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Introduction 
 
 
Purpose of this software 
 
BRB-ArrayTools is an integrated package for the visualization and statistical analysis of 
Microarray gene expression, copy number, methylation and RNA-Seq data. It was 
developed by professional statisticians experienced in the analysis of microarray data and 
involved in the development of improved methods for the design and analysis of 
microarray-based experiments. The analytic and visualization tools are integrated into 
Excel as an add-in. The analytic and visualization tools themselves are developed in the 
powerful R statistical system, in C, C++ and Fortran programs and in Java applications. 
Visual Basic for Applications is the glue that integrates the components and hides the 
complexity of the analytic methods from the user. The system incorporates a variety of 
powerful analytic and visualization tools developed specifically for microarray data 
analysis. The software was developed by statisticians experienced in the analysis of 
microarray data and involved in research on improved analysis tools.  BRB-ArrayTools 
serves as a tool for instructing users on effective and valid methods for the analysis of 
their data.  The existing suite of tools will be updated as new methods of analyses are 
being developed.  
 
 
Overview of the software’s capabilities 
 
BRB-ArrayTools can be used for performing the following analysis tasks: 
 

• Importing data: Importing your data to the program and aligning genes from 
different experiments.  The software can load an unlimited number of genes.  The 
previous limitation of 249 experiments has been removed beginning with version 
3.4, so that there is no pre-set limitation on the number of experiments.  However, 
memory limitations may apply, which depend on the user's system resources.  The 
entire set of genes may be spotted or printed onto a single array, or the set of 
genes may be spotted or printed over a “multi-chip” set of up to five arrays.  
Users may elect whether or not to average over genes which have been multiply 
spotted or printed onto the same array.  Both dual-channel and single-channel 
(such as Affymetrix) microarrays can be analyzed.  A data import wizard prompts 
the user for specifications of the data, or special interface may be used for 
Affymetrix or NCI format data.  Data should be in tab-delimited text format.  
Data which is in Excel workbook format can also be used, but will automatically 
be converted by BRB-ArrayTools into tab-delimited text format. 

 
• Gene annotations:  Data can be automatically annotated using standard gene 

identifiers, either using the SOURCE database, or by importing automatic 
annotations for specific Affymetrix or Illumina chips using Bioconductor 
packages. Starting from v4.3, annotation can also be imported from an annotated 
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existing project with identical chip type.  If data has been annotated using the 
gene annotation tool, then annotations will appear with all output results, and 
Gene Ontology (GO) classification terms may be analyzed for the class 
comparison, class prediction, survival, and quantitative traits analyses.  Gene 
Ontology structure files may also be automatically updated from the GO website. 

 
• Filtering, normalization, and gene subsetting: Filter individual spots (or 

probesets) based on channel intensities (either by excluding the spot or 
thresholding the intensity), and by spot flag and spot size values.  Affymetrix data 
can also be filtered based on the Detection Call.  For dual-channel experiments, 
arrays can be normalized by median-centering the log-ratios in each array, by 
subtracting out a lowess-smoother based on the average of the red and green log-
intensities, or by defining a list of housekeeping genes for which the median log-
ratio will be zero.  For single-channel experiments, arrays can be normalized to a 
reference array, so that the difference in log-intensities between the array and 
reference array has median of zero over all the genes on the array, or only over a 
set of housekeeping genes.  The reference array may be chosen by the user, or 
automatically chosen as the median array (the array whose median log-intensity 
value is the median over all median log-intensity values for the complete set of 
arrays).  Each array in a multi-chip set is normalized separately.  Outlying 
expression levels may be truncated.  Genes may be filtered based on the 
percentage of expression values that  are at least a specified fold-difference from 
the median expression over all the arrays, by the variance of log-expression 
values across arrays, by the percentage of missing values, and by the percentage 
of “Absent” detection calls over all the arrays (for Affymetrix data only).  Genes 
may be excluded from analyses based on strings contained in gene identifiers (for 
example, excluding genes with “Empty” contained in the Description field).  
Genes may also be included or excluded from analyses based on membership 
within defined genelists. 

 
• Scatterplot of experiment v. experiment:  For dual-channel data, create 

clickable scatterplots using the log-red, log-green, average log-intensity of the red 
and green channels, or log-ratio, for any pair of experiments (or for the same 
experiment).  For “M-A plots” (i.e., the plot of log-ratios versus the average red 
and green log-intensities), a trendline is also plotted.  For single-channel data, 
create clickable scatterplots using the log-intensity for any pair of experiments.  
All genes or a defined subset of genes may be plotted.  Hyperlinks to NCI feature 
reports, GenBank, NetAffx, and other genomic databases. 

 
• Scatterplot of phenotype classes: Create clickable scatterplots of average log-

expression within phenotype classes, for all genes or a defined subset of genes.  If 
more than two class labels are present, then a scatterplot is created for each pair of 
class labels.  Hyperlinks to NCI feature reports, GenBank, NetAffx, and other 
genomic databases. 
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• Hierarchical cluster analysis of genes: Create cluster dendrogram and color 
image plot of all genes.  For each cluster, provides a hyperlinked list of genes, and 
a lineplot of median expression levels within the cluster versus experiments.  The 
experiments may be clustered separately with regard to each gene cluster.  Each 
gene cluster can be saved and used in later analyses.  A color image plot of 
median expression levels for each gene cluster versus experiments is also 
provided.  The cluster analysis may be based on all data or on a user-specified 
subset of genes and experiments. 

 
• Hierarchical cluster analysis of experiments: Produces cluster dendrogram, and 

statistically-based cluster-specific reproducibility measures for a given cut of the 
cluster dendrogram. The cluster analysis may be based on all data or on a user-
specified subset of genes and experiments. 

 
• Interface for Cluster 3.0 and TreeView: Clustering and other analyses can now 

be performed using the Cluster 3.0 and TreeView software, which was originally 
produced by the Stanford group.  This feature is only available for academic, 
government and other non-profit users. 

 
• Multidimensional scaling of samples: Produces clickable 3-D rotating 

scatterplot where each point represents an experiment, and the distance between 
points is proportional to the dissimilarity of expression profiles represented by 
those points.  If the user has PowerPoint installed, then a PowerPoint slide is also 
created which contains the clickable 3-D scatterplot.  The PowerPoint slide can be 
ported to another computer, but must be run on a computer which also has BRB-
ArrayTools v3.0 or later installed, in order for the clickable 3-D scatterplot to 
execute. 

 
• Global test of clustering: Statistical significance tests for presence of any 

clustering among a set of experiments, using either the correlation or Euclidean 
distance metric. This analysis is given as an option under the multidimensional 
scaling tool. 

 
• Class comparison between groups of arrays: Uses univariate parametric and 

non-parametric tests to find genes that are differentially expressed between two or 
more phenotype classes.  This tool is designed to analyze either single-channel 
data or a dual-channel reference design data. The class comparison analysis may 
also be performed on paired samples. The output contains a listing of genes that 
were significant and hyperlinks to NCI feature reports, GenBank, NetAffx, and 
other genomic databases.   The parametric tests are either t/F tests, or random 
variance t/F tests. The latter provide improved estimates of gene-specific 
variances without assuming that all genes have the same variance. The criteria for 
inclusion of a gene in the gene list is either a p-value less than a specified 
threshold value, or specified limits on the number of false discoveries or 
proportion of false discoveries. The latter are controlled by use of multivariate 
permutation tests. The tool also includes an option to analyze randomized block 
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design experiments, i.e., take into account influence of one additional covariate 
(such as gender) while analyzing differences between classes. 

 
 
• Class prediction: Constructs predictors for classifying experiments into 

phenotype classes based on expression levels.  Six methods of prediction are 
used:  compound covariate predictor, diagonal linear discriminant analysis, k-
nearest neighbor (using k=1 and 3), nearest centroid, and support vector 
machines.  The compound covariate predictor and support vector machines are 
only implemented for the case when the phenotype variable contains only two 
class labels, whereas the diagonal linear discriminant analysis, k-nearest neighbor 
and nearest centroid may be used even when the phenotype variable contains 
more than two class labels.  Determines cross-validated misclassification rate and 
performs a permutation test to determine if the cross-validated misclassification 
rate is lower than would be expected by chance. The class prediction analysis may 
also be performed on paired samples.  The criterion for inclusion of a gene in the 
predictor is a p-value less than a specified threshold value. For the two-classes 
prediction problem, a specified limit on the univariate misclassification rate can 
be used instead of the parametric p-value. In addition, a specified limit on the 
fold-ratio of geometric means of gene expressions between two classes can be 
imposed.  The output contains the result of the permutation test on the cross-
validated misclassification rate, and a listing of genes that comprise the predictor, 
with parametric p-values for each gene and the CV-support percent (percent of 
times when the gene was used in the predictor for a leave-one-out cross-validation 
procedure). The hyperlinks to NCI feature reports, GenBank, NetAffx, or other 
genomic databases are also included. Permits application of predictive models 
developed for one set of samples to expression profiles of a separate test set of 
samples. 

 
• Binary tree prediction: The multistage algorithm constructs a binary tree for 

classifying experiments into phenotype classes based on expression levels. Each 
node of the tree provides a classifier for distinguishing two groups of classes. The 
structure of the tree is optimized to minimize the cross-validated misclassification 
rate.  The binary tree prediction method can be based on any of the six prediction 
methods (compound covariate predictor, diagonal linear discriminant analysis, k-
nearest neighbor using k=1 or 3, nearest centroid, and support vector machines). 
Unlike the class prediction tool, the compound covariate predictor and support 
vector machines can be used even for the case when the phenotype variable 
contains more than two class labels. All the other options of this tool are identical 
to the class prediction tool. The output contains the description of the binary tree 
and the result of the permutation test on the cross-validated misclassification rate 
(if requested by the user). For each node of the tree, the result of the permutation 
test on the cross-validated misclassification rate, and a listing of genes that 
comprise the predictor are shown. Listings of genes include parametric p-values, 
CV-support percent, the hyperlinks to NCI feature reports, GenBank, NetAffx, or 
other genomic databases. 
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• Survival analysis: Uses Cox regression (with Efron handling of ties) to identify 

genes that are significantly correlated with survival.  The output contains a listing 
of genes that were significant and hyperlinks to NCI feature reports, GenBank, 
NetAffx, and other genomic databases.  The criteria for inclusion of a gene in the 
gene list is either a p-value less than a specified threshold value, or specified 
limits on the number of false discoveries or proportion of false discoveries. The 
latter are controlled by use of multivariate permutation tests. 

 
• Quantitative traits analysis:  Correlates gene expression with any quantitative 

trait of the samples.  Either Spearman or Pearson correlation tests are used.  The 
output contains a listing of genes that were significant and hyperlinks to NCI 
feature reports, GenBank, NetAffx, and other genomic databases.  The criteria for 
inclusion of a gene in the gene list is either a p-value less than a specified 
threshold value, or specified limits on the number of false discoveries or 
proportion of false discoveries. The latter are controlled by use of multivariate 
permutation tests. 

 
• Gene Ontology comparison tool:  Classes are compared by GO category rather 

than with regard to individual genes. Provides a list of GO categories that have 
more genes differentially expressed among the classes than expected by chance. 
P-values of two permutation tests, LS and KS, are used to select these GO 
categories.  A GO category is selected if the corresponding LS or KS permutation 
p-value is below the threshold specified by the user. The GO categories are 
ordered by the p-value of the LS test (smallest first). 

 
• Gene List comparison tool:  Investigates user-defined genelists and selects a set 

of genelists with more genes differentially expressed among the classes than 
expected by chance. P-values of two permutation tests, LS and KS, are used to 
select these gene lists.  A genelist is selected if the corresponding LS or KS 
permutation p-value is below the threshold specified by the user. The gene lists 
are ordered by the p-value of the LS test (smallest first). 

