 = 1.0, Cp2 = 0.5, Co 3
=0, Cpy = —0.5, C11 = —15, C1p = —0.1, C13 = —1.6, and
Ci,4 = —3.0, and 0p = 01 = 1. Scenario C is based on (2) with FM
random effects and Cp; = 0, Cpo = 0.5, Cp3 = 1.0, Cp g = 1.5,
Ciyp=-15,C1p=-11,C13 = —0.6, and C1 4 = —0.1, and g =
m = 0.2. Scenario D is based on (2) with FM random effects and
Co,1 = —0.75, Cpo = —0.25, Cp3 = 0.25, Cyy = 0.75, C1,;1 =
—1.5,C12=-1.1,C1 3= —0.6, and C1 4 = —0.1, and g = n; = 0.2.

of AUC were biased and highly variable under the misspec-
ified FM model. Fortunately, unlike the case of binary tests
where distinguishing between the FM and GRE models is
very difficult (Albert and Dodd, 2004), we are able to dis-
tinguish between models for the dependence structure using
likelihood comparisons. Because the GRE and FM models
have the same number of parameters, by the likelihood prin-
ciple, the model with the largest likelihood is most supported
by the data. Based on simply ranking the likelihoods, there
was over a 99% probability of choosing the correct model with
both sample sizes for scenario A. For scenario D, the correct
FM model was chosen in over 90% of the cases with [ =
150 and in over 99% of the simulated realizations with the
larger sample size of I = 500. This model selection is based
on choosing between two models, one of which is known to
be correct. In practice, of course, this is not feasible because
many more models are possible, and in any case, we never
know the true model. The simulation is useful in demonstrat-
ing the ability to distinguish between competing models for
the dependence structure. In practice, model diagnostics will
need to be performed in order to assume that the dependence
structure is appropriately modeled. This will be discussed in
Section 5.
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Figure 1.
prevalence = 0.2. (C) I = 150 and prevalence = 0.5.

For scenarios A, B, and C, estimates of AUC were nearly
unbiased under the correct dependence structure for the
smaller sample size. However, for scenario D, there was sizable
small-sample bias under the correct FM model. A histogram
of parameter estimates under scenario D is presented in
Figure 1. For the smaller sample size (I = 150) the estimates
appear to be bimodal, demonstrating the poor small-sample
properties in this case (Figure 1A). Estimates were nearly un-
biased and approximately normally distributed for scenario D
for the larger sample size (Figure 1B). A simulation with a
larger prevalence of 50% for the sample size of I = 150 was
conducted. Although there was sizable bias for a prevalence
of 20% (Figure 1A; Table 3), there was little bias for the
larger prevalence of 50%. Specifically, the mean estimates of
AUC under the correctly specified FM model were 0.80 (SE
= 0.02). Further, in this case, the AUC estimates appear to
be normally distributed (Figure 1C).

5. An Analysis of the Uterine Cancer Data

I applied the random effects approaches to a study in which
seven pathologists (J = 7) rated 118 slides (I = 118) with po-
tential carcinoma in situ of the uterine cervix. Each pathol-
ogist independently rated each of the 118 slides in a random
order, classifying lesions on each of the slides on a five-
category ordinal scale ranging from 1 (negative) to 5 (invasive
carcinoma) (K = 5). In this study, there was a clinical def-
inition of carcinoma which ideally could be used as a gold
standard. However, as mentioned by Zhou et al. (2005), di-
agnosis based on this clinical definition was not available due

AUC

Histogram of estimated AUC under scenario D in Table 3. (A) I = 150

0.7 0.8 0.9 0.4 0.5 0.6 0.7 0.8 0.9

AUC

and prevalence = 0.2. (B) I = 500 and

to technological limitations. More details on this study are in
Holmquist, McMahan, and Williams (1967). Landis and Koch
(1977) applied their methodology to these data in order to as-
sess agreement between raters. However, assessing agreement
between raters is a different problem from estimating diagnos-
tic accuracy. Zhou et al. (2005) estimated rater-specific ROC
curves on these data with their nonparametric conditional
independence approach. I will illustrate the importance of ac-
counting for dependence between tests using this dataset.

