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Abstract Purpose:Anewgeneration of molecularly targeted agents is entering the definitive stage of clin-
ical evaluation. Many of these drugs benefit only a subset of treated patients and may be over-
looked by the traditional, broad-eligibility approach to randomized clinical trials. Thus, there is a
need for development of novel statistical methodology for rapid evaluation of these agents.
Experimental Design:We propose a new adaptive design for randomized clinical trials of tar-
geted agents in settings where an assay or signature that identifies sensitive patients is not avail-
able at the outset of the study. The design combines prospective development of a gene
expression ^ based classifier to select sensitive patients with a properly powered test for overall
effect.
Results: Performance of the adaptive design, relative to the more traditional design, is evaluated
in a simulation study. It is shown that when the proportion of patients sensitive to the new drug is
low, the adaptive design substantially reduces the chance of false rejectionof effective new treat-
ments.When the new treatment is broadly effective, the adaptive design has power to detect the
overall effect similar to the traditional design. Formulas are provided to determine the situations in
which the new design is advantageous.
Conclusion:Development of a gene expression ^ based classifier to identify the subset of sensi-
tive patients can be prospectively incorporated into a randomized phase III design without com-
promising the ability to detect an overall effect.

Developments in tumor biology have resulted in shift toward
molecularly targeted drugs (1–3). Most human tumor types are
heterogeneous with regard to molecular pathogenesis, genomic
signatures, and phenotypic properties. As a result, only a subset
of the patients with a given cancer is likely to benefit from a
targeted agent (4). This complicates all stages of clinical
development, especially randomized phase III trials (5, 6). In
some cases, predictive assays that can accurately identify
patients who are likely to benefit from the new therapy have
been developed. Then, targeted randomized designs that restrict
eligibility to patients with sensitive tumors should be used (7).
However, reliable assays to select sensitive patients are often not
available (8, 9). Consequently, traditional randomized clinical
trails with broad eligibility criteria are routinely used to
evaluate such agents. This is generally inefficient and may lead
to missing effective agents.

Genomic technologies, such as microarrays and single
nucleotide polymorphism genotyping, are powerful tools that
hold a great potential for identifying patients who are likely
to benefit from a targeted agent (10, 11). However, due to the
large number of genes available for analysis, interpretation of
these data is complicated. Separation of reliable evidence from
the random patterns inherent in high-dimensional data
requires specialized statistical methodology that is prospectively
incorporated in the trial design. Practical implementation of
such designs has been lagging. In particular, analysis of
microarray data from phase III randomized studies is usually
considered secondary to the primary overall comparison of all
eligible patients. Many analyses are not explicitly written into
protocols and done retrospectively, mainly as ‘‘hypothesis-
generating’’ tools.
We propose a new adaptive design for randomized clinical

trials of molecularly targeted agents in settings where an assay
or signature that identifies sensitive patients is not available.
Our approach includes three components: (a) a statistically
valid identification, based on the first stage of the trial, of the
subset of patients who are most likely to benefit from the
new agent; (b) a properly powered test of overall treatment
effect at the end of the trial using all randomized patients;
and (c) a test of treatment effect for the subset identified in
the first stage, but using only patients randomized in the
remainder of the trial. The components are prospectively
incorporated into a single phase III randomized clinical trial
with the overall false-positive error rate controlled at a
prespecified level.
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The methodology is presented and evaluated in the context
of a binary outcome (e.g., response). With minor adjustment, it
can be adapted for use with time-to-event end points, such as
survival or disease-free survival.

Materials andMethods

Consider designing a definitive study to assess whether addition of a
new targeted agent to the standard treatment is beneficial. The gold
standard for addressing this question is a phase III clinical trial that
randomly assigns patients to the combination of the new and standard
treatment (arm E) or the standard treatment alone (arm C).