 
• Plugins:  Allows users to share their own analysis tools with other users.  

Advanced users may create their own analysis tools using the R language, which 
can then be distributed to other users who have no knowledge of R.  Details about 
the Plugin utility are covered in a separate manual. 

 
 
A note about single-channel experiments 
 
All of the tools within BRB-ArrayTools can be equally run on single-channel and dual-
channel experiments.  For Affymetrix data, it is suggested that the "signal" field produced 
in MAS 5.0 should be used as the intensity signal.  If the "average difference" field is 
used as the intensity signal, then genes with negative "average difference" will be 
automatically thresholded to a value of 1 (log-transformed value of 0), unless the user 
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specifically elects to set those negative “average difference” values to missing during the 
log-transformation.  For sake of convenience of exposition, we will assume dual-channel 
data throughout this document.  We will refer to log-ratios, though a comparable analysis 
can be run on the log-intensities for single-channel data.  We will also refer to "spots" but 
for Affymetrix arrays the analog of "spot" is the probe set used to detect the expression of 
a specified gene. 
 
All analyses on log-intensities work exactly the same way as the analyses on log-ratios, 
but for two exceptions: 
 
1) Data normalization:  Dual-channel data is normalized within each array, whereas 

single-channel data is normalized relative to a designated reference array.  See the 
section on Normalization for more details. 

 
2) Gene filtering:  BRB-ArrayTools includes a special filter for single-channel data, to 

allow users to filter out genes with more than a minimum percentage of “Absent” 
Affymetrix detection calls. 

 
3) Class prediction:  To reduce the dominating effect that genes with overall high 

intensity might have, the single-channel log-intensities are median-centered on a 
gene-by-gene basis for all class prediction methods. 
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Installation 
 
 
System Requirements 
 
BRB-ArrayTools is Windows-compatible software, Windows Vista, 7, 8 and 10.  It is 
designed to be used as an add-in to Excel 2000 or later.  BRB-ArrayTools v4.5 is 
compatible on an Apple MacBook pro machine with Windows OS installed with Apple’s 
bootcamp and Parallels Desktop for Mac software. The software can also be installed on 
a 64-bit machine with Windows OS and 64-bit Excel. BRB-ArrayTools is no longer 
supported for Excel 97.  
 
Installing the software components 
 
The BRB-ArrayTools software and associated files may be downloaded from the 
following website: 
 
http://linus.nci.nih.gov/BRB-ArrayTools.html 
 
If you have Excel open, please close Excel before installing BRB-ArrayTools. 
 
Loading the add-in into Excel 
 
To begin using BRB-ArrayTools, you must have BRB-ArrayTools loaded into Excel as 
an add-in.  For detailed information about loading the add-in, please refer to the 
instructions at the BRB-ArrayTools website.  
 
 
 

Collating the data 
 
 
Overview of the collating step 
 
Collating is a process in which your data are read, sorted, and written to a standard Excel 
workbook format which is "understood" by BRB-ArrayTools.  The user inputs three 
types of data (expression data, gene identifiers, and experiment descriptors) by entering 
parameters to describe the file format of each data type.  BRB-ArrayTools then processes 
these data files and produces a collated project workbook which is a standard data 
format used by all the analysis tools included in the software package.  Curated gene lists 
may also be used to define gene functions or pathways, and will be read in at the time of 
collating.  The figure below shows a diagram of the collation process. 
 
 

http://linus.nci.nih.gov/BRB-ArrayTools.html
http://brb.nci.nih.gov/PowerPointSlides/LoadingAddinsInExcel.ppt
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A note about Excel workbooks 
 
A single Excel file (with an .xls extension) is called a workbook, and 
a workbook may contain one or more spreadsheets called worksheets.  
A tab-delimited ASCII text file with an .xls file extension, though not 
a true Excel object, is interpreted by Excel to be a workbook 
containing a single worksheet. 
 

 
 
 

 

Expression data 
( one or more files) 

Tab-delimited text files 
(or Excel workbooks) 

Gene identifiers 
( may be in  separate file) 

Experiment 
descriptors 

Collat 
Collated project 

Workboo Excel workbook with 
multiple worksheets 

User defined 
gene lists 
One or more 

text files 
Run analyses 

Filte 

Tab-delimited text  

Tab-delimited text  

(or Excel workbook) 

(or Excel workbook) 
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Input to the collating step 
 
The input data files should be tab-delimited ASCII text files.  Excel workbooks (where 
the input data is on the first worksheet if there are multiple worksheets within the 
workbook) may be used instead of tab-delimited text files.  However, BRB-ArrayTools 
will automatically convert those Excel files into tab-delimited text format.  If the user 
wishes to save a copy of the original Excel files, then the user should first save a copy of 
those original data files into another folder.  The user must enter enough information 
describing the format of these input data files (such as the column designation of each 
data element) so that BRB-ArrayTools can find and process these data elements from the 
input files. 
 
 
Input data elements 
 
Expression data 
 
In general, BRB-ArrayTools accepts expression data as either tab-delimited text files, or 
Excel files.  For Affymetrix data, BRB-ArrayTools now also accepts expression data in 
the CEL file format (see the section entitled Collating Affymetrix data from CEL files). 
 
BRB-ArrayTools accepts two input file formats for the expression data: (1) arrays 
horizontally aligned in one file, or (2) arrays in separate files.  Both the horizontally 
aligned and separate files formats can be used with multi-chip sets.  If the genes are listed 
in the same order and there is a one-to-one correspondence between the rows of each of 
the expression data columns, then the data is said to be aligned.  The horizontally aligned 
data format can only be used when the genes are already aligned, while the separate files 
format may be used whether or not the genes are already aligned.  The user has the option 
whether or not to geometrically average over replicated spots within an array.  For multi-
chip sets, genes that are multiply-spotted over several arrays can have replicated spots 
within the same array geometrically averaged, but replicates across different arrays will 
not be averaged.  For multi-chip sets, the individual arrays are normalized separately, but 
the data for all arrays within a set will be concatenated to form a “virtual array”. 
 
The required expression data elements are either the red and green signal intensity 
columns or the log-ratio column (for dual-channel data), or a single signal intensity 
column (for single-channel data).  If a background subtraction is desired for the dual-
channel data, then the red and green background columns are also necessary.  In addition, 
a spot flag or spot size column may optionally be entered, to allow spot filtering using 
these data elements.  For Affymetrix data, the Detection Call (Absent, Marginal, or 
Present) may be used as the “spot flag” variable for the purpose of flag filtering. 
 
For single channel data, all signal intensity values less than 1 will automatically be 
thresholded to 1 by default, before the log transformation is applied.  Users who do not 
wish to automatically threshold their data can turn off this default action by selecting the 
“Do not threshold to 1 (e.g., CodeLink)” checkbox at the time of collating.  For 
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CodeLink data, signal intensity values have already been normalized so that half of all 
signal intensities on an array are between 0 and 1, so that it does not make sense to 
threshold these values to 1.  When the “Do not threshold to 1” option is selected, then 
signal intensity values which are negative or 0 will be set to missing, since a log 
transformation is not valid on such data values.  Please note, however, that the “Do not 
threshold to 1” option is IRREVERSIBLE!  Once the negative or 0 values have been set 
to missing, they can never be thresholded again to 1 by re-filtering the data.  Likewise, 
once the values less than 1 have been thresholded to 1, the negative or 0 values can never 
be separated from the values in the interval between 0 and 1 and be subsequently set to 
missing.  In order to change the “Do not threshold to 1” option, the data must be re-
collated. 
 
 
Gene identifiers 
 
Various identifiers can be associated with each spot, such as spot numbers, well numbers, 
clone names, clone identifiers, probe set identifiers, UniGene identifiers, GenBank 
accession numbers, etc. The gene identifiers may be located alongside the expression data 
in the same files, or may be contained in a separate file which is used as a look-up table 
for the genes in all the arrays.  For multi-chip sets using a separate gene identifier file, 
only one gene identifier file should be used for the entire set of arrays.  If the gene 
identifiers are contained in a separate file, then there must be corresponding columns 
within the expression data file(s) and the gene identifier file, containing gene ids which 
can be used for matching the gene identifiers with the expression data. 
 
The column which is designated within BRB-ArrayTools as clone id should contain an 
organization-prefixed clone id (e.g., a prefix such as "IMAGE:", "ATCC:", "TIGR:" etc.).  
These clone ids can be used to link to clone reports in the NCBI database.  Note that 
clone reports in the NCI mAdb database are only available for clones in the NCI 
Advanced Technology Center inventory or for other expression array sets that are tracked 
by BIMAS/CIT/NIH.  All clone identifiers found within a clone id column that are 
numeric and have no prefix will be assumed to have a prefix of IMAGE by default. 
 
Probe set ids are used to link to feature reports in the NCI mAdb database.  Currently 
feature reports are available only for the Human Genome U133 A and B chips, and for 
the Mouse Genome U74 A-C chips.  For Class Comparison, Class Prediction, and 
Survival Analysis output, probe set ids are also used for batch query links to NetAffx. 
 
UniGene cluster ids and gene symbols are used to search for the UniGene annotation 
mirrored in the NCBI database.  GenBank accession numbers are used to search for the 
GenBank annotation which is also mirrored in the NCBI database. 
 
microRNA Id can be imported in v4.1 as part of the gene identifiers. 
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A minimum of one gene identifier is required for use in collating the dataset.  However, 
the user may wish to enter any or all of the above gene identifiers, if they are available, to 
enhance the usability of the output from the analyses. 
 
 
Experiment descriptors 
 
A file containing experiment descriptors must be prepared by the user and input during 
collation.  Each row in the experiment descriptor file represents an experiment in the 
dataset (except for the first row which is a header row), and each column represents a 
descriptor variable whose entries are used to describe each of the experiments.  For multi-
chip sets, each row in the experiment descriptor file should represent an entire set of 
arrays performed with the same sample, not a separate row for each individual array.  The 
experiment descriptor file should contain exactly the same experiments as those to be 
collated (i.e., it should not contain any extra rows representing experiments which are not 
represented in the dataset to be collated). 
 
The first column of the experiment descriptor file should contain the names of the 
experiments.  If the expression data is in a separate file for each array, then these names 
should be the filenames without the “.xls” or “.txt” file extensions.  For multi-chip sets 
with separate data files for each array, these experiment names should be the filenames 
without the optional “_A”, “_B”, “_C”, “_D”, and “_E” suffixes and without the “.xls” or 
“.txt” file extensions.  For horizontally aligned data, the order of the arrays in the 
experiment descriptor file is assumed to correspond to the order of the arrays in the gene 
expression data file. 
 
Each succeeding column in the experiment descriptor file contains a descriptor variable 
which may be used for labeling purposes, for identifying reverse fluor arrays, for 
classification analyses, for identifying replicate experiments, for matching between 
paired experiments, or for specifying the plotting order of the experiments when 
clustering genes.  The user can create as many columns of the experiment descriptor file 
as he/she finds useful for classifying the arrayed samples.  There should be no empty 
columns between the experiment descriptor columns. 
 
