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Myth

• That microarray investigations are 
unstructured data-mining adventures 
without clear objectives



Truth

• Good microarray studies have clear 
objectives, but not generally gene specific 
mechanistic hypotheses

• Design and Analysis Methods Should Be 
Tailored to Study Objectives



Common Types of Objectives

• Class Comparison
– Identify genes differentially expressed among 

predefined classes. 

• Class Prediction
– Develop multi-gene predictor of class label for a 

sample using its gene expression profile

• Class Discovery
– Discover clusters among specimens or among genes



Experimental Design
• Dobbin K, Simon R. Comparison of microarray designs for class 

comparison and class discovery. Bioinformatics 18:1462-9, 2002
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Class Comparison
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Class Prediction
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Which Genes are Differentially 
Expressed In Two Conditions or Two 

Tissues?
• Not a clustering problem

– Global similarity measures generally used for 
clustering arrays may not distinguish classes

– Feature selection should be performed in a 
manner that controls the false discovery rate

• Supervised methods
• Requires multiple biological samples from 

each class



Myth

• That comparing tissues or experimental 
conditions is based on looking for red or 
green spots on a single array

• That comparing tissues or experimental 
conditions is based on using Affymetrix 
MAS software to compare two arrays
– Many published statistical methods are limited 

to comparing rna transcript profiles from two 
samples 



Truth

• Comparing expression in two RNA samples 
tells you (at most) only about those two 
samples and may relate more to sample 
handling and assay artifacts than to biology. 
Robust knowledge requires multiple 
samples that reflect biological variability.



Experimental Design Issues for 
Single Label Arrays

(Affymetrix GeneChips)



Avoid Bias

• Avoid confounding tissue handling and 
microarray assay procedures with the 
classes to be distinguished
– Date assay performed
– Print set



Avoid Bias 

• If test set is used for evaluating classifier 
developed on the training set, the test 
samples should not be analyzed in any way 
until a single completely specified classifier 
is determined on the training set



Levels of Replication

• Technical replicates
– RNA sample divided into multiple aliquots and re-

arrayed
• Biological replicates

– Multiple subjects 
– Re-growing the cells under the defined conditions



• Technical replicates do not hurt, but also do 
not help much. 

• Biological conclusions require independent 
biological replicates. The power of 
statistical methods for microarray data 
depends on the number of biological 
replicates.



Sample Size Planning for Class 
Comparison: Single Label Arrays
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α=0.001 β=0.05 δ=1 
τ2+γ2=0.25, τ2/γ2=4, unpooled

m technical reps n arrays 
required

samples 
required

1 30 30

2 56 28

3 78 26

4 104 26



Should I pool specimens?

• Pooling all specimens is inadvisable 
because there is no estimate of variation 
among pools of the same class

• With multiple biologically independent 
pools, some reduction in number of arrays 
may be possible, but at the expense of a 
greater required number of independent 
specimens



Number of arrays and samples required for various pooling levels.  An independent pool is 
constructed for each array, so that no sample is represented on more than one array. 

α=0.001, β=0.05, δ=1, τ2=0.20, γ2=0.05, m=14/ 22 =gg στ 25.2 22 =+ gg στ

Number of samples 
pooled on each array

Number of arrays 
required

Number of samples 
required

1 30 30

2 20 40

3 18 54

4 16 64



Allocation of Specimens to
Dual Label Arrays for Simple 
Class Comparison Problems 

• Reference Design
• Balanced Block Design
• Loop Design 



Reference Design

A1

R

A2 B1 B2

R

RED

R RGREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B
R = aliquot from reference pool



• The reference provides a relative measure 
of expression for a given gene in a given 
sample that is less variable than an absolute 
measure. 

• The relative measure of expression will be 
compared among biologically independent 
samples from different classes.





Balanced Block Design

A1

A2

B2 A3

B3

B4

A4

RED

B1GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B



Balanced Block and Reference Designs With 5 Classes 
A,B,C,D,E. 

Each non-reference sample hybridized to a single array.