We will describe the proposed design in terms of using DNA
microarray expression profiling done to characterize the tumors of the
included patients; however, the design is easily adapted to use single
nucleotide polymorphism gene typing or proteomic profiling instead.
The following modeling assumptions are used: among L evaluated
genes, there is a subset of K ‘‘sensitivity’’ genes. The identities of the
sensitivity genes are unknown but responsiveness to treatment is
influenced by the sensitivity genes through the following model. For
the ith patient, let pi denote the probability of response, ti the
treatment that the patient receives (ti = 0 for arm C and ti = 1 for arm E),
and xi1, . . ., xiK the levels of expression for the K unknown sensitivity
genes. Then

log
pi

1� pi

� �
¼ lþ kti þ c1tixil þ . . .þ cKtixiK ðAÞ

where k is treatment main effect that all patients experience
regardless of their gene expression levels and ci is treatment-
expression interaction effect that reflects the degree by which the
difference in treatment arms is influenced by the ith gene expression
level. To simplify the presentation, all gene main effects and the
treatment-expression interactions for the nonsensitivity genes are
assumed to be 0.

If the interaction variables are positive, patients who overexpress the
sensitivity genes have a higher probability of response when treated
with the new treatment (E) compared with the standard (C). We
assume that a fraction of the patient population overexpresses some
(but not necessarily all) of the sensitivity genes. These patients are called
‘‘sensitive.’’

A trial designed to accrue a total of N patients is evaluated in two
stages. In stage 1, the first N1 patients are accrued and in stage 2 the
remaining N2 = N � N1 patients are evaluated. A key feature of our
design is development of a classifier that predicts whether a patient is
more likely to benefit from the new treatment relative to the standard
one. This classifier is developed using stage 1 patients only. The
classifier is not used to restrict entry of patients during the stage 2 but
it is prospectively applied to the stage 2 patients to identify a subset
of sensitive patients. The final analysis consists of (a) overall
comparison of treatment arms E and C using data from all N =
N1 + N2 patients, carried out at significance level a1, and (b)
comparison of arms E and C in the selected subset of sensitive
patients accrued during stage 2, carried out at significance level a2.
The study is considered positive if either of the two tests is significant.
The overall significance level of this procedure is a = a1 + a2.
Generally, one can use different allocations of the experiment-wise
significance level a between the overall effect test and the subset
effect test. To preserve the ability of the procedure to detect an overall
effect, we recommend setting a1 to 80% of a and a2 to 20% of a . For
example, setting a1 = 0.04 and a2 = 0.01 corresponds to procedure-
wise a level of 0.05. Because the size of the treatment effect in the
identified subset may be much greater than in the overall study
population, analysis of the subset in patients accrued during the
second stage of the trial at a stringent significance level may still
provide substantial statistical power.

A large variety of algorithms for developing a classification based
on patients accrued during stage 1 could be envisioned. We will
describe one such approach here based on machine learning voting
methods (12).

Step 1: Using data from stage 1 patients, for each gene j fit the
single gene logistic model logit(pi) = l +k jti + bj tixij . Note the

genes that have treatment-expression interaction (b̂j) significant
at a predetermined level g .
Step 2: Classify stage 2 patients as sensitive or nonsensitive to

the new treatment based on the genes with significant

interactions in step 1. The ith patient in stage 2 is designated

sensitive if the predicted new versus control arm odds ratio

exceeds a specified threshold (R) for at least G of the significant

genes j (i.e., ek̂j+ b̂jxij > R).

Results

We did a simulation study to evaluate performance of the
adaptive design. Gene expression levels were generated as
follows: (a) For sensitivity genes in sensitive patients, using a
multivariate normal distribution with mean m , variance r1

2,
and correlation q ; (b) for sensitivity genes in nonsensitive
patients, using multivariate normal distribution with mean 0,
variance r2

2, and correlation q ; (c) for nonsensitivity genes,
using multivariate normal with mean 0, variance r0

2, and
correlation q in all patients. We used L = 10,000 genes on the
array, with the number of sensitivity genes (K) either 3, 10, or 20.