 
Minimal required data elements 
 
Although there are many optional data elements that may be input into the collating step, 
the minimal required data elements for all input formats are as follows: 
 
(1) the expression data (either the red and green signals or the log-ratio for dual-channel 

data, or the single signal intensity for single-channel data), 
(2) at least one gene identifier (may be located alongside the expression data or in a 

separate gene identifier file), and 
(3) at least one experiment descriptor column (the experiment id) in the experiment 

descriptor file. 
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Required file formats and folder structures 
 
Horizontally aligned format 
 
For data in the horizontally aligned format, expression data for all experiments are found 
in one file.  Usually the first few columns will be expected to contain gene identifiers.  
After the gene identifier columns, there should be a set of columns for each experiment in 
the dataset, and the order of the columns should be the same for each experiment.  Also, 
there should be no extraneous columns at the end of the file.  For example, the file may 
have columns: 
 
Probeset Signal1 Detection1 Signal2 Detection2 Signal3 Detection3 
 
However, the following set of columns are illegal for the horizontally aligned data 
format: 
 
Clone
Id 

GBAcc Red_
Exp1 

Green_
Exp1 

Ratio_
Exp1 

Green_
Exp2 

Red_
Exp2 

Ratio_
Exp2 

Filter 

 
There are two reasons why the above set of columns are illegal.  First, the data elements 
do not appear in the same order for experiment 1 (with “Red”, “Green” and “Ratio”) and 
experiment 2 (with “Green”, “Red” and “Ratio”).  Also, there is an extraneous column 
(“Filter”) at the end of the file which does not belong to any of the experiments.  The 
above file can be corrected by re-ordering the columns as follows: 
 
Clone
Id 

GBAcc Filter Red_
Exp1 

Green_
Exp1 

Ratio_
Exp1 

Red_
Exp2 

Green_
Exp2 

Ratio_
Exp2 

 
The “Filter” column will be ignored, since it is neither a gene identifier nor an experiment 
data element.  Also, the “Ratio” columns will be ignored, because the ratio will be 
automatically computed from the “Red” and “Green” columns. 
 
Separate files format 
 
For the separate files format, the user should create a data folder consisting exclusively of 
expression data files (one for each array).  The column format (i.e., the order of the data 
elements) should be the same in all the expression data files. 
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Using the collation dialogs 
 
Collating data using the data import wizard 
 
To import data into BRB-ArrayTools, the user should go to the 
 
          ArrayTools -> Import data -> Data import wizard 
 
menu item.  A wizard will prompt the user for the data type and location of the data 
elements described above.  The user must specify the following information within the 
wizard screens: 
 
Data types (e.g., single or dual channel, single array type or multiple array types, etc.) 
File type (e.g., horizontally aligned file format or expression data in a separate file for 
each array) 
Expression data 
Gene identifiers 
Experiment descriptors 
 
Wizard screen: data types 
 
BRB-ArrayTools can import the following data types using the Data import wizard: 
 
1.  Dual-channel intensities Data consists of red and green channel intensities.  

Background columns may also be included if 
intensities have not yet been background-subtracted.  
Data has not yet been log-transformed. 

2.  Dual-channel ratio or log-
ratio 

Data consists of ratios (=red/green) or log-ratios (= 
log2(red/green)). 

3.  Single-channel intensity or 
log-intensity 

Data from single channel experiments.  Data may or 
may not have already been log-transformed. 

4.  Affymetrix data Probeset-level data from Affymetrix GeneChips.  
Data consists of the Signal (MAS 5.0), Avg Diff 
(MAS 4.0), or other probeset-level expression 
summary measure.  Data may or may not have 
already been log-transformed. 

 
 
Important:  Each data column must be clearly labeled with a variable name, and data 
columns should be tab-delimited.  The data file should not contain consecutive tabs, 
except as necessary to denote missing values in the data columns. 
 
The dual-channel and single-channel data types (data types #1, #2, and #3 above) may 
also include optional spot flag or spot size columns, which are used to indicate spot 
quality.  Affymetrix data (data type #4 above) may also include detection call or absolute 
call columns. 
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Some datasets may fall into more than one category.  For instance, the user may have 
dual-channel data in GenePix files which contain the individual channel intensities as 
well as a log-ratio column.  In that case, the user may elect to import either the individual 
channel intensities (data type #1 above) or the ratios or log-ratios (data type #2 above), 
but not both.  If the individual channel intensities are imported instead of the ratios or 
log-ratios, then BRB-ArrayTools will compute the log-ratios from the channel intensities.  
However, any normalization which had been applied to the log-ratios in the original 
expression data file will be lost, so the imported data must be re-normalized. 
 
Affymetrix data may be imported as single-channel intensity or log-intensity (data type 
#3 above) or Affymetrix data (data type #4 above).  However, the default filtering criteria 
are different for these two data types, and the filtered data in the collated project 
workbook will differ slightly unless the user is careful to use the same filtering criteria in 
both cases.  For Affymetrix data (data type #4 above), the user must specify the chip type 
(e.g., U133, U74, etc.). 
 
 
Wizard screen: file type 
 
BRB-ArrayTools can accept either tab-delimited ASCII text files, or Excel spreadsheets 
(a single worksheet within an Excel workbook).  If the file is an Excel spreadsheet, then 
BRB-ArrayTools will automatically convert it to tab-delimited text file with the same 
name.  
 
The expression data can be saved either in a horizontally aligned file or saved in separate 
files stored in one folder. 
 
Horizontally aligned file 
 
In this file format, the data columns are organized into array data blocks, where an array 
data block is a set of consecutive columns containing data from the same array.   The data 
elements must appear in the same order within each array data block.  All gene identifier 
columns must be placed before the first array.  If there are any miscellaneous data 
columns following the last array data block, then the user must either delete those last 
columns or place them before the first array. 
 
The following figure illustrates an example of a horizontally aligned file with three 
columns (Green, Red and Flag) in each data block: 
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Important: If your experiments consist of multiple array types, then each horizontally 
aligned file must contain arrays of the same type, and you should have one horizontally 
aligned file for each array type used.  The experiments should appear in the same order in 
each horizontally aligned file.  Up to five array types (denoted here as ‘A’, ‘B’, ‘C’, ‘D’ 
and ‘E’ for convenience) may be used, and data from these array types will be 
concatenated to form a “virtual array”. 
 
Separate files 
 
In this file format, each array is stored in a separate file. Each file must have identical 
format, including the same number of header lines before the data lines. The following 
example illustrates a file with three columns of data: 
 

 
 
Important: The data folder must contain only expression data files.  Extraneous files 
should be removed before collation.  If your experiments consist of multiple array types, 
do not mix arrays of different types in the same data folder.  Data for each array type 
should be stored in a separate folder, and corresponding samples performed on each array 
type should have the same filename within their respective folders, except that the names 
may differ by the extension ‘_A’, ‘_B’, etc.  (For example, the user may have a folder 
called ‘ChipTypeA’ containing files ‘PatientID001_A.txt’, ‘PatientID0234_A.txt’ and 
‘PatID32_A.txt’, and another folder called ‘ChipB’ containing files ‘PatientID001_B.txt’, 
‘PatientID0234_B.txt’ and ‘PatID32_B.txt’.)  Up to five array types (denoted here as ‘A’, 
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‘B’, ‘C’, ‘D’ and ‘E’ for convenience) may be used, and data from these array types will 
be concatenated to form a “virtual array”. 
 
Wizard screen:  expression data 
 
To specify the data columns in the expression data file(s), first select the header line that 
identifies the data columns as well as the first line of data, and then specify the individual 
column containing the data elements.  For the horizontally aligned file format, the user 
must also select the columns where data for the first array and second array begin.  This 
helps the Wizard to determine how many columns of data belong to each array, and 
allows the Wizard to calculate the beginning column for each subsequent array.  The 
columns for each array must be placed together, and there should be no miscellaneous 
columns inserted between the data columns for each array or after the last column of the 
last array. 
 
Here is a brief description of the data columns: 
 

Gene identifier column: 
 

- The Unique ID or Well ID or Spot ID column uniquely identifies each spot (or 
feature) on the array. If this ID appears more than once within the same file, 
then it is assumed that the clone has been multiply-spotted onto the array.  If 
the data is Affymetrix, then this column is called “Probe Set Name” or ‘Probe 
Set ID”. 

 
For single channel data: 

 
- The Signal Intensity column contains the signal values of the spots (or 

features).  If the user has Affymetrix data from MAS 4.0, then the “Avg Diff” 
column may be used as the Signal Intensity column. 

 
For dual channel data: 

 
- The Red and Green Intensity columns indicate the intensity of the red and 

green signal. Log-ratios of red-to-green will be computed from the red and 
green background-adjusted values. 

 
- The Red and Green Background columns contains background values to be 

subtracted from the Red and Green Intensity columns if they are not already 
background adjusted.  These two columns are optional. 

 
Optional data elements common to single and dual channel data: 

 
- The Spot Size column indicates the size of the spot. Some imaging software 

use the size data for quality control. This column is optional. 
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- The Spot Flag column indicates the quality of the spot. Some imaging 
software set the spot flag values such as 0 or 1 to indicates spot quality.  A 
string such as “Failed” or “Pass” may also be used to indicate spot quality.  
For Affymetrix data, the Detection Call will be used in lieu of the Spot Flag.  
This column is optional. 

 
Note:  For single channel data, all signal intensity values less than 1 will automatically be 
thresholded to 1 by default, before the log transformation is applied. Users who do not 
wish to automatically threshold their data can turn off this default action by selecting the 
“Do not threshold to 1 (e.g., CodeLink)” checkbox at the time of collating. For CodeLink 
data, signal intensity values have already been normalized so that half of all signal 
intensities on an array are between 0 and 1, so that it does not make sense to threshold 
these values to 1. When the “Do not threshold to 1” option is selected, then signal 
intensity values which are negative or 0 will be set to missing, since a log transformation 
is not valid on such data values. Please note, however, that the “Do not threshold to 1” 
option is IRREVERSIBLE! Once the negative or 0 values have been set to missing, they 
can never be thresholded again to 1 by re-filtering the data. Likewise, once the values less 
than 1 have been thresholded to 1, the negative or 0 values can never be separated from 
the values in the interval between 0 and 1 and be subsequently set to missing. In order to 
change the “Do not threshold to 1” option, the data must be re-collated. 
 
Wizard screen: gene identifiers 
 
Various identifiers such as spot number, well number, clone number, UniGene cluster 
identifiers, GenBank accession number or gene title can be associated with each spot. 
They can be either placed alongside the expression data or stored in a separate gene 
identifiers file. These identifiers will be hyperlinked in the analysis output. For 
Affymetrix data, the user has the option of downloading the probeset annotation file 
directly from BRB’s server. These files were originally downloaded from the NetAffx 
website and have been especially formatted for use with BRB-ArrayTools. 
 
Here is an example of a gene identifiers file: 
 

 
 
Important:  If the gene identifiers are in a separate file rather than in the expression data 
file, then you must specify which gene identifier in the separate gene identifiers file 
should be used to match against the Spot ID (Well ID, Unique ID or Probe Set ID) of the 
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expression data file(s).  For multi-array sets using a separate gene identifiers file, all gene 
identifiers should be contained in one file rather than a separate file for each array type. 
 
Wizard screen: experiment descriptors 
 
In order to facilitate the analysis of your experiments, an experiment descriptors file may 
be prepared by the user before the collation.  If the user does not have experiment 
descriptors file prepared in advance, the user may elect to have BRB-ArrayTools create a 
template. 
 
Here is an example of an experiment descriptors file: 

 
Except for the first row which is a header row, each row represents an experiment in the 
dataset.  The first column should contain the names of the experiments.  
 
Important: For data in separate files format, the experiment names should be the name 
of the file minus the “.xls” or “.txt” file extensions. For data stored in a single file, the 
experiment names should correspond to the order of the arrays listed in the expression 
data file. 
 
Important: The experiment descriptors file should contain exactly the same experiments 
as those to be collated (i.e., the experiment descriptors file should not contain any extra 
rows representing experiments which are not represented in the expression data, nor 
should any experiment which are present in the expression data be missing from the 
experiment descriptors file).  For multi-chip sets, each row should represent an entire set 
of arrays performed with the same sample, not a separate row for each individual array. 
 
Each succeeding column contains a descriptor variable which may be used for labeling 
purposes, for identifying reverse fluor arrays, for classification analyses, for identifying 
replicate experiments, for matching between paired experiments, or for specifying the 
plotting order of the experiments when clustering genes.  The user can create as many 
columns of the experiment descriptors file as he/she finds useful for classifying the 
arrayed samples.  There should be no empty columns between the experiment descriptor 
columns. 
 