Array 1 2 3 4 5 6 7 8 9 10

Cy3 A C A E B D B C E D

Cy5 B A D A C B E D C E

Array 1 2 3 4 5 6 7 8 9 10

Cy3 R R R R R R R R R R

Cy5 A B C D E A B C D E



Loop Design

A1

A2

B1 A2

B2

B2

A1

RED

B1GREEN

Array 1 Array 2 Array 3 Array 4

Ai = aliquot from ith specimen from class A
Bi = aliquot from ith specimen from class B

(Requires two aliquots per specimen)



Relative Efficiency of Designs Evaluated 
Based on ANOVA for Logarithm of 

Background Adjusted Normalized Intensities

• Model Effects
– Gene
– Array by Gene (spot)
– Variety by Gene
– Sample within Variety by Gene



Gene-Variety Model

• r = Gg + AGag + VGvg + SGsg + e

• e ~ N(0,sg
2)

• Efficiency of design based on variance of 
estimators of VGig-VGjg

• To study efficiency, assume SGsg~N(mg,tg
2)



• Detailed comparisons of the effectiveness of 
designs: 
– Dobbin K, Simon R. Comparison of microarray designs 

for class comparison and class discovery. 
Bioinformatics 18:1462-9, 2002

– Dobbin K, Shih J, Simon R. Statistical design of 
reverse dye microarrays. Bioinformatics 19:803-10, 
2003

– Dobbin K, Simon R. Questions and answers on the 
design of dual-label microarrays for identifying 
differentially expressed genes, JNCI 95:1362-1369, 
2003



Myth

• Common reference designs for two-color 
arrays are inferior to “loop” designs.



Truth
• Common reference designs are effective for many 

microarray studies. They are robust, permit comparisons 
among separate experiments,  permit unplanned types of 
comparisons to be performed, permit cluster analysis and 
class prediction analysis. 

• Loop designs are non-robust, are very inefficient for class 
discovery (clustering) analyses, are not applicable to class 
prediction analyses and do not easily permit inter-
experiment comparisons. 

• For simple two class comparison problems, balanced block 
designs are the most efficient and require many fewer 
arrays than reference designs. They are not appropriate for 
class discovery or class prediction and are more difficult to 
apply to more complicated class comparison problems.



Designs for Class Discovery

• Loop designs with 2 sub-samples per 
sample make clustering possible

• Reference designs do not require sub-
sampling





Designs for Class Discovery

• For the loop design, variance of inter-
sample contrasts depends on how close the 
samples appear in the loop





Evaluation of Designs for Class 
Discovery

• Generate data from two-varieties

• tg
2 = sg

2

• Fit gene model without varieties
• Cluster data using hierarchical clustering
• Cut dendrogram at level giving 2 clusters



Evaluation of Designs for Class 
Discovery

• Associate clusters with varieties used to 
generate the data in manner that maximizes 
correspondence

• Count number of misclassifications







Myth

• For two color microarrays, each sample of 
interest should be labeled once with Cy3 
and once with Cy5 in dye-swap pairs of 
arrays.  



Dye Swap Design

A1

A1

B1 A2

B2

B2

A2

RED

B1GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B



Dye Bias

• Average differences among dyes in label 
concentration, labeling efficiency, photon 
emission efficiency and photon detection 
are corrected by normalization procedures

• Gene specific dye bias may not be corrected 
by normalization 



Cell Line 
Name

Number of 
oligonucleotide
arrays (Number 
with reference 
green/Cy3)

Number of cDNA Arrays 
(Number with reference 
green/Cy3)

Description

MCF10a 4 (2) 4 (2) Human mammary 
epithelial cell line

LNCAP 4 (2) 4 (2) Human prostate cancer 
cell line

L428 9 (4) 7 (4) Hodgkins disease cell 
line

SUDHL 4 (2) 4 (2) Human lymphoma cell 
line

OCILY3 5 (3) 5 (3) Human lymphoma cell 
line

Jurkat 4 (2) 4 (2) Human T lymphocyte 
acute T cell leukemia cell 
line

Total 30 (15) 28 (15)