Treatment-expression interaction levels were kept constant
across sensitivity genes (c = c1 = c2 = , . . . , = cK). For each value
of K, the interaction levels were scaled to have the same odds
ratio e5 between arms E and C for a hypothetical patient
with sensitive gene expression levels at their expected value (i.e.,
mcK = 5). We report results for intercept value l corresponding
to control arm response rate of 25%. Results for other values of
control response rates were similar.

To investigate the relationship between gene expression
correlation structure and the design performance, we consid-
ered two cases: (a) an uncorrelated case that assumes, for each
patient, that gene expression levels are independent (q = 0) and
(b) a highly correlated case that assumes, for each patient, that
expression levels of the sensitivity genes are correlated with
each other (q = 0.6) and expression levels of the nonsensitivity
genes are correlated with each other (q = 0.6). In the correlated
case for K = 20, the sensitivity genes were assumed to come
from two independent 10-gene groups with gene expressions
correlated within each groups (q = 0.6). The results are
presented in terms of empirical power that is the percentage
of the simulated replications of the design that reached the
prespecified level of significance. We tabulated empirical
powers of the overall arm comparison at 0.05 and 0.04
significance levels and arm comparison in the selected subset at
0.01 significance level. In addition, the overall empirical power
of the adaptive design was calculated as the percentage of
replications with either positive overall 0.04 level test or
positive 0.01 level sensitive subset test.

First, consider a situation where the new treatment effect is
restricted to 10% of the eligible patient population that
overexpresses 10 sensitivity genes (98% response rate in
sensitive patients and 25% response rate in nonsensitive
patients on the new treatment arm; 25% response rate for all
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control arm patients). A 400-patient trial is carried out. The
traditional broad eligibility approach that uses a 0.05 level test
has 47% power to detect overall difference between the arms
(Fig. 1). In the adaptive approach, overall difference was
detected with 43% probability (using a 0.04 level test). Of the
57% of cases where the overall difference was not detected at
0.04 level, the sensitive subset test was significant (at the 0.01
level) in 42%. Thus, the overall power of the adaptive design
is 85%, indicating that there is an 85% probability of either
detecting a significant overall effect or a significant subset
effect. The procedure shows similar ability to identify the
subset of sensitive patients in situations where there are 20
or 3 sensitivity genes.
When the gene expressions are correlated, the efficiency of

the subset selection is slightly reduced (Fig. 2). When the
fraction of sensitive patients is increased to 25%, both the
overall 0.05 level test and the adaptive design have over 99%
power for detecting the treatment effect (Table 1).
The case where the new treatment effect applies equally to all

patients (35% response rate in sensitive and nonsensitive
patients on the new treatment arm and 25% response rate on
the control arm) is presented in Table 2. The sensitive subset
selection algorithm correctly indicates the absence of sensitive
subpopulation. At the same time, the overall 0.04 test provides
good power for detection of the overall effect. If the new
treatment effect is present in both sensitive and nonsensitive
patients but the effect is stronger in sensitive patients (99%
response rate in sensitive patients and 35% response rate in
nonsensitive patients on the new treatment arm; 25% response
rate for all control arm patients), the power of the overall test
dominates the selected subset test (Table 3). Additional results
for a range of model variables are given in Table 4A-D.