If the dataset contains reverse fluor experiments, then select this checkbox, and specify 
the column in the experiment descriptor sheet and the labels in this column which 
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indicate the reverse fluor arrays. The log-ratio will be computed as log(green/red) instead 
of log(red/green) for the reverse fluor arrays.  
 
 
Special data formats 
 
BRB-ArrayTools can collate data from two special formats for Affymetrix data, from a 
special format for data archives downloaded from the NCI mAdb database, and also from 
a data in GenePix format.  For data in these formats, BRB-ArrayTools offers “shortcut” 
Special format collation dialogs which allow users to bypass some of the specification 
fields required in the Data import wizard. 
 
Affymetrix data can be exported from MAS 4.0 or 5.0 as probeset-level data (e.g., signals 
and detection calls from the CHP data) in tab-delimited text files, or imported directly 
into BRB-ArrayTools from the CEL files.  Either of these formats can be imported in 
BRB-ArrayTools using the Special format collation dialogs.  Tab-delimited probeset-
level data files can be collated as a single-chip type or multi-chip set, whereas CEL files 
currently can only be collated as a single-chip type.  However, probeset-level expression 
summaries which have already been exported from other software such as BioConductor 
or dChip should be imported as text files using the standard Data import wizard. 
 
 
Collating Affymetrix data from CHP files exported into text format 
 
To import data from CHP files which have been exported from MAS 4.0 or 5.0, go to the 
ArrayTools  Collate data  Special format: Affymetrix GeneChips  Probeset-
level data menu item. 
 
The CHP files should be exported from MAS 4.0 or 5.0 as tab-delimited text files in 
either the “horizontally aligned” or “separate files” input data formats as previously 
described. 
 
Single chip type 
 
The single chip type refers to the situation when all the chips which were hybridized were 
of the same type and format, containing the same probesets.  Experiments which used 
only chip ‘A’ of a multi-chip set can also be considered as a single chip type experiment. 
 
If data is exported in the horizontally aligned input data format, then a Pivot Table should 
be created containing the absolute analysis data from all experiments that were performed 
within that chip type, and the pivot table should be exported as a tab-delimited text file. 
 
If the data is exported in the “separate files” format, then the Metrics Table data from 
each CHP file should be exported as a separate tab-delimited text file in a data folder 
devoted exclusively to expression data files.  The files may contain miscellaneous rows 
before the column header row, but all files must have the exact same format (and same 
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number of miscellaneous rows before the column header row).  Each file should contain 
data from one chip or array, and the names of the separate files (without the “.xls” or 
“.txt” file extensions) will be used as experiment names in the collated project workbook. 
 
In all of the following formats, the “Probe Set Name”, “Signal” and “Detection” are 
the only required columns from MAS 5.0 data, and the “Probe Set Name”, “Avg 
Diff” and “Abs_Call” are the only required columns from MAS 4.0 data.  All other 
columns are optional. 
 
BRB-Arraytools can automatically recognize the data format of files that have been 
exported directly from MAS 4.0 and MAS 5.0.  However, users who choose to edit the 
data columns and column headers of their files should follow the format described below, 
in order for BRB-ArrayTools to automatically recognize the data format.  If the column 
header row is not in any of the following formats, then BRB-ArrayTools will not be able 
to parse the files automatically.  In that case, the user will need to use either the 
‘horizontally aligned’ or ‘separate files’ collating dialogs (for a single array type) or the 
“multi-chip sets” collating dialog (for multi-array sets), in order to collate the data. 
 
Expression data in a “horizontally aligned” file: 
 
1.  For expression data output from a Pivot Table in MAS 5.0: 
  
Probe Set Name   Description  Exp1_ Signal      Exp1_Detection   Exp2_Signal   Exp2_Detection 
1053_at               Human replication   234           P                          456                 P 
1773_at               Human farnesyl-     123            P                          39                   P 
 
2.  For expression data output from a Pivot Table in MAS 4.0: 
     
Probe Set Name   Description            Exp1_Avg Diff   Exp1_Abs_Call   Exp2_Avg Diff   Exp2_Abs_Call 
1053_at               Human replication   234                     P                          456                      P 
1773_at               Human farnesyl-     123                     P                           39                        P 
 
For the above two formats, the prefixes Exp1 and Exp2 will be used as experiment names 
in the collated project workbook.  You may use any other experiment names, but do not 
use the following special characters “\  / : * ? “ < > | .” which have special meanings in 
Windows. The “Probe Set Name” column label may also be given as simply “Probe Set”. 
The detection (Abs_call) column should be right next to the signal (Avg Diff) column for 
each experiment. 
 
Expression data in a “Separate Files” format:  
 
1.  For expression data output from a Metric Table in MAS 5.0: 
  
Probe Set Name   Description             Signal      Detection  
1053_at               Human replication   234          P 
1773_at               Human farnesyl-     123           P 
 
2.  For expression data output from a  Metric Table in MAS 4.0: 
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Probe Set Name      Description              Avg Diff     Abs_Call   
1053_at                  Human replication   234              P 
1773_at                  Human farnesyl-     123               P           
 
3.  In addition to the above mentioned file formats, the following file format from the 
NCBI portal will also be recognized: 
 
ID_REF   VALUE  ABS_CALL 
AFFX-MurIL2_at -896  A 
AFFX-MurIL10_at 682  A 
 
4.  In addition to the above mentioned file formats, the following file format from mAdb 
will also be recognized: 
 
AffyId  Signal  Detection Call 
A28102_at 7.002252579 A 
AB000114_at 4.121015549 A 
 
Gene annotations file format:  
 
The gene annotations file is optional.  If you have probe set annotation columns other 
than the Description column, please place them in a separate tab-delimited gene 
annotation file and use the following column header labels.  For multi-chip sets, please 
place your entire probe set annotation information for all chip types in just one file. 
 
ProbeSet     - the  name of the probe set. 
Name      - the description or title of the probe set. 
UnigeneID     - the Unigene Id. 
Symbol     - the gene symbol. 
Accession     - the GeneBank Id or source of the 
sequence. 
Chromosome     - the location of the gene in the 
chromosomal map. 
 
Experiment descriptors file:  
 
The experiment descriptors file should follow the same format as described in the 
previous section Experiment descriptors.  The first row of the experiment descriptors file 
should be a column header row, and each subsequent row should represent an individual 
array.  The first column of the experiment descriptors file should contain the experiment 
labels.  When the expression data is horizontally aligned in one file, then the order of the 
rows in the experiment descriptors file will be assumed to correspond to the order of the 
array data blocks in the horizontally aligned expression data file.  When the expression 
data is in a separate file for each array, then the experiment labels in the first column of 
the experiment descriptor sheet must correspond to the expression data filenames 
(without the “.xls” or “.txt” file extensions). 
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Importing Affymetrix data from text or binary CEL files 
 
For Affymetrix data, BRB-ArrayTools now also accepts expression data in the CEL file 
format.  However, the user may only input CEL files of a single chip-type, not as a multi-
chip set.  The Affymetrix CEL file collation in v3.6, currently  has the following  options 
namely the MAS5.0, RMA, almostRMA and the GC-RMA methods to compute probeset 
summaries. All of the above methods use Bioconductor packages to read the .CEL files 
and compute the corresponding probeset summaries. 
BioConductor(http://www.bioconductor.org/) is an open source and open development 
software project for the analysis and comprehension of genomic data implemented in R. 
 
The MAS5.0 probe set summaries are computed from .CEL files using the justMAS 
function in the ‘simpleaffy’ library from Bioconductor. The algorithm is implemented as 
described in Affymetrix's 'Statistical Algorithms Reference Guide' - see 
http://www.affymetrix.com, and in Hubbell et al. (2002) Robust Estimators for 
expression analysis. Bioinformatics 18(12) 1585-1592).  
 
The RMA probe set summaries are computed using the “affy” package .The “RMA” 
method can be summarized as a three step approach that uses a background correction on 
the PM data (Perfect Match), then applies a quantile normalization and finally 
summarizes the probe set information by using Tukey’s median polish algorithm. 
References: RA Irizarry, et.al. "Summaries of Affymetrix GeneChip probe level data” 
Nucleic Acids Research, 2003, vol.31, No.4. 
 
If there are less than 100 .CEL files, BRB-ArrayTools performs the RMA method to 
compute probe set summaries. The RMA option uses all the arrays simultaneously to 
compute the normalization and probe set summaries. However, for large number of 
arrays(greater than  or equal to100), BRB-ArrayTools  uses the almostRMA method 
which is a more memory efficient method. This method uses a random subset of a 100 
arrays to develop the quantile normalization and probe effects which are then applied to 
all the arrays in the dataset. Additionally, these quantiles and probe effects obtained from 
the subset of arrays are stored under the project folder in a sub-folder called 
‘almostRMA’( Reference: Darlene Goldstein Bioinformatics 22:2364,2006). 
 
The GC-RMA probe set summaries are computed using the “gcrma” package from 
Bioconductor.The gc-rma method adjusts for background intensities for Affymetrix data 
which include optical noise and non-specific binding.The gcrma function converts the 
background adjusted probe intensities to expression measures using the same 
normalization and summarization method as RMA.  
 
 
To import Affymetrix CEL files, place the CEL files in a separate data folder, and make 
sure all the CEL files within the folder are of the same chip type.  Then, go to the 
ArrayTools  Import data  Data import wizard menu item.  This utility requires 
the BioConductor ‘affy’ package to be installed as an R library.  If you do not already 

http://www.bioconductor.org/
http://www.affymetrix.com/
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have this package installed, then you will be prompted to install it before proceeding. 
After you click OK, the importing process will launch. 
 
 

Note about collating Affymetrix CEL files 
 
Please be aware that the collation of CEL files is a very memory-
intensive process, and may take several hours to run for a large 
number of chips.  You may wish to check your computer’s memory 
capacity, and allow sufficient time if collating a large number of 
chips. 
 

 
Importing Affymetrix Gene ST1.0, 1.1, 2.0, 2.1 .CEL files 
 
You can import Affymetrix ST-Array by clicking ArrayTools-->Import data--> 
Affymetrix ST-Array Importer. There are eight types of arrays that are supported in 
BRB-ArrayTools. They are Affymetrix Gene 1.0 ST Array, Gene 1.1 ST Array, Gene 2.0 
ST Array and Gene 2.1 ST Array for Human, Mouse and Rat species. Please refer to 
Affymetrix website for more details. Please note, that this importer does not support 
Affymetrix Exon arrays.  To import your .CEL files, they should be placed in a separate 
folder, which contains only the .CEL files. After you browsed for your data folder 
containing the .CEL files, and selected the organism type, the program will attempt to 
download and install the necessary CDF file and the 'Oligo' package from Bioconductor. 
At least 2GB of RAM is required to run this Affymetrix Gene ST-array importer. By 
default, Robust Multi-array Average (RMA) method is used to process the data. The 
annotations for Affymetrix ST-Array are obtained from Bioconductor. For more details 
about those annotation packages, please refer to 
http://www.bioconductor.org/packages/release/data/annotation/. 
 
Importing RNA-Seq data outputted from Galaxy web tool 
 
Starting from ArrayTools v4.3, RNA-Seq data pre-processed and outputted from the 
Galaxy web tool (https://main.g2.bx.psu.edu/) in tab-delimited .txt file format can be 
imported into BRB-ArrayTools for further statistical analysis of gene expression. The 
user needs to run Galaxy tools to obtain the FPKM estimates for each sample. Upon 
clicking on ArrayTools-->Import data--> Data Import wizard, a dialog form will pop up 
asking for the data type. From the dropdown list the user can select the “RNA-Seq Data 
from Galaxy” as the data type and then browse for the file containing the FPKM 
estimates to continue. SOURCE annotation can be run at the end of importing. 
 