I fit models (12) and (13) under independence and GRE
and FM dependence structures. The maximum likelihood es-
timates of rater-specific AUC, along with the log likelihoods
for each model, are presented in Table 4. Standard errors of
the estimated rater-specific AUCs were estimated using the
bootstrap (with 800 bootstrap replications). Models A, B,
and C show estimates of rater-specific AUC for a cumula-
tive probit model with additive rater-specific effects (12) un-
der conditional independence and GRE and FM dependence
structures, respectively. Comparisons between the conditional
independence, GRE, and FM models were made using the
Akaike information criterion (AIC; Akaike, 1974). The AIC is
a penalized likelihood technique whereby different potentially
nonnested models are ranked according to the value AIC =
—2log L + 2p, where p is the number of model parameters.
Ranking the AIC values is not an explicit test of whether
one model fits better than another. Rather, the AIC is a
method for choosing a model, among numerous potentially
nonnested competing models, which is most supported by the
data. Models with the smallest AIC are those most supported
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Table 4
Analysis of the cervical cancer pathology data. Estimates (standard errors) of the rater-specific AUC are obtained under models
(12) and (13) and under different random effects distributions.

Estimated rater-specific AUC (rater)

Model Description 1 2 3 4 5 6 7 logL, AIC

A Model (12), indep 0.96 0.94 0.91 0.92 0.92 0.91 0.96 —836.02 1714.0
(0.01)  (0.02)  (0.02)  (0.02)  (0.02)  (0.02)  (0.01)

B Model (12), GRE 0.74 0.76 0.72 0.84 0.68 0.76 0.83 —711.37 1468.7
(0.07) (0.05) (0.06) (0.06) (0.05) (0.08) (0.04)

C Model (12), FM 0.96 0.92 0.91 0.92 0.91 0.91 0.95 —798.68 1643.4
(0.01) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02)

D Model (13), indep 0.94 0.92 0.90 0.93 0.95 0.86 0.99 —779.23 1672.5
(0.02)  (0.03)  (0.04)  (0.03)  (0.02)  (0.03)  (0.01)

E Model (13), GRE 0.87 0.83 0.89 0.99 0.86 0.79 0.95 —660.02 1438.0
(0.04) (0.05) (0.04) (0.01) (0.05) (0.05) (0.04)

F Model (13), FM 0.94 0.89 0.90 0.94 0.93 0.85 1.00 —740.48 1599.0
(0.02) (0.03) (0.04) (0.03) (0.02) (0.03) (0.01)

by the data. The AIC is substantially smaller for the GRE
than for the FM model, and both are substantially smaller
than that for the conditional independence model. Models D,
E, and F show estimates for the cumulative probit model (13),
which allows for a more flexible mean structure than the rater-
specific constant shifts in the cutpoints assumed by model
(12). Models E and F correspond to the GRE and FM models,
while model D corresponds to the conditional independence
model. Zhou et al.’s (2005) nonparametric conditional inde-
pendence model is identical to model D (e.g., log likelihood
as well as rater-specific estimates of AUC are identically es-
timated to round-off error). Note that for each dependence
structure, the cumulative probit models with additive rater
effects (A4, B, and C) have a larger AIC (i.e., worse fit) than
the models with nonadditive rater effects (D, E, and F). Fur-
ther, a likelihood ratio test comparing model F with model
C was highly significant, favoring the more complex model
(difference in 2x log likelihood was 116.4 with 36 degrees
of freedom).

Estimates of model (13) with the GRE and the FM depen-
dence structures (models E and F) resulted in substantially
reduced AICs relative to the conditional independence model
(model D) of Zhou et al. The dependence parameters for the
GRE model were estimated as 6o = 1.95 and 6; = 0.76, while
the dependence parameters for the FM model were estimated
as My = 0.20 and 7; = 0.02. Thus, both the GRE and FM mod-
els suggest sizable conditional dependence. The GRE model
had an AIC value which was substantially smaller than that
obtained with the independence or the FM model, suggesting
that of the three models, the GRE describes the uterine can-
cer data best. Further, estimates of AUC (along with their
bootstrap estimates of standard error) were substantially dif-
ferent between the different models, with the GRE model, for
all but one rater, showing rater-specific AUC estimates lower
than those obtained with either the independence or the FM
model. In addition, the ordering of the estimated rater-specific
AUC:s differs between the GRE and independence models. For
example, the independence model estimates rater 7 as having
the largest AUC among all raters, while the GRE model esti-
mates rater 4 as having the largest AUC. Figure 2 shows the
estimated rater-specific ROC curves derived under model (13)

with a GRE dependence structure (i.e., best-fitting model).
These estimates are substantially different from those pre-
sented by Zhou et al., which were derived under a conditional
independence structure. Overall, the diagnostic accuracy is
not as good under the better-fitting GRE model as compared
with the conditional independence model.