• Gene-specific dye bias
– 3681 genes with p<0.001 of 8604 evaluable 

genes

• Gene and sample specific dye bias
– 150 genes with p<0.001



cDNA experiment estimated sizes of the gene-specific dye bias for each of 
the 8,604 genes.  An effect of size 1 corresponds to a 2-fold change in 

expression

Estimated orientation effect size
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cDNA agreement between models with and without gene-
specific dye effects included

All data: no dye effects

P-value < .001 P-value > .001

P-value < .001 4801 (56%) 559 (6%)

P-value > .001 81 (1%) 3163 (37%)

All data: dye 
effects



(a) Reference design comparing tumor tissue to normal tissue.  (b) A 
confounded design comparing tumor tissue to normal tissue.  (c) Balanced 

block design comparing tumor tissue to normal tissue.(a)

Array 1
Array 2 Array 3 Array 4 Array 5 Array 6

Cy3 Tumor Tumor Tumor Normal Normal Normal

Cy5 Reference Reference Reference Reference Reference Reference

(b)_

Array 1
Array 2 Array 3 Array 4 Array 5 Array 6

Cy3 Tumor Tumor Tumor Tumor Tumor Tumor

Cy5 Normal Normal Normal Normal Normal Normal

(c)

Array 1
Array 2 Array 3 Array 4 Array 5 Array 6

Cy3 Tumor Normal Tumor Normal Tumor Normal

Cy5 Normal Tumor Normal Tumor Normal Tumor



• Dye swap technical replicates of the same two rna
samples are rarely necessary. 

• Using a common reference design, dye swap arrays 
are not necessary for valid comparisons of classes 
since specimens labeled with different dyes are never 
compared.

• For two-label direct comparison designs for 
comparing two classes, it is more efficient to balance 
the dye-class assignments for independent biological 
specimens than to do dye swap technical replicates 



Balanced Block Design

A1

A2

B2 A3

B3

B4

A4

RED

B1GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B



Dye Swap Design

A1

A1

B1 A2

B2

B2

A2

RED

B1GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B



Balanced Block Designs for Two 
Classes

• Half the arrays have a sample from class 1 labeled 
with Cy5 and a sample from class 2 labeled with 
Cy3; 

• The other half of the arrays have a sample from 
class 1 labeled with Cy3 and a sample from class 2 
labeled with Cy5. 

• Each sample appears on only one array. Dye 
swaps of the same rna samples are not necessary 
to remove dye bias and for a fixed number of 
arrays, dye swaps of the same rna samples are 
inefficient



Time Series Experiment

• Grow cell lines untreated and harvest at 
time points t1,…tn

• Grow treated cell lines and harvest at same 
time points

• Find genes whose expression is effected by 
treatment



Analysis Strategy for Time Series 
Experiment

• Two way analysis of variance (ANOVA) of 
log intensities including main (marginal) 
effects of treatment and time points and 
interaction between treatment and effects of 
time points

• Identify genes for which interaction is 
statistically significant at p<0.001 level.



Design Options for Dual Label 
Expression Analysis of Time Series

• Use common reference for all arrays
– Pooled baseline samples

• Balanced block design for comparing 
treated to untreated within each time point

• Designs which use multiple aliquots for 
each sample

• Designs when each experimental unit can 
be observed at multiple time points 



Balanced Block Design
at Time t

A1

A2

B2 A3

B3

B4

A4

RED

B1GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from untreated cells at time t
Bi = ith specimen from treated cells at time t



Sample Size Planning

• GOAL: Identify genes differentially expressed in a comparison of two 
pre-defined classes of specimens on two-color arrays using reference 
design or single label arrays

• Compare classes separately by gene with adjustment for multiple 
comparisons

• Approximate expression levels (log ratio or log signal) as normally 
distributed

• Determine number of samples n/2 per class to give power 1-β for 
detecting mean difference δ at level α