 
Importing RNA-Seq count data 
 
A new feature added in BRB-ArrayTools v4.5 is to import RNA-Seq count data in the 
count file format generated by HT-Seq or in all-in-one tab-delimted .txt file format with 

http://www.affymetrix.com/estore/browse/level_three_category_and_children.jsp?parent=35868&expand=true&category=35674&fromAccordionMenu=true&subCategory=35674
http://www.bioconductor.org/packages/release/data/annotation/
https://main.g2.bx.psu.edu/
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the leftmost column containing the Unique ID for each gene. Clicking on “ArrayTools -> 
Import data -> RNA-Seq count data importer”,   the user can proceed to select the count 
data file type and browser for the data file or the folder containing the data files. BRB-
ArrayTools utilizes the “DESeq2” R package to transform and normalize the count data. 
Normalized count data will be displayed in the “Filtered log intensity” worksheet of the 
project workbook. In the mean time, raw count data will be stored in the project folder for 
future differential expression analyses. 
 
 Collating data from an NCI mAdb archive 
 
BRB-ArrayTools has a collating interface that allows the National Cancer Institute 
Advanced Technology Center users to easily collate their data that has been downloaded 
from the "mAdb" website as a zipped archive.  To import  “mAdb”  data, go to the 
ArrayTools  Import data  Data import wizard menu item.  Currently, this 
collating interface is only implemented for dual-channel cDNA data, and Affymetrix data 
from a single chip type.  The “mAdb” collating interface will be modified in the future to 
handle Affymetrix multi-chip data as well.  For now, however, if the user has an “mAdb” 
archive that contains Affymetrix multi-chip data, then the user will need to use either the 
Multi-chip sets or Affymetrix GeneChips collating dialog. 
 
With the “mAdb” collating interface, the user only needs to browse for the folder that 
contains the unpacked “mAdb” archive, and for dual-channel data, specify whether or not 
the genes are aligned and whether or not the data contains reverse fluor experiments.  If 
the data contains reverse fluor experiments, then the user should first edit the 
array_descriptions file by entering a reverse fluor indicator in column "G", in 
which reversed arrays are denoted by the label “Yes”. 
 
The zipped archive should be unpacked before collating.  When unpacking the archive, 
please check to make sure the directory structure of the archive has been preserved. 
 
When the data for each array is in a separate file, there should be two files 
 
array_descriptions_xxx_xxxxxx.xls 
gene_identifiers_xxx_xxxxxx.xls 
 
and a folder 
 
array_data_xxx_xxxxxx 
 
which are unpacked into the same directory.  The  array_data_xxx_xxxxxx folder 
contains all the expression data files, where each file contains the expression data for a 
single array. 
 
Other software developers may also create data archives that are similar in format to the 
“mAdb” data archive, which can then be easily imported by their users into BRB-
ArrayTools using the NCI Microarray Database (mAdb) archive collation dialog.  For 
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documentation on the expected format for the “mAdb” data archive, please refer to the 
separate document in the Doc folder of the ArrayTools installation folder entitled 
mAdb archive format.doc. 
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 Collating GenePix data 
 
BRB-ArrayTools can collate GenePix data with the simplified procedure which will 
recognize this format and enter all necessary columns automatically as compared to the 
same collation when it is performed in the data import wizard. To import “GenePix” data, 
go to the ArrayTools  Import data  Data Import Wizard from the menu item.  
User then will enter the data files folder location and experiment descriptor file (or use an 
option to create descriptors automatically from the files names) and will run the collation. 
Additional options can be set to flip the ratios on reverse fluor arrays, add extra gene 
identifiers (gene names and ids are entered automatically from the main data files), and 
average duplicates within arrays. For dual channel data,  
        Red intensity    -  "F635 Mean" or "Ch1 Intensity (Mean)" 
        Red background   - "B635 Median" or "Ch1 Background (Median)". 
 
        Green intensity  -  "F532 Mean" or  "Ch2 Intensity (Mean)".  
        Green background - "B532 Median" or "Ch2 Background (Median)"  
 
For single channel data, 
 
        Signal -  "F635 Mean". 
 
We also import other important fields:  
 
        Unique ID  - the "ID" column. 
        Spot Flag  - the "Flags" column. 
        PrintTip   - the "Block" column. 
        Spot Size  - the "Dia." or "Number of Spot Pixels" column 
 
  Background-adjusted intensities are computed from the foreground mean minus the 
background median (usually this is F635 Mean – B635 Median for the red channel, and 
F532 Mean – B532 Median for the green channel), and the log-ratio is then computed 
from the background-adjusted red and green intensities. 
 
Collating Agilent data 
 
In BRB-ArrayToolsv3.6, dual channel Agilent data can be imported using the Data 
import wizard. Once, the program identifies that it is  from the Agilent system then, the 
following parameters get automatically imported. The ProbeName" as the Unique Id, 
the"gBGSubSignal" as the green background subtracted signal,"rBGSubSignal"as the 
red background subtracted signal, the "gNumPix” or “rNumPix" as the total number of 
pixels for Spot Size and the "gIsFeatNonUnifOL” or “rIsFeatNonUnifOL"  to 
indicate if a feature is a population outlier or not and is used as the Spot Flag 
parameter. For annotations either alongside expression data or in separate file, the 
“ProbeName"  gets imported as the Unique ID",”gb" as the GenBank Id, the "ug" as the 
Unique Gene Cluster ID and the "GeneName" as the Gene Symbol. 
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For single channel Agilent data, "gBGSubSignal" will be imported as the signal column 
 
Collating Illumina expression data 
 
The Illumina expression data can be imported using the Data import wizard. In order to 
import data using Data Import Wizard, the users need to export their Illumina data 
through BeadStudio software. As BeadStudio can output both probe profile and gene 
profile, the probe profile is preferred. For each array, columns with header containing 
“AVG_Signal” and “BEAD_STD*” (where * can be any characters) are required to be 
exported. For users who would like to apply variance stabilizing transformation (VST) 
through the “lumi” package, two additional columns with headers “beadNum” and 
“Detection” are also required in the BeadStudio/GenomeStudio exported file. If either of 
these two columns are missing, log2 transformation will be applied instead of VST. In 
addition, the output data file is required to contain columns with the unique ID column 
header named ProbeID, PROBE_ID or TargetID. Upon clicking on ArrayTools -> Data 
Import Wizard, the user needs to select the data type as “Illumina Single channel data” 
and browse for the data file. Once the program identifies that it is an output file generated 
using the BeadStudio software, data get imported by the “lumi” R package available at 
Bioconductor. The software asks users whether they wishe to lumi package to normalize 
the data. If non-normalized raw data are imported, they undergo variance-stabilizing 
transformation, followed by normalization. The users have 5 options to normalize the 
data: 1) Robust spline normalization (RSN); 2) Loess normalization; 3) Quantile 
normalization; 4) Rank Invariant normalization and 5) SSN (simple scaling 
normalization). We recommend users to export non-normalized raw data so as to use the 
lumi R package to transform and normalize the data. However, if the output data exported 
from the BeadStudio software are already normalized, the users should answer “No” to 
the question about using lumi package to normalize the data. . 
Starting from v4.2, the users have more options of annotating the Illumina data imported 
through Data Import Wizard. In order to meet the requirement of different annotation 
options, users need to make their decisions at the importing step. Three options are 
available for Illumina data annotation: 1) Custom annotation with the user’s own gene 
identifiers file; 2) SOURCE annotation.  
and 3) Annotation with the annotation package associated with “lumi” package. 
The software asks whether the user wants to annotate the probes through “lumi”. If the 
user answers “Yes” to this question, the software informs the user that the ProbeID or 
TargetID will be converted to NuID that is a unique ID specifically used for annotation 
through the lumi package. The annotation packages can be downloaded through 
Bioconductor and used for annotation by the “lumi” package (option #3). SOURCE 
annotation cannot be used if the original Unique ID has been converted to NuID. 
If the user answers “No” to the above question about lumi annotation, the software 
directs the user to browse for a gene identifiers file. The user cannot select the radio 
button “The Identifiers are stored alongside the expression data”, however, the same data 
file exported from BeadStudio can be selected as the Gene Identifiers file if some 
annotation columns such as Gene symbol or Entrez Gene Ids have been exported along 
with the expression data. This file can directly be used for creating custom annotation 
(annotation option #1), if the user checks the box “Use these gene ids for annotation, 
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instead of using data from SOURCE database”. The “Gene Symbol” column is required 
for this option, it is a requirement for gene annotation in BRB-ArrayTools. Alternatively, 
if the user does not check the box, custom annotation will not be conducted. The user can 
pick one of the columns in the gene identifiers file as query key for SORUCE annotation 
at the end of importing (option #2). Several gene identifiers can be used as the query key 
for SOURCE annotation, including Symbol, Accession number, Entrez Gene Id, and 
Probe Ids starting with “ILMN_”.  
 
Collating Illumina methylation data 
 
Staring from ArrayTools v4.3, the Illumina methylation data can be imported using the 
Data import wizard. Currently the following three chip types are supported: 1)  
IlluminaHumanMethylation27k; 2) IlluminaHumanMethylation450k and 3) 
GGHumanMethCancerPanelv1. The raw data file is a tab-delimited .txt file outputted 
from either BeadStudio/GenomeStudio software. It is required to have the following 
columns: 1) TargetID column and 2) The AVG_Beta column for each array. The beta 
value represents the proportion of methylated signal intensities among all intensities 
(methylated and unmethylated intensities) in each probe. It is always a number between 0 
and 1. In addition, the file could contain columns for the signal intensity data of 
unmethylated and methylated probes, such as Signal_A and Signal_B, Signal_CY3 and 
Signal_CY5, or Signal_Red and Signal_Grn, for all samples. Upon clicking on 
ArrayTools -> Data Import Wizard, the user needs to select the data type as “Illumina 
methylation data” and browse for the data file. Once the program identifies the 
“TargetID” and “AVG_Beta” columns, a form pops up to let the user select the chip type. 
If the user has either the Infinium Human methylation 27k or 450k chip, and the 
methylated/unmethylated signal data are available in the data file, data get imported by 
the “lumi” R package available at Bioconductor. The software continues to ask the user 
whether he/she wishes to use the “lumi” package to normalize the data. If the user 
answers “Yes” to the question, data will be quantile color balance-adjusted, quantile 
normalized and then converted to the M values (log2 ratios of methylated over 
unmethylated normalized signal intensities) using functions in the “lumi” package, 
otherwise data will be converted to log2(beta/(1-beta)) values. If the raw data file does 
not contain the signal intensities of methylated and unmethylated probes, or if the chip 
type is Golden Gate based, data will be read in using the “methylumi” package, and will 
be converted to log2(beta/(1-beta)) values. No matter what chip type it is, or whether 
normalization has been applied, the processed data will be treated equivalent to log2 ratio 
data.   
For Illumina methylation data, there are 3 different options of annotation: 1) Annotate 
probes with the user’s own gene identifiers file; 2) SOURCE annotation.  
and 3) Annotate probes with the annotation package available at Bioconductor. For 
options 1) and 2) the user is required to browse for their gene identifiers file, or specify 
the Gene identifier columns present alongside with the raw data file.  
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Collating from NCBI GEO Import Tool 
This function allows you to automatically import a GDS dataset from the NCBI Gene 
Expression Omnibus (GEO) database into BRB-ArrayTools. To import a GEO dataset 
into BRBArrayTools you only need to provide the GDS number which can be retrieved 
from the following Entrez interface: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gds&term=all[filter]. Additionally, 
you can browse the above webpage to see the available datasets. The Import Tool can 
process ONLY GEO database entries with a GDS number. 