Discussion

The results indicate that development of a gene expression–
based classifier to identify the subset of sensitive patients can be

prospectively incorporated into a randomized phase III design
without compromising the ability to detect an overall effect.
Thus, the procedure is especially attractive for allowing
pharmaceutical companies to ‘‘invest in the development of
pharmacogenomic signatures without the risk of losing of
broad labeling indications where supported by the results
of phase III trials’’ (13). In addition to a statistically valid
procedure for testing for beneficial effect in a subset of patients,
the classifier could be instrumental in refining our understand-
ing of the mechanism of action of new agents.
Generally, as the fraction of the sensitive patients increases,

so does the difference in overall response rates of arms E and C.
Therefore, for fractions above certain threshold, the power
of the test for overall effect will dominate the power of the
sensitive subset test. The new design preserves the ability
to detect the overall effect in this case. However, its advantage
over the traditional design (testing for overall effect with broad
eligibility) is reduced. In Appendix 1, we present formulas that
can assist the investigators in assessing the power relation
between the sensitive subset test and the overall test.
In many clinical settings, the total sample size N is fixed by

a compromise between considerations of overall effect power

Fig. 1. Treatment effect restricted to sensitive patients.Tenpercent of patients
sensitive. Sensitivity genes are uncorrelated.N1 =N2 = 200 patients.Columns,
empiricalpower (%). Overall 0.05 level test (white columns). Overall adaptive
signature design(gray/blackstackedcolumns): overall 0.04 level test (graycolumns),
0.01level sensitive subset test but not 0.04 level overall test (blackcolumns).

Fig. 2. Treatment effect restricted to sensitive patients.Tenpercent of patients
sensitive. Sensitivity genes are correlated.N1 =N2 = 200 patients.Columns,
empirical power (%). Overall 0.05 level test (white columns). Overall adaptive
signature design(gray/blackstackedcolumns):overall 0.04 level test (graycolumns),
0.01level sensitive subset test but not 0.04 level overall test (blackcolumns).

Table1. Empirical power (%)

Test Power

Overall 0.05 level test* 99.0
Overall 0.04 level test* 98.9
Sensitive subset 0.01level testc 99.7
Overall adaptive signature design 99.9

NOTE: Treatment effect is restricted to sensitive patients (25% of patients
sensitive,10 sensitivity genes,N1 =N2 = 200).
*Test based on normal approximation for the difference of two proportions.
cFisher’s exact test.
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and feasibility. For a fixed N , the choice of N1 and N2 is based
on a tradeoff between the accuracy of the selection procedure
that increases with N1 and the size of the stage 2 sensitive
patient subset that increases with N2. To preserve the integrity
of the design, N1 and N2 need to be defined prospectively. The
optimal values of N1 and N2 depend on a number of
parameters, including the difference in response between
sensitive and nonsensitive patients and the fraction of sensitive
patients. Because these are not usually known in advance, we
recommend using N1 = N2. This allocation has been shown to
provide robust performance across various settings (see Table
4A- D). It should be noted that the advantage of the adaptive
design shown in Figs. 1 and 2 represents a situation where the
difference in the new treatment effect between sensitive and
nonsensitive patients is large. In settings where this difference is
moderate to low, the total sample size (N = N1 + N2) required
to develop and validate the selection procedure may be much
larger than needed just for detecting the overall effect.
The optimal values of the tuning parameters g, G, and R

depend on the number of sensitive genes K, fraction of sensitive
patients, and parameters of the logistic model (Eq. A). The true
values of the model parameters and the fraction of sensitive
patients are not usually known in advance. One can, however,
use a cross-validation approach on the stage 1 patients to select
tuning parameters values without affecting statistical validity of
the procedure. An example of such procedure is provided in
Appendix 2.
The issue of selecting the subset of sensitive patients is

closely related to the enrichment strategy (14) that uses an
intermediate outcome or biomarker to focus on patients that
are most likely to benefit from the treatment. Typical

enrichment procedures, such as the randomized discontinua-
tion design (15, 16), require a prespecified cutoff value (for the
intermediate outcome) to increase the fraction of sensitive
patients. Our procedure advances the concept by allowing for
prospective selection of a classifier that identifies the patients
most likely to benefit from the treatment. Because the classifier
is not used to restrict entry of patients to stage 2, its
development and application can be carried out at the time
of the final analysis. Thus, our procedure can be used with
time-to-event end points, such as survival.