I examined the fit of the independence model in more detail.
Specifically, I developed a diagnostic for dependence, whereby
I plotted the observed minus the expected correlation for
each pairwise combination of tests. This is a generalization
of a diagnostic for the correlation structure developed by Qu
et al. (1996) for the random effects model with binary test re-
sults. Specifically, I plot { Empirical Correlation};; — Cfo?rij
for each pairwise comparison of tests ¢ and j, where i < j
and where C/o?rij is the model-based correlation under model
(13) with a conditional independence assumption (e.g., bg, ;
all equal to zero). The expected correlation is derived in the
Appendix. Figure 3 shows the diagnostic plot for the uterine
cancer data. The difference appears to be relatively constant
and substantially larger than zero, reflecting the inadequacy

Sensitivity

rater 1
rater 2
rater 3
i rater 4
o [ - rater5
e L/ -=-= rater6
s rater 7

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

1-Specificity

Figure 2. Estimated rater-specific ROC curves for model
(2) with a Gaussian random effect.
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Figure 3. Observed minus expected correlation under a

conditional independence assumption.

of the conditional independence model to explain the large
correlation between tests. A similar plot is presented for the
GRE model (Figure 4). Specifically, I plot the difference of
the observed correlation and the expected correlation under
model (13) with a GRE dependence structure. Note that these
differences are substantially closer to zero, demonstrating that
the GRE model provides a much better description of the
correlation between tests than the conditional independence
model.

I fit the combined GRE/FM model with (13) to the uter-
ine cancer data. The resulting log likelihood for the combined
model was —659.0, compared with —660.0 for the GRE model,
suggesting that there is little improvement in incorporating
the extra FM component for describing the dependence struc-
ture (the AIC for the GRE/FM model was 1440.0, compared
with a value of 1438.0 for the GRE model). Estimates of the
combined model parameters were 6, = 1.82,6; = 0.76,7 = 0,
and 7; = 0.01, which nearly reduces to those for the GRE

0.2 0.4
1

observed — expected correlation

-0.2

-0.4

T T T T
5 10 15 20

pair

Figure 4. Observed minus expected correlation under a
Gaussian random effects assumption.

model (where ny =n; =0, 6o =1.95, and &, = 0.76). Fur-
ther estimates of the rater-specific AUCs under the combined
model were identical, within round-off error, to those reported
for the GRE model (under (13)) in Table 4.

6. Discussion

Methodology which accounts for conditional dependence be-
tween tests was proposed to estimate ROC curves without
a gold standard. This work extends the GRE model of Qu
et al. (1996) from the estimation of sensitivity and specificity
for binary tests to the estimation of the ROC curve for ordinal
tests. The methodology also extends the recent work of Zhou
et al. (2005) to allow for conditional dependence between
tests. Asymptotic results and simulations show the impor-
tance of correctly modeling the dependence structure between
tests. Further, I illustrated the methodology with cervical can-
cer testing data, which was used to illustrate the nonpara-
metric conditional independence approach proposed by Zhou
et al. The analysis of these data illustrated the importance of
accounting for conditional dependence. Recall that the GRE
model fits substantially better than the independence model
(by AIC comparisons as well as by using a graphical diag-
nostic) and that estimates of the ROC curve under the GRE
model, in general, showed substantially poorer diagnostic ac-
curacy than the independence model. The GRE model also
fits better than the FM model, and there was no advantage in
fitting a combined GRE/FM model over the GRE model in
describing these data. Software for fitting the different mod-
els is written in GAUSS (Aptec Systems, 1992) and is available
from the author.