 The Importer first creates a GDS folder associated with the GDS number that the user 
entered, it then downloads the GDS data file into the data folder. From the GDS file, it 
finds the GPL number and downloads and saves the corresponding GPL annotation file 
into the folder. From GDS file, it extracts the Subset Record such as Sample_id, 
Description, Protocol to create the Experiment Descriptor file. To import the data into 
BRB-Arraytools, a project folder called ‘GDSXXXX-Project is automatically created. 
This Project Folder contains all the files BRB-Arraytools needed to analyze the array 
data. For Affymetrix Data, the annotations are imported from BRB’s Linus server, using 
a chip type specified by the user. 

References: 

1:  Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, 
Soboleva A, Tomashevsky M, Edgar R. 
NCBI GEO: mining tens of millions of expression profiles--database and tools update 
Nucleic Acids Res. 2006 Nov 11; [Epub ahead of print] 

2: Edgar R, Domrachev M, Lash AE. 
Gene Expression Omnibus: NCBI gene expression and hybridization array data 
repository 
Nucleic Acids Res. 2002 Jan 1;30(1):207-10 
 
 
Output of the collating step 
 
Organization of the project folder 
 
During the collating step, BRB-ArrayTools will create a project folder either within or 
alongside the folder that contained the user's original raw data files.  This project folder 
will contain the collated project workbook, as well as supporting files needed by the 
collated project workbook.  The new project folder will contain a BinaryData folder, 
and possibly also an Annotations or Output folder.  The Annotations folder is 
created if the user chooses to lookup gene annotations from the Stanford SOURCE 
database.  Some BRB-ArrayTools analyses may also produce various output files that 
will automatically be written to the Output folder.  For example, all the plots that 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gds&term=all%5bfilter
http://nar.oxfordjournals.org/cgi/content/full/gkl887?ijkey=ysG9Li2nfUYJvdZ&keytype=ref
http://nar.oupjournals.org/cgi/content/full/30/1/207?ijkey=oxMPOWseARs7o&keytype=ref&siteid=nar
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appear onscreen in the Cluster viewer page during cluster analysis are also automatically 
saved into the Output folder, and may be subsequently edited by the user for 
publication. 
 
Please note that only one data project should be collated into a single project folder.  
Please use a separate project folder for each collated project, and only re-use an existing 
project folder if you intend to overwrite the existing collated project within that folder.  If 
you are collating into an existing project folder, and the project folder already contains an 
existing Annotations folder, then the gene identifiers in the existing Annotations 
folder will be compared against the gene identifiers in your new collated project.  If the 
set of gene identifiers in the existing Annotations folder match up exactly with the set 
of gene identifiers in your new collated project, then you will be given the option of 
importing the existing gene annotations into your new collated project workbook, so that 
you will not need to lookup the Stanford SOURCE database to get those annotations. 
 
The collated project workbook 
 
The collating procedure produces a collated project workbook.  This is an Excel 
workbook containing three worksheets labeled Experiment descriptors, Gene 
identifiers, and either filtered log-ratio (for dual-channel data) or filtered log intensity 
(for single-channel data).  All other data variables, such as the red and green background-
adjusted signals and raw log-ratios (for dual-channel data), the raw log-intensities (for 
single-channel data), the spot flag (or Detection Call, for Affymetrix data), and the spot 
size, are considered auxiliary variables and will be written to separate text or binary files 
within the project folder. 
 
The rows in the gene identifiers worksheet correspond to the rows in the filtered log-
ratio (or filtered log intensity) worksheet.  The last column of the gene identifiers and 
filtered log-ratio (or filtered log intensity) worksheets contains an internal filtering 
variable called “Filter” containing the labels TRUE or FALSE.  To change the filtering 
criteria for any given analysis, the user should not manually edit the “Filter” column in 
these worksheets, but should set the filtering criteria by clicking on the Re-filter the data 
menu item.  Re-filtering the data will cause BRB-ArrayTools to automatically adjust the 
TRUE/FALSE labels in the “Filter” column according to the filtering criteria chosen. 
 
The experiment descriptors worksheet of the collated project workbook contains an 
editable copy of the experiment descriptors file which was collated with the data.  This 
copy can be edited by the user to add descriptors to be used in later analyses, as in the 
example below: 
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The Array-order descriptor variable, for example, might be used to specify the order of 
experiments to use when plotting lineplots of gene cluster expression. 
 
The gene identifiers worksheet of the collated project workbook contains the gene 
identifiers whose columns had been specified in the column format section under the 
gene identifiers page of the collating dialog box. 
 

 
If the user has chosen to annotate his or data using the defined genelists, then the gene 
identifiers worksheet will also contain a column labeled Defined genelists, indicating if 
the genes matched any of those listed in the user defined gene lists. 
 
The click-arrows in each cell of the header row may be used to search for specific values 
of each variable.  Column-widths may be adjusted by hovering the cursor between the 
columns in the lettered column header bar and dragging. 
 
The filtered log ratio (or filtered log intensity) worksheet contains the log-ratios (or log 
intensities) after the specified filtering levels have been applied.  These are the data 
values that will be used for all analyses except the scatterplot of experiment v. 
experiment, where the log of the channel intensities can also be plotted for dual-channel 
data.  The first column of the worksheet contains the primary gene id, which matches the 
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gene id listed in the first column of the gene identifiers worksheet.  Each succeeding 
column contains the log-ratios obtained from a single experiment.  The highlighted 
yellow columns at the end of the dataset are used internally by BRB-ArrayTools for 
gene-filtering purposes.  The user should not edit this worksheet in any way.  BRB-
ArrayTools will automatically re-filter this worksheet, if necessary, before running each 
analysis. 
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Filtering the data 
 
 
The filtering criteria are specified during the data collating step, and may be changed 
prior to each analysis.  The dialog box for each analysis has a Filter button on the 
bottom, which can be used to specify or change the filtering criteria for all subsequent 
analyses. 
 
Although the filtering criteria may be changed for each analysis, it may be important to 
check the filtering criteria before collating the data if the data contains replicate spots for 
some genes in the array.  This is because the spot filtering is applied before averaging 
the replicate spots, and replicate spots are not re-averaged after the collating step has 
been completed, even if the user changes the filtering criteria. 
 
The Filtered log ratio (or Filtered log intensity) worksheet of the collated project 
workbook will reflect the filtering actions which have been selected.  With the exception 
of replicated spots, which are filtered before averaging, the supporting files that are 
located in the project folder will not reflect the filtering actions that have been selected. 
 
The order of operations for filtering the data is that spot filters are applied first, then data 
normalization, then truncation of extreme values, then gene screening. 
 
 
Spot filters 
 
Spot filtering refers to filters on spots in individual arrays.  Spot filtering is used for 
quality-control purposes, to filter out "bad" spots.  Unlike gene screening, spot filtering 
does not filter out the entire gene (row), but replaces the existing value of a spot within 
any given array with a missing value. 
 
Intensity filter 
 
For dual-channel data, a spot may either be filtered out (excluded) from the analysis, or 
thresholded (with one signal set equal to the specified minimum) in the analysis.  Using 
the appropriate filtering option, a spot on any array that has a red signal less than the 
specified minimum and/or a green signal less than the specified minimum will have its 
log-ratio value filtered out on the filtered log ratio worksheet.  Using the thresholding 
option, a spot on any array which has BOTH signals less than the specified minimum will 
be filtered out, but a spot that has only ONE signal less than the specified minimum will 
have the below-minimum value set equal to the specified minimum, in computing the 
log-ratio value that is shown in the filtered log ratio worksheet.  The intensity filter is 
applied to the background-adjusted red and green signals. 
 
For single-channel data, a spot on any array, which has a signal intensity less than the 
specified minimum, may either be filtered out or thresholded on the filtered log intensity 
worksheet.  Please note that the signal intensity values have already been automatically 
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thresholded to 1 by default, unless the “Do not threshold to 1 (e.g., CodeLink)” checkbox 
was selected at the time of collating.  If the “Do not threshold to 1” option was selected at 
the time of collating, then negative and 0 signal intensities have already been set to 
missing, and signal intensities in the interval between 0 and 1 have been left as-is.  Please 
note that the “Do not threshold to 1” option is IRREVERSIBLE once the data has been 
collated!  Once the negative or 0 values have been set to missing, they can never be 
thresholded again to 1 by re-filtering the data.  Likewise, once the values less than 1 have 
been thresholded to 1, the negative or 0 values can never be separated from the values in 
the interval between 0 and 1 and be subsequently set to missing.  In order to change the 
“Do not threshold to 1” option, the data must be re-collated. 
 
Spot flag filter 
 
The spot flag filter can contain both numeric and character values.  The user may specify 
a numeric range outside of which a numeric flag is considered to be “excluded”, and/or 
specify a list of flag values denoting the “excluded” values.  When the flag filter is on, a 
spot on any array which has an “excluded” flag value will be filtered out on the filtered 
log ratio (or filtered log intensity) worksheet.  The flag field is optional. 
 
For Affymetrix users, a Detection Call column can be designated as the spot flag column 
at the time of collating, allowing users to filter out expression values that have an “A” 
(Absent) call.  Additionally, the spot flag column (or Detection Call column, for 
Affymetrix users) is also used by the Percent Absent Filter, to filter out spots (or 
probesets) with a large percentage of expression values that have a spot flag (or Detection 
Call) value of “A”. 
 
Spot size filter 
 
The spot size field is optional, but when the spot size filter is on and the spot field is 
present, then a spot on any array which has a spot size less than the minimum value will 
be filtered out on the filtered log ratio (or filtered log intensity) worksheet.  For 
Affymetrix data, the number of pairs used to compute the signal can be used as a 
surrogate for the spot size measurement. 
 
Detection call filter 
 
For data collated using the Affymetrix GeneChips collating interface, the Detection call 
filter is a special case of the spot flag filter mentioned above, allowing users to filter out 
expression values based on the Detection call.  The Detection data column is also used by 
the Percent Absent Filter to filter out probesets with a large percentage of Detection Calls 
that have a value of “A”. 
 
 
Transformations 
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A logarithmic (base 2) transformation is applied to the signal intensities (for single-
channel data) or intensity-ratios (for dual-channel data) before they are normalized and 
truncated.  The effect of the data normalization and truncation will be reflected in the 
Filtered log ratio (or Filtered log intensity) worksheet of the collated project workbook. 
 
Normalization 
 
For dual channel data there are currently four normalization options:  median 
normalization, housekeeping gene normalization, lowess normalization,and  print-tip 
group normalization.  
 
Median normalization 
 
The median-normalization of dual-channel data is performed by subtracting out the 
median log-ratio for each array, so that each normalized array has a median log-ratio of 
0.  
  
Housekeeping gene normalization 
 
The user may specify a housekeeping genelist that will be used for normalization.  The 
housekeeping genes normalization of dual-channel data is performed by subtracting out 
the median log-ratio over housekeeping genes from all the log-ratios on the array.   
 
Lowess normalization 
 
For dual-channel data, a lowess (or intensity-dependent) normalization option is also 
available.   The median normalization is equivalent to multiplying all of the intensities in 
one channel of an array by a normalization factor. In some cases it can be advantageous 
to have a different normalization factor for different intensity levels; i.e., the dye bias 
may be different for low intensity spots relative to high intensity spots. In the lowess 
normalization, a non-linear lowess smoother function is fit to the graph of un-normalized 
log-ratio on the y-axis versus average log intensity (i.e., [log(Red)+log(Green)]/2 ) on the 
x-axis. This is the so-called M-A plot. The lowess smoother is based on a concatenation 
of linear regressions for points in overlapping intervals on the x-axis of the M-A plot. 
This lowess smoother is subtracted from the un-normalized log-ratios for the array in 
order to obtain the normalized log-ratios. The lowess normalization is much more 
computationally intensive than the median centering normalization and may require up to 
10 seconds per array on some computers using data with 35,000 genes. You may wish to 
first normalize your data using the default method and then examine M-A scatterplots to 
determine whether intensity dependent normalization is needed. If most of the points of 
the M-A plot are distributed equally above and below the 0 value of the y-axis, without a 
trend over x-values, then intensity based normalization is not needed.  
 