A proper implementation of the new design implies using a
reduced overall significance level a1 (e.g., 0.04 instead of 0.05)
in determining the overall size of the trial. This entails a minor
increase in the overall sample size compared with the
conventional design (e.g., a 7% increase in sample size for
using 0.04 instead of 0.05 significance assuming 90% power).
In addition, to avoid bias, sample size for each stage needs to be
fixed at the start of the trial.

The gene expression–based classifier, developed on the first-
stage patients, is generally quite accurate in situations where
the new agent has a strong effect restricted to sensitive patients.
In this setting, the new design may substantially reduce the
probability of false rejection of effective new treatments. On
the other hand, it is important to emphasize that the adaptive

Table 2. Empirical power (%)

Test Power

Overall 0.05 level test* 74.2
Overall 0.04 level test* 70.9
Sensitive subset 0.01level testc 1.0
Overall adaptive signature design 70.9

NOTE: Treatment effect applies equally to all patients (10% of patients sensi-
tive,10 sensitivity genes,N1 =N2 = 200).
*Test based onnormal approximation for the difference of two proportions.
cFisher’s exact test.

Table 3. Empirical power (%)

Test Power

Overall 0.05 level test* 97.0
Overall 0.04 level test* 96.0
Sensitive subset 0.01level testc 45.6
Overall adaptive signature design 97.2

NOTE: Stronger treatment effect in sensitive patients (10% of patients sensi-
tive,10 sensitivity genes,N1 =N2 = 200).
*Test based onnormal approximation for the difference of two proportions.
cFisher’s exact test.

Table 4A. Empirical power as a function of total
sample size

Test Power (%)

N1 =N2 = 150
Overall 0.05 level 40.0
Overall 0.04 level 36.3
Sensitive subset 0.01level 37.8
Overall adaptive signature design 60.5

N1 =N2 = 200
Overall 0.05 level 49.5
Overall 0.04 level 45.4
Sensitive subset 0.01level 75.8
Overall adaptive signature design 85.7

N1 =N2 = 250
Overall 0.05 level 61.8
Overall 0.04 level 56.8
Sensitive subset 0.01level 93.2
Overall adaptive signature design 96.2

N1 =N2 = 300
Overall 0.05 level 63.8
Overall 0.04 level 58.2
Sensitive subset 0.01level 98.1
Overall adaptive signature design 99.0

N1 =N2 = 400
Overall 0.05 level 74.4
Overall 0.04 level 70.8
Sensitive subset 0.01level 99.7
Overall adaptive signature design 100

NOTE:Treatment effect restricted to sensitive patients.Ten percent of patients
sensitive, 10 sensitivity genes (98% response rate in sensitive patients and
25% response rate in nonsensitive patients on the new treatment arm; 25%
response rate for all control arm patients).

Adaptive Signature Design

www.aacrjournals.org Clin Cancer Res 2005;11(21) November1, 20057875



design is protected from violations of the modeling assump-
tions. Even if the true fraction of sensitive patients is higher
than was assumed, or if the selection procedure fails to select
the sensitive patients, or if no subset effect is present, the new
design provides as much power to detect the overall effect as
would be achieved with the standard design. To recapitulate
the key aspects of our proposal, consider two phase III trials
evaluating a new molecularly targeted agent: (a) the traditional
broad eligibility design with sample size based on significance
level a and (b) the adaptive design that has a slightly larger
total sample size (based on the reduced significance level a1)
with equal number of patents allocated to the first and second
stages. If the new agent is beneficial for all patients, both trials
have equal power to detect it. At the same time, if the benefit of
the new agent is restricted to a subset of the eligible patient
population, the second trial may considerably reduce the
chance of falsely rejecting the new agent.
There is increasing evidence that patients with the same

stage and primary site have tumors that are very different with

regard to pathogenesis and the deregulated pathways that are
driving tumor growth. Consequently, some molecular targeted
agents may only be effective for a small proportion of patients
accrued to clinical trials using traditional eligibility criteria. It
would be ideal to use the phase II clinical development period
for developing an assay or signature for patients most likely
to respond to a new agent. For a variety of reasons, however,
such biomarkers are often not available by the time phase III
trials are initialized. The adaptive design described here may
be useful in such situations.