The proposed random effects models fit into a larger litera-
ture in modeling repeated ordinal data. For example, Kottas
et al. (2005) proposed a general class of random effects mod-
els in which the random effects distribution is a mixture of
normals. Although this approach is similar to the proposed
GRE model, there are notable differences. First, in this arti-
cle, the GRE model is used to account for conditional depen-
dence between tests while estimating the ROC curve with-
out a gold standard. In contrast, Kottas et al. focused on
using the model to estimate agreement between raters. Sec-
ond, a maximum likelihood approach is taken in this arti-
cle, while Kottas et al. proposed a Bayesian approach for
inference.

Previous results (Albert and Dodd, 2004) showed that for a
limited number of binary tests it is very difficult to distinguish
between competing models for the dependence between tests,
yet the choice of a dependence structure has a large effect on
model-based estimates of sensitivity and specificity. In this
article, I investigated the problem of estimating ROC curves
from ordinal tests without a gold standard. Similar to the
results for binary tests, inferences on the ROC curve for ordi-
nal tests were not robust to the choice of dependence struc-
ture between tests. However, unlike the case for binary
tests, where it is difficult to distinguish between compet-
ing models for the dependence between tests, it is easier to
distinguish between models with ordinal tests. These results
highlight the importance of developing model diagnostics for
correctly specifying the dependence between ordinal tests. I
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proposed a simple technique for examining this dependence
structure by comparing the expected versus the observed cor-
relation between ordinal tests. More research in this area is
warranted.

There are potential problematic issues with estimating
ROC curves without a gold standard. Particularly when the
diagnostic accuracy is low (e.g., when the AUC is below 80%),
I found that there was a tendency for the likelihood to have
multiple local maximums, making estimation problematic. At
the very least, practitioners should perform estimation using
different starting values for the parameters in order to be as-
sured that a global maximum has been achieved.

A major concern with using latent class modeling ap-
proaches for estimating diagnostic accuracy without a gold
standard has been that the latent state may not relate to an
actual clinical state or gold standard test (Begg and Metz,
1990; Hadgu and Miller, 2001; Pepe and Alonzo, 2001). For
example, the clinical state or gold standard, if it exists at all,
may truly be a continuous measure and, therefore, be mis-
specified as a dichotomous gold standard. Zhou et al. (2005)
addressed this concern by assuming the existence of an unob-
served binary gold standard test.

Albert and Dodd (2006) discussed the advantages of ob-
serving even a small percentage of gold standard information
in order to improve the statistical properties of estimators of
diagnostic accuracy for binary tests. Specifically, they showed
that estimates of sensitivity and specificity are insensitive to
the conditional dependence between binary tests when the
gold standard test is available for a small fraction of ran-
domly selected individuals. Examining this problem for esti-
mating the ROC curve for ordinal tests is an area of future
research.
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APPENDIX

Fvaluating Er{log Ly} for J =4 When T Is the True Model
and M Is the Misspecified Model

Let Y = (Y1, Ys, Y3, Y))' be a random vector reflecting the

four ordinal ratings on a given patient. Denote i = (i1, 42, i3,

i4). The Er{log Ly} can be written as

Er{log Ly} =Y Pr{Y =i}

i

x log {Z Py(Y =i|d=1)P,(1— Pd)”} ,

1=0

where Pp(Y) is the joint distribution of Y under the true
model, evaluated using equation (1). In addition, Py (Y |d;)
is the conditional distribution of Y given true disease status d
under the misspecified model, and P, is the probability that
d = 1 or the disease prevalence. Further, the summation is
over all possible combinations of i, is, i3, and iy (5* terms for
K =5).

Correlation between Two Tests under an Independence Model

Denote Y; and Y, as any two tests on a given person.
The correlation between these two ordinal tests can be ex-

pressed as corr(Y1,Ys) =cov(Y1, Y2)/+/ Var(Y;)Var(Ys), where
cov(Yy, Y3) = Py(1 — PO{EMY1|d = 1)E(Y2]d = 1) +
E(Yi|d = 0EY:|d = 0) — E(Yi|d = DE(Y|d =

0) — EY1|d = 0)E(Yz|d = 1)}, and where Var(Y;) =
PAE(V|d = 1) — B(Y|d = 17} (I — P){E(Y]
d =0) — EYj|ld = 0?2} + P,(1 — P){EY;|d = 0)
— E(Y;|d = 1)}. Further, E(Y; |d) = lelP Y; =1|d) and

E(Y]|d)= Zz L PP(Y; =1|d), where P(Y;|d) is given by
equation (11).