The default span parameter for the lowess smoother is set to 2/5..  This means that 2/5 of 
the total set of data points will influence the smooth at each value. Larger span values 
give more smoothness.  In previous versions, the default span value had been set to 2/3, 
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but this was found to create overly-smoothed curves which did not sufficiently capture 
the trends which were often found in the tails of the M-A plot.  The user is able to change 
the default span value by editing the “LowessSpan” parameter value in the 
“Preferences.txt” file in the “Prefs” folder of the ArrayTools installation folder.  The 
“Preferences.txt” file is a tab-delimited file in which parameter names are stored in the 
first column and parameter values are stored in the second column. To modify this option 
you can go to ArrayTools pull down menu select “Utilities”->”Preference” and change 
the options. Then choose the button to “Save changes” and “Exit”. 
 
Print-tip Group/Sub Grid normalization 
 
Global normalization calculates a normalization value for the entire array. This method is 
vulnerable to spatial effects and non-uniformity of the print-tips. Print-tip or sub-grid 
normalization attempts to adjust for such systematic variation in dual channel 
experiments. It is less vulnerable to spatial effects and non-uniformity of signal across an 
array. Print-tip group may also be called grid or sub-grid. For mAdb data it is called 
Block. The print-tip group data should be placed along side the expression data with one 
column for each array. 
 
Median Print-tip normalization independently calculates a median value of the log-ratios 
from the same print-tip group. This value is then applied only to spots from the same 
print-tip. For example, if an array was produced by a system with 16 print-tips, then 16 
normalization values will be used for each array. 
 
Lowess Print-tip normalization uses only the intensity data that are from the same print-
tip group to calculate a normalization value. This is value is then applied only to spots 
from the same print-tip.  
 
Single channel data normalization 
 
Starting from v4.2, more normalization options have been added for single-channel data. 
There are four methods available as follows: 1) Quantile normalization; 2) Normalization 
by user-specified target intensity and percentile; 3) Normalization by reference array and 
4) Normalization by array groups.  
 
Quantile normalization  
 
Quantile normalization is a method that makes the distribution of each array identical to a 
target distribution (Boldstad et al.). The detailed algorithm is as follows, 
 

1) Order the log transformed intensities of each array. 
2) Compute the target distribution by calculating the arithmetic means of the ordered 

log intensities across all arrays. 
3) Assign the values in target distribution back to each array based on the rank of 

each probe (set), i.e. the highest-ranked probe (set) will take the highest value in 
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target distribution, and the second highest-ranked probe (set) will take the second 
highest value in target distribution, as so on.     

 
Normalization by specified target intensity and percentile 
 
This normalization method is conducted based on each individual array by subtracting a 
particular number from all the log2 transformed intensities, such that a user-specified 
percentile of all probe (set) intensities is equal to the target intensity. The detailed 
algorithm is as follows, 
 

1) For each individual array, let N be the number of probes/probe sets, and let j be an 
index of probes/probe sets running from 1 to N. Let X and Y be user-specified 
target intensity and percentile, respectively. Let the intensity of a particular probe 
(set) j be Ij. Let the intensity at the Yth percentile be IY. 

2) Compute the difference (D) between the log2 transformed intensity at Yth 
percentile and the log2 (target intensity) by:  
D = log2(IY) - log2(X) 

3) The normalized value (M) for each probe (set) j is calculated as: 
Mj = log2(Ij) – D 

 
In the normalization dialog form, there is a “Use housekeeping genes only” checkbox, 
through which the user can specify a housekeeping genelist that will be used for 
normalization. When this option is checked, instead of the full set of probes (probe sets), 
only the probes (probe sets) on the housekeeping genelist will be used to determine “D” 
in the above procedure. 

 
 
Normalization by reference array 

 
This normalization method is a combination of “Median normalization of single channel 
data” and “Housekeeping gene normalization” in versions prior to v4.2, where a 
reference array needs to be selected so as to be normalized against all other arrays. The 
normalization is performed by computing a gene-by-gene difference between each array 
and the reference array, and subtracting the median difference from the log-intensities on 
that array, so that the gene-by-gene difference between the normalized array and the 
reference array is 0. 
 
The user has the option to explicitly select one of the arrays to be the reference array, or 
ask BRB-ArrayTools to automatically select the “median” array as the reference array.  
The algorithm which BRB-ArrayTools uses to select the “median” array is as follows: 
 

1) Let N be the number of experiments, and let i be an index of experiments running 
from 1 to N. 

2) For each array i, the median log-intensity of the array (denoted Mi) will be 
computed. 
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3) A median M will be selected from the {M1, …, MN} values.  If N is even, then 
the median M will be the lower of the two middle values. 

4) The array whose median log-intensity Mi equals the overall median M will be 
chosen as the median array. 

 
For this normalization option, the user may also be able to specify a housekeeping 
genelist, over which the median difference will be calculated instead of the full set of 
probes/probe sets. 
 
Normalization by array groups 
 
This option allows the users to normalize their data within array groups, or subsets. The 
user is required to enter the class column that specifies the array groups. For each array 
group, a median reference array is created based on all the arrays in this group, and each 
array is normalized against this median reference array using the same algorithm as 
described in “Normalization by reference array”. The user cannot pick the reference array 
for each group. The housekeep genelist option cannot be applied as well. 
  
 
Truncation 
 
This option allows the user to specify a maximum intensity (for single-channel data) or 
intensity ratio (for dual-channel data) to be used for analysis.  Any values greater than the 
specified threshold will be truncated to the threshold.  For truncation of intensity ratios, 
both the intensity ratios and inverse intensity ratios will be truncated (e.g., an intensity 
ratio threshold of 64 means that all intensity ratios will be truncated to lie between 1/64 
and 64).  Truncation is primarily used for dual-channel data, where small denominators 
can cause intensity ratios to become enormous. 
 
 
Gene filters 
 
Gene filtering, unlike spot filtering, is not applied on an array-by-array basis for each 
gene.  Instead, it uses a criterion based on all arrays for a given gene, to determine if that 
gene should be screened out or not.  Its purpose is not to filter out "bad" spots, but rather 
to screen out genes that are not likely to be informative.  The last column (labeled Filter) 
on the Gene identifiers and Filtered log ratio (or Filtered log intensity) worksheets are 
internally used by BRB-ArrayTools to select the genes that pass the screening. 
 
Here the criterion for filtering out a gene is based upon the variability of its log 
expression values across all arrays after normalization.  Filtering low variance genes is 
not really necessary except for clustering genes, where the computer memory 
requirements increase rapidly with the number of genes clustered. Several filtering 
options are available. 
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Minimum fold-change filter 
 
Genes that have low variability may be filtered out using the minimum fold-change filter.  
Here the criterion for filtering out a gene is based upon the percentage of expression 
values for that gene which have at least a minimum fold-change from the median 
expression value for that gene.  (If the dataset contains 250 or more experiments, then the 
mean will be used instead of the median for computational efficiency.)  The user may 
specify the minimum fold-change that is required.  If less than a specified percentage of 
expression values meet the minimum fold-change requirement, then the gene is filtered 
out. 
 
Log expression variation filter 
 
 
 
Alternatively, the filtering can be based on the variance for the gene across the arrays. 
One can exclude the x% of the genes with the smallest variances, where the percentile x 
is specified by the user. Or a statistical significance criterion based on the variance can be 
used. If the significance criterion is chosen, then the variance of the log-ratios for each 
gene is compared to the median of all the variances.  Those genes not significantly more 
variable than the median gene are filtered out.  The significance level threshold may be 
specified by the user. Specifically, the quantity (n-1) Vari / Varmed is computed for each 
gene i. Vari is the variance of the log intensity for gene i across the entire set of n arrays 
and Varmed is the median of these gene-specific variances. This quantity is compared to a 
percentile of the chi-square distribution with n-1 degrees of freedom. This is an 
approximate test of the hypothesis that gene i has the same variance as the median 
variance.   
 
 
Percent missing filter 
 
Here the criterion for filtering out a gene is based upon the percentage of expression 
values that are not missing and not filtered out by any of the previous spot filters.  
 
 
Percent absent filter 
 
Here the criterion for filtering out a gene is based upon the  percentage of Absent calls in 
the Spot Flag or Detection variable.  This gene filter may be applied independently of the 
Spot Flag Filter or Detection Call Filter described in the “Spot Filters” section above, 
though it uses the same Spot Flag or Detection Call variable.  For instance, a user may 
choose to turn off the Detection Call Filter in order to preserve all “Absent” expression 
values as they are, but turn on the Percent Absent Filter in order to exclude probesets that 
are considered unreliable or uninteresting because too many of the expression values 
were “Absent”.  In this case, probesets that did not get excluded by the Percent Absent 
Filter still maintain their expression values even for those values that were “Absent”. 
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Minimum Intensity filter 
 
New to v4.1-Beta_2, is the criterion for filtering out a gene is only applied for single 
channel data. It is based upon the intensity value at a specified percentile across all 
arrays. For any given gene, if its normalized log intensity is lower than the specified 
minimum log intensity, it will be filtered out.  
 
 
Gene subsets 
 
Gene subsetting, unlike gene filtering, is not based on the expression data values for the 
genes, but rather on the identities of the genes.  The purpose of gene subsetting is to 
select or exclude genes which are known to be interesting or non-informative based on 
one of the gene labels. 
 
 
Selecting a genelist to use or to exclude 
 
The user may select one or more genelists that define a gene subset, and filter the data to 
include only those genes in the selected subset (or exclude the genes from that subset).  
See the section below on Defining annotations using genelists for more details on how 
genelist files are used. 
 
 
Specifying gene labels to exclude 
 
The user may choose to exclude genes by specifying a string within one of the gene 
identifiers as an exclusion criterion.  For instance, a user may choose to exclude all empty 
wells, so the user may choose to exclude all genes with “Empty well” in the Description 
column of the Gene identifiers worksheet. 
 
 
Reducing multiple probes/probe sets to one, per gene symbol 
 
The program provides an option to use all the probes that correspond to a gene or use 
only the most variable probe measured by the Inter-Quartile Range (IQR) across all the 
arrays. For single channel data, an additional option to use only the probe set with the 
largest expression across all the arrays is also available. By selecting this option, the 
reduced set of genes is used for downstream analysis. 
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Annotating the data 
 
 
Defining annotations using genelists 
 
Genelists are text files containing lists of genes belonging to the same functional 
grouping, where the filename indicates the functional grouping that describes the set of 
genes listed in the file.  Genelists used for two different purposes within BRB-
ArrayTools: (1) to annotate the genes in the dataset; and (2) to subset the data based on 
functional groupings. 
 
One purpose of genelists is to annotate the genes (using the Utilities  Annotate data 
 Match data against genelists menu item).  If any of the genes in the user's dataset 
match any of those in the genelists, then the name of the genelist will appear in a column 
of the gene identifiers page in the collated project workbook.  For example, if the user 
has the “Activating transcription factor 3” gene in his dataset with the identifiers CloneID 
428348 and Symbol ATF3, then the CloneID would be matched against the user genelists 
and found to be in the “Example –Proliferation” genelist file, while the Symbol ATF3 
would be matched against the CGAP genelists, and found to be in the 
“CGL:gene_regulation” and “CFL:transcription” genelist files.  Thus, an additional 
column named defined genelists would appear in the gene identifiers page of the 
collated project workbook, and the entry under the defined genelists column would be  
Example- Proliferation, CGL:gene_regulation, 
CGL:transcription  for this particular gene.  If the user adds or deletes a genelist 
after the data has already been collated, then the defined genelists column in the gene 
identifiers page can be updated by clicking on the ArrayTools    Utilities    
Annotate data using genelists menu item. 
 