Appendix1. Power Estimation

Consider a study with N/2 patients per arm and probabilities
of response pE and pC in arms E and C, respectively. The power
of a one-sided a level test to detect a difference in response
between the arms is approximately:

Power ¼ �
ðpE � pCÞ � Z1��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pð1� �pÞ 4

N

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pEð1� pEÞ 2

N þ pCð1� pCÞ 2
N

q
8><
>:

9>=
>; ð1:1Þ

where p̄ = (pE + pC) / 2, A() is the normal probability
distribution function, and Z1 � a is (1 � a)th percentile of
normal distribution.

Table 4B. Empirical power as a functionof proportion
of sensitive patients

Test Power (%)

5% of patients sensitive
Overall 0.05 level 19.7
Overall 0.04 level 17.4
Sensitive subset 0.01level 10.3
Overall adaptive signature design 24.6

7% of patients sensitive
Overall 0.05 level 30.4
Overall 0.04 level 27.4
Sensitive subset 0.01level 34.7
Overall adaptive signature design 50.7

10% of patients sensitive
Overall 0.05 level 49.5
Overall 0.04 level 45.4
Sensitive subset 0.01level 75.8
Overall adaptive signature design 85.7

15% of patients sensitive
Overall 0.05 level 77.9
Overall 0.04 level 74.2
Sensitive subset 0.01level 94.4
Overall adaptive signature design 99.2

20% of patients sensitive
Overall 0.05 level 96.2
Overall 0.04 level 94.7
Sensitive subset 0.01level 95.0
Overall adaptive signature design 100

25% of patients sensitive
Overall 0.05 level 99.0
Overall 0.04 level 98.9
Sensitive subset 0.01level 99.7
Overall adaptive signature design 100

NOTE:Treatment effect restricted to sensitive patients.N1 =N2 = 200,10 sen-
sitivity genes (98% response rate in sensitive patients and 25% response rate
in nonsensitive patients on the new treatment arm; 25% response rate for all
control arm patients).

Table 4C. Empiricalpoweras a functionofN1/N2 ratio

Test Power (%)

N1 = 150,N2 = 250
Overall 0.05 level 49.4
Overall 0.04 level 45.0
Sensitive subset 0.01level 72.7
Overall adaptive signature design 86.4

N1 = 174,N2 = 226
Overall 0.05 level 49.6
Overall 0.04 level 44.7
Sensitive subset 0.01level 76.4
Overall adaptive signature design 87.7

N1 = 200,N2 = 200
Overall 0.05 level 49.5
Overall 0.04 level 45.4
Sensitive subset 0.01level 75.8
Overall adaptive signature design 85.7

N1 = 226,N2 = 174
Overall 0.05 level 48.7
Overall 0.04 level 43.9
Sensitive subset 0.01level 51.2
Overall adaptive signature design 69.2

N1 = 250,N2 = 150
Overall 0.05 level 50.0
Overall 0.04 level 46.7
Sensitive subset 0.01level 52.5
Overall adaptive signature design 71.9

NOTE:Treatment effect restricted to sensitive patients.N1 +N2 = 400,10 sen-
sitivity genes (98% response rate in sensitive patients and 25% response rate
in nonsensitive patients on the new treatment arm; 25% response rate for all
control arm patients).
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The expected probability of response for a patient receiving
treatment E can be written in terms of the model variables as:

pE ¼ FS
elþkþKcm

1þ elþkþKcm
þ ð1� FSÞ

elþk

1þ elþk
ð1:2Þ

where FS denotes the fraction of sensitive patients. For the
control arm C, the expected response probability is

pC ¼ el

1þ el
: ð1:3Þ

The power of the overall arm comparison is obtained by
substituting Eqs. 1.2 and 1.3 in Eq. 1.1.