• m = number of technical reps per sample
• n = total number of arrays
• δ = mean difference between classes in log signal
• τ2 = biological variance within class
• γ2 = technical variance
• α = significance level e.g. 0.001
• 1-β = power
• z = normal percentiles (use t percentiles for better 

accuracy)



Dual Label Arrays With Reference Design
Comparing 2 equal size classes
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• m = number of technical reps per sample
• n = total number of arrays
• δ = mean difference between classes in log ratio
• τ2 = biological variance within class
• σ2 = technical variance
• α = significance level e.g. 0.001
• 1-β = power
• z = normal percentiles (use t percentiles for better 

accuracy)



Comparing 2 equal size classes
No technical reps (m=1)

n = 4γ2(zα/2 + zβ)2/δ2

where δ = mean log-ratio difference between classes
γ = within class standard deviation of log-ratio

• Choose  α small, e.g.  α = .001
• Use percentiles of t distribution for improved accuracy



Total Number of Samples for 
Two Class Comparison

α β δ γ Total
Samples

0.001 0.05 1
(2-fold)

0.5 
human 
tissue

26

0.25
transgenic

mice

12
(t approximation)



• π = proportion of genes on array that are 
differentially expressed between classes

• N = number of genes on the array
• FD = expected number of false discoveries
• TD = expected number of true discoveries
• FDR = FD/(FD+TD)



• FD = α(1-π)N 
• TD = (1-β) πN
• FDR = α(1-π)N/{α(1-π)N + (1-β) πN}
• = 1/{1 + (1-β)π/α(1-π)}



Controlling Expected False 
Discovery Rate

π α β FDR

0.01 0.001 0.10 9.9%

0.005 35.5%

0.05 0.001 2.1%

0.005 9.5%



Dual Label Arrays With Balanced Block 
Design For 2 classes
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• n = total number of arrays
• δ = mean log ratio (class 1 / class 2)
• η2 = biological variance of log-ratio
• σ2 = technical variance of log intensity
• α = significance level e.g. 0.001
• 1-β = power
• z = normal percentiles (use t percentiles for 

better accuracy)



Number of Events Needed to Detect 
Gene Specific Effects on Survival

• σ = standard deviation in log2 ratios for each gene
• d = hazard ratio (>1) corresponding to 2-fold 

change in gene expression

2
1 / 2 1

2log
z zα β

σ δ
− −+⎡ ⎤

⎢ ⎥
⎣ ⎦



Number of Events Required to Detect 
Gene Specific Effects on Survival 

a=0.001,b=0.05

Hazard Ratio d s Events Required

2 0.5 26

1.5 0.5 76



Some Other Design Issues

• Selection of common reference
• Assignment of specimens to arrays and dyes 

for dual label time series experiments
• Design of class prediction studies

– Split sample or cross validation
– Sample size



Class Prediction



Statistical Methods Appropriate for Class 
Comparison Differ from Those Appropriate 

for Class Prediction

• Demonstrating statistical significance of prognostic factors 
is not the same as demonstrating predictive accuracy.

• Demonstrating goodness of fit of a model to the data used 
to develop it is not a  demonstration of predictive accuracy.

• Most statistical methods were developed for inference, not 
prediction.

• Most statistical methods for were not developed for p>>n 
settings



Components of Class Prediction

• Feature (gene) selection
– Which genes will be included in the model

• Select model type 
– E.g. LDA, Nearest-Neighbor, …

• Fitting parameters (regression coefficients) 
for model 



Univariate Feature Selection

• Genes that are univariately differentially 
expressed among the classes at a significance level 
α (e.g. 0.01) 
– The α level is selected to control the number of genes 

in the model, not to control the false discovery rate
– The accuracy of the significance test used for feature 

selection is not of major importance as identifying 
differentially expressed genes is not the ultimate 
objective



Linear Classifiers for Two Classes
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Linear Classifiers for Two Classes

• Fisher linear discriminant analysis 
• Diagonal linear discriminant analysis (DLDA) 

assumes features are uncorrelated
– Naïve Bayes classifier

• Compound covariate predictor (Radmacher et al.) 
and  Golub’s method are similar to DLDA in that 
they can be viewed as weighted voting of 
univariate classifiers 



Linear Classifiers for Two Classes

• Support vector machines with inner product 
kernel are linear classifiers with weights 
determined to minimize errors subject to 
regularization condition
– Can be written as finding hyperplane with 

separates the classes with a specified margin 
and minimizes length of weight vector

• Perceptrons are linear classifiers



When p>n

• For the linear model, an infinite number of 
weight vectors w can always be found that 
give zero classification errors for the 
training data.
– p>>n problems are almost always linearly 

separable
• Why consider more complex models?



Myth

• That complex classification algorithms 
perform better than simpler methods for 
class prediction
– Many comparative studies indicate that simpler 

methods work as well or better for microarray 
problems



• Fitting complex functions to training data 
results in unstable classifiers unless there is a 
huge training dataset

• For unstable classifiers, the test sample error 
rate is generally much less than the 
generalization error rate 



Model Stability Can Be Improved 
By

• Restriction to models with fewer parameters
– Complexity depends on number of parameters per candidate 

feature, not per selected feature
• Reducing number of candidate features

– Principal components
– Cluster averages

• Not minimizing training error
– Equivalent to including penalty for complexity

• Aggregating models
• Use fitting criterion incorporating robustness to changes in 

data



• With unstable classifiers, we obtain both 
large bias and large variance in estimating 
the true classifier function
– Large bias because there are many classifiers 

with zero training set errors that are far from 
the true classifier function

– Large variance because the selected classifier 
varies substantially with small variations in the 
data



Evaluating a Classifier

• Fit of a model to the same data used to 
develop it is no evidence of prediction 
accuracy for independent data



Split-Sample Evaluation

• Training-set
– Used to select features, select model type, determine 

parameters and cut-off thresholds

• Test-set
– Withheld until a single model is fully specified using 

the training-set.
– Fully specified model is applied to the expression 

profiles in the test-set to predict class labels. 
– Number of errors is counted
– Ideally test set data is from different centers than the 

training data and assayed at a different time



Leave-one-out Cross Validation

• Omit sample 1
– Develop multivariate classifier from scratch on 

training set with sample 1 omitted
– Predict class for sample 1 and record whether 

prediction is correct



Leave-one-out Cross Validation

• Repeat analysis for training sets with each 
single sample omitted one at a time

• e = number of misclassifications determined 
by cross-validation

• Subdivide e for estimation of sensitivity and 
specificity



• With proper cross-validation, the model must be developed 
from scratch for each leave-one-out training set. This means 
that feature selection must be repeated for each leave-one-out 
training set. 

• The cross-validated estimate of misclassification error is an 
estimate of the prediction error for model fit using specified 
algorithm to full dataset

• If you use cross-validation estimates of prediction error for a 
set of algorithms indexed by a tuning parameter and select the 
algorithm with the smallest cv error estimate, you do not have 
a valid estimate of the prediction error for the selected model



Prediction on Simulated Null Data

Generation of Gene Expression Profiles
• 14 specimens (Pi is the expression profile for specimen i)
• Log-ratio measurements on 6000 genes
• Pi ~ MVN(0, I6000)
• Can we distinguish between the first 7 specimens (Class 1) and the last 7 

(Class 2)?

Prediction Method
• Compound covariate prediction
• Compound covariate built from the log-ratios of the 10 most differentially 

expressed genes.