For a sensitive patient on arm E, the expected response
probability is:

pSE ¼
elþkþKcm

1þ elþkþKcm
ð1:4Þ

The subset selection algorithm is usually subject to some
error. Let psens denote the sensitivity of the subset selection
algorithm (the probability that a sensitive patient is selected)
and p spec denote the specificity (the probability that a
nonsensitive patient is not selected). The probability that a
selected patient is sensitive, called the positive predictive value
(PPV), is

PPV ¼ FSpsens
FSPsens þ ð1� FSÞð1� pspecÞ

:

The expected response probability for a patient receiving
treatment E in the selected subset is

pþE ¼ PPVpSE þ ð1� PPVÞ elþk

1þ elþk

The expected response probability for a patient receiving
treatment C in the selected subset is P+C = PC. The expected
size of the selected subset is N+ = N2 [FS psens + (1 � FS)
(1 � pspec)]. Therefore, the power of the subset comparison
is obtained by substituting N+ for N into Eq. 1.1 and using
p+E instead of pE.

For the design purposes, we recommend evaluation of the
adaptive design for psens and pspec values in the range of 0.9
to 1.0.

Appendix 2. Selection of Tuning Parameters

In the simulation study, the tuning parameters were selected
empirically by choosing the values that gave the highest power
on a separate set of replications. In practice, we recommend the
following approach based on leave-one-out cross-validation to
select the best combination of g, G, and R from a set of M
possible combinations (using stage 1 patients only):

Part 1: Remove the ith patient and carry out step 1 of the two-step
subset selection procedure (described in Materials and Methods)

on the remaining (N1 � 1) patients. Then, using step 2 of the

two-step procedure, determine if the left-out patient is classified

as sensitive according to each of the M possible tuning parameter

combinations.

Part 2: Repeat part 1 on each stage 1 patient and form M subsets

of sensitive patients, each corresponding to a set of tuning

parameters.

Part 3: Compare arms E and C in each of the M subsets. Select

the tuning variable combination that provides to the smallest

P value in comparing treatments. This approach preserves the

validity of the subset selection procedure as only the data from

the first phase is used to determine the tuning parameters.
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Table 4D. Empirical power as a function of difference
in response rates between sensitive and nonsensitive
patients on the new treatment arm

Test Power (%)

98% response rate in sensitive patients
and 25% response rate in nonsensitive
patients (c = 0.5)
Overall 0.05 level 49.5
Overall 0.04 level 45.4
Sensitive subset 0.01level 75.8
Overall adaptive signature design 85.7

95% response rate in sensitive patients
and 25% response rate in nonsensitive
patients (c = 0.4)
Overall 0.05 level 43.0
Overall 0.04 level 38.5
Sensitive subset 0.01level 63.1
Overall adaptive signature design 75.0

87% response rate in sensitive patients
and 25% response rate in nonsensitive
patients (c = 0.3)
Overall 0.05 level 36.7
Overall 0.04 level 31.7
Sensitive subset 0.01level 34.5
Overall adaptive signature design 51.6

80% response rate in sensitive patients
and 25% response rate in nonsensitive
patients (c = 0.25)
Overall 0.05 level 31.6
Overall 0.04 level 28.4
Sensitive subset 0.01level 17.6
Overall adaptive signature design 38.8

71% response rate in sensitive patients
and 25% response rate in nonsensitive
patients (c = 0.2)
Overall 0.05 level 26.0
Overall 0.04 level 22.6
Sensitive subset 0.01level 6.3
Overall adaptive signature design 26.3

NOTE: Treatment effect restricted to sensitive patients. N1 = N2 = 200, 10
sensitivity genes (25% response rate for all control arm patients).
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