Number of misclassifications

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
roportion of sim

ulated data sets

0.00

0.05

0.10
0.90

0.95

1.00

Cross-validation: none (resubstitution method)
Cross-validation: after gene selection
Cross-validation: prior to gene selection



Permutation Distribution of Cross-
validated Misclassification Rate of a 

Multivariate Classifier

• Randomly permute class labels and repeat the 
entire cross-validation

• Re-do for all (or 1000) random permutations of 
class labels

• Permutation p value is fraction of random 
permutations that gave as few misclassifications as 
e in the real data



Gene-Expression Profiles in 
Hereditary Breast Cancer 

cDNA Microarrays
Parallel Gene Expression Analysis • Breast tumors studied:

7 BRCA1+ tumors
8 BRCA2+ tumors
7 sporadic tumors

• Log-ratios measurements of 
3226 genes for each tumor 
after initial data filtering

RESEARCH QUESTION
Can we distinguish BRCA1+ from BRCA1– cancers and BRCA2+ from 
BRCA2– cancers based solely on their gene expression profiles?



BRCA1

 
αg 

 
# of 

significant 
genes 

 
# of misclassified 

samples (m) 
 

% of random 
permutations with 

m or fewer 
misclassifications 

10-2 182 3  0.4 
10-3 53 2  1.0 
10-4 9 1  0.2 

 



BRCA2

αg # of significant
genes

m = # of misclassified elements
(misclassified samples)

% of random
permutations with m

or fewer
misclassifications

10-2 212 4 (s11900, s14486, s14572, s14324) 0.8
10-3 49 3 (s11900, s14486, s14324) 2.2
10-4 11 4 (s11900, s14486, s14616, s14324) 6.6



Classification of BRCA2 Germline
Mutations

Classification Method LOOCV Prediction Error 

Compound Covariate Predictor 14%

Fisher LDA 36%

Diagonal LDA 14%

1-Nearest Neighbor 9%

3-Nearest Neighbor 23%

Support Vector Machine
(linear kernel)

18%

Classification Tree 45%



Invalid Criticisms of Cross-
Validation

• “You can always find a set of features that 
will provide perfect prediction for the 
training and test sets.”
– There is often many sets of features that 

provide zero training errors. Cross validation 
will provide an unbiased estimate of the 
generalization error for a specified algorithm 
that selects a specific model on a training set.



Cross-Validation

• Estimates prediction error for future data
– For prediction using model developed using  full 

current dataset

• Cross-validation is used to estimate prediction 
error of a defined algorithm, not as part of a model 
building algorithm

• If you use the results of cross-validation for model 
building, then a double nested cross-validation is 
needed to obtain a valid estimate of prediction 
error for the resulting model



Comparison of Internal Validation Methods
Molinaro, Pfiffer & Simon

• For small sample sizes, LOOCV is much 
more accurate than split-sample validation
– Split sample validation is highly positively 

biased
• For small sample sizes, LOOCV is 

preferable to 10-fold, 5-fold cross-
validation or repeated k-fold versions



• Design & Analysis of DNA Microarray 
Investigations, RM Simon, EL Korn, LM 
McShane, MD Radmacher, GW Wright, Y 
Zhao, Springer, 2003



BRB ArrayTools:
An integrated Package for the 
Analysis of DNA Microarray 

Data 

http://linus.nci.nih.gov/brb



BRB-ArrayTools

• Integrated software package using Excel-based 
user interface but state-of-the art analysis 
methods programmed in R, Java & Fortran

• Publicly available for non-commercial use

http://linus.nci.nih.gov/brb



Selected Features of BRB-ArrayTools
• Multivariate permutation tests for class comparison to control false discovery proportion 

with any specified confidence level
• SAM
• Find Gene Ontology groups and signaling pathways that are differentially expressed
• Survival analysis
• Analysis of variance
• Class prediction models (7) with prediction error estimated by LOOCV, k-fold CV or 

.632 bootstrap, and permutation analysis of cross-validated error rate
– DLDA, SVM, CCP, Nearest Neighbor, Nearest Centroid, Shrunken Centroids, Random Forests

• Clustering tools for class discovery with reproducibility statistics on clusters
– Built in access to Eisen’s Cluster and Treeview

• Visualization tools including rotating 3D principal components plot exportable to 
Powerpoint with rotation controls

• Import of Affy CEL files and apply RMA probe processing and quantile normalization 
• Extensible via R plug-in feature
• Links genes to annotations in genomic databases
• Tutorials and datasets
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