Another purpose is to subset the dataset based on functional groupings (using the Filter 
and subset the data menu item, on the Gene subsets tab).  When the user chooses one 
or more genelists with which to subset the data, the subset of genes with a match against 
any of the gene identifiers listed in any of the selected genelists will be chosen for 
analysis. 
 
Currently there are two basic categories of genelists: user-defined genelists, and genelists 
that come pre-loaded with BRB-ArrayTools (e.g., CGAP curated genelists, BioCarta 
pathways, and KEGG pathways). 
 
 
User-defined genelists 
BRB-ArrayTools allows the user to associate genes with defined functions or pathways 
through the use of user-defined genelists.  User-defined genelists may be stored in two 
locations: 
 

1. The Genelists\User subfolder of the ArrayTools installation folder 
contains genelists which are made visible to all projects. 
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2. Each project folder also contains a Genelists subfolder which contains 
genelists which are made visible only to the specific project. 

 
Genelists placed within either of these folders are simply ASCII text files, where the 
name of the file denotes the function or pathway that is defined by the genes listed in the 
file. 
 
1. Genelists using a single gene identifier column: 
 
When the genelist contains a single gene identifier type, the first row of the file specifies 
the type of gene identifier used within the file, and must exactly match one of the 
following pre-defined labels: 
 
UniqueID 
CloneID 
ProbeSet 
Accession 
UGCluster 
Symbol 
 
Each succeeding row of the file should contain the gene identifier of a specific gene or 
clone to be included in the list.  For example genelist file named 
CellCyclePathway.txt might contain the following text: 
 
Symbol 
CDC25A 
CDK2 
CDK4 
CDK6 
CDK7 
 
The ArrayTools\Genelists\User directory currently contains some examples of 
genelists using this format, which will be used with the BreastSamples dataset that is 
provided with this package.  These example genelists are used with the example dataset, 
and may be deleted at any time by the user. 
 
2. Genelists using multiple gene identifier columns: 
 
Alternately, the genelist file may have a multi-column format, in which each row after the 
header row represents one gene, and each column represents one type of gene identifier.  
All the gene identifier types listed in the header line must still exactly match one of the 
pre-defined labels listed above.  For example, the above CellCyclePathway.txt 
might contain the following tab-delimited text instead: 
 
UGCluster  Symbol Accession 
Hs.1634  CDC25A  NM_201567 
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Hs.19192  CDK2   NM_052827 
Hs.95577  CDK4   NM_000075 
Hs.119882  CDK6   NM_001259 
Hs.184298  CDK7   NM_001799 
 
When using such a multi-column genelist format, a particular gene in the dataset is 
matched against the first unique identifier column (UniqueID or ProbeSet) only, if this 
column is present in the user defined gene list. Otherwise, it is identified to be of the 
pathway or function (in this case, the cell cycle pathway) if any of the gene identifier 
columns is found to yield a match. 
 
The ArrayTools\Pathways\Output\BioCarta directory contains some 
examples of some genelists that use this multi-column format. 
 
Some procedures, such as the Class Comparison, Class Prediction, Survival Analysis and 
Quantitative Traits Analysis tools, will automatically create new user genelists.  The 
name of the genelist produced by these analysis tools is specified by the user before 
running the analysis.  If there is already an existing genelist with the same name, then that 
genelist will be overwritten.  Some plugins also create genelists, though the user usually 
doesn’t specify the name of the genelist in those cases.  Beginning with v3.5 of BRB-
ArrayTools, the genelists produced by analysis tools and plugins will no longer be used 
for annotating genes, though they were still be available for defining gene subsets. 
 
 
CGAP curated genelists 
 
In the Genelists subfolder of the ArrayTools installation folder, there is also a 
Cgap subfolder in addition to the User subfolder mentioned above.  The Cgap 
subfolder contains curated gene lists which have been downloaded from the Cancer 
Genome Anatomy Project website (http://cgap.nci.nih.gov/Genes/CuratedGeneLists).  
These HTML files have been included with earlier versions of BRB-ArrayTools, but will 
be phased out beginning with version 3.5, since these curated genelists are not actively 
being maintained by the CGAP group. 
 
Defined pathways 
 
BRB-ArrayTools also provides defined pathway genelists in the Pathways\Output 
subfolder of the ArrayTools installation folder.  Currently, BRB-ArrayTools provides 
BioCarta and KEGG pathways obtained from the Cancer Genome Anatomy Project 
(http://cgap.nci.nih.gov/Pathways) and by using the KEGG.db R package available at 
Bioconductor 
(http://www.bioconductor.org/packages/release/data/annotation/html/KEGG.db.html), 
respectively. The user may also automatically download pathways and signatures from 
the Broad Institute/MIT. 
 
 

http://cgap.nci.nih.gov/Genes/CuratedGeneLists
http://cgap.nci.nih.gov/Pathways
http://www.bioconductor.org/packages/release/data/annotation/html/KEGG.db.html
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Automatically importing gene annotations 
 
Annotations can be automatically imported by BRB-ArrayTools if the user’s dataset 
contains a standard gene identifier type such as the UniGene cluster, gene symbol, clone, 
or GenBank accession, or if an Affymetrix chip type has been specified.  The imported 
annotations may contain the descriptive gene name, UniGene cluster, gene symbol, 
Entrez Gene ID, Gene Ontology, chromosomal location, and other functional annotations. 
 
Projects whose gene identifier column headers contain “UnigeneID”, “ClondID”, 
“Symbol”, “EntrezID” or “Accession” can be annotated by using the SOURCE 
annotation tool. This tool is found under the following menu item:  ArrayTools  
Utilities  Annotate data  Import SOURCE annotations. Starting from release 
v4.1, SOURCE annotation can be run on 8 different organisms (human, mouse, rat, 
bovine, C. elegans, fruit fly, yeast and Arabidopsis) using Clone Id, GenBank Accession 
number, Gene Symbol, Entrez ID or UniGene Cluster ID as the query key. In addition, 
for Agilent data, Illumina data whose Unique ID starts with “ILMN”, and Affymetrix 
data where custom cdf option is not selected, “ProbeID” or “ProbeSet” can also be used 
as the query key for SOURCE annotation. 
 
Affymetrix data can be annotated by downloading pre-formatted R-packages from 
Bioconductor (www.bioconductor.org) or from the custom cdf file 
website(http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF), if the 
custom cdf option is selected.Data which is imported as Affymetrix can be annotated by 
downloading pre-formatted R-packages from Bioconductor (www.bioconductor.org).  
This automatic annotation appears as an option in the Data import wizard.  If the user did 
not annotate the data at the time of collating or wishes to update the annotations that have 
already been imported into the project workbook, the user may run the Affymetrix 
annotations tool at any later time.  This tool is found under the following menu item:  
ArrayTools  Utilities  Annotate data  Import Affymetrix annotations.  The 
Affymetrix annotation R-packages are updated quarterly by Bioconductor core team, so 
the user may wish to update the local Affymetrix annotations files by running this tool 
periodically. Affymetrix annotation can only be run on the Affymetrix array chips with 
available corresponding annotation packages at Bioconductor. A complete list of these 
packages is stored in the ArrayTools installation folder (default: C:\Program 
Files\ArrayTools)\Affymetrix\GeneChipNames.txt.  
 
For Illumina expression data, the user can also choose to use the annotation R packages 
available at the Bioconductor website. In order to use these packages, the Illumina probe 
ID or Target ID is required to be converted to the “NuID” using the “lumi” package. 
Once the Ids are converted the SOURCE annotation tool cannot be applied using the 
converted Ids as the query key. This tool is found under the following menu item:  
ArrayTools  Utilities  Annotate data  Import lumi annotations.  As for the Illumina 
methylation data, annotation can be conducted using the annotation packages available at 
Bioconductor in a similar manner to the Affymetrix chips. 
 

http://www.bioconductor.org/
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF
http://www.bioconductor.org/
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The annotations downloaded by either the SOURCE annotations tool or the Affymetrix 
annotations tool will be stored in a Gene annotations worksheet inside the project 
workbook and listed as separate text files under project folder’s Annotations subfolder. 
 
The gene annotation column listed on the analysis results HTML page contains hyper 
links to the gene annotation HTML page where available annotation terms are shown for 
each gene listed in the gene table of analysis results HTML page. The gene annotation 
terms are from gene annotation text files under the project folder’s annotations subfolder, 
which are created by ArrayTools annotation utility either based on SOURCE online 
database or Bioconductor annotations R-packages for Affymetrix data. From release 
v3.7, a new hyperlink “DrugBank” is available among other gene annotation terms on the 
gene annotation HTML page. DrugBank is a unique bioinformatics/cheminformatics 
resource that combineds detailed drug data with comprehensive drug target information, 
available online at http://redpoll.pharmacy.ualberta.ca/drugbank/. 
 
Once user clicks the hyperlink “DrugBank: Query through Gene Symbol”, ArrayTools 
will link to DrugBank’s online query page using the specified gene symbol and show the 
list of drug cards returned in the Web browser. 
 
Importing gene identifiers for custom annotations 
 
When importing gene identifiers during the data import step, there is a new option added 
to convert the gene identifiers to gene annotations. By selecting this option, those data 
sets which have custom annotations can be used as gene annotations for downstream 
analysis. 
 
Importing annotations from an existing project with the identical chip type 
 
Starting from v4.3, the annotation information can be imported from an existing project 
with the identical chip type. The content of the Unique ID/ProbeSet column of the gene 
identifiers in the current project is required to be identical to the one in the existing 
project from which the annotation is imported. This can help reduce the redundancy of 
annotation on multiple projects with the same chip types. However, we do not 
recommend users to import annotations from a very old project in that they may not 
obtain the updated annotation information in their newly collated projects. This tool is 
found under the following menu item:  ArrayTools  Utilities  Annotate data  
Import annotations from an existing project.   
 
 
Gene ontology 
 
Gene Ontology is a structure, controlled vocabulary used to describe gene products in 
terms of their associated biological processes, cellular components and molecular 
functions. For more information about Gene Ontology, please browse to 
http://www.geneontology.org. The vocabularies exhibit a complex structure, represented 

http://redpoll.pharmacy.ualberta.ca/drugbank/
http://www.geneontology.org/
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as directed acyclic graphs (DAGs) or networks. The following is an example from the 
http://www.geneontology.org/doc/GO.doc.html#process . 
 
  

 
 
 
 
If the SOURCE or Affymetrix annotation tools have already been run on the dataset, then 
BRB-ArrayTools can automatically generate the complete Gene Ontology information 
for all genes in the dataset using the structure files downloaded from the Gene Ontology 
database. The Gene Ontology information is used in the Gene Set Comparison tool and 
the GO observed vs. expected ratio option available for class comparison, survival and 
quantitative traits analysis tools. From release v3.7, the pre-formatted annotation R-
package GO downloaded from Bioconductor (www.bioconductor.org) is used in the 
Gene Ontology related analysis tools within ArrayTools. 
 

http://www.geneontology.org/doc/GO.doc.html#process
http://www.bioconductor.org/
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Analyzing the data 
 
 
Scatterplot tools 
 
Scatterplot of single experiment versus experiment and phenotype 
averages 
 
It is frequently of interest to plot the log-ratios of one experiment versus the log-ratios of 
another experiment.  Generally, most of the plotted points, which represent genes with 
nonmissing values in both experiments, will line up along a 45-degree diagonal line. All 
genes that pass the filtering criteria will be used in the scatterplot, unless a genelist has 
been selected.  In v4.1.0, the scatter plot tools have been modified to be interactive and 
provide additional options like modifying the arrays plotted on the axes, highlighting 
genes from a pathway within the plot, selecting up and down regulated genes,linking 
genes in different plots and exporting genes to a genelist file. To view details of how to 
run the plots either 2-D and 3-D you can run the video available on 
http://linus.nci.nih.gov/PowerPointSlides/Scatterplot.wmv

http://linus.nci.nih.gov/PowerPointSlides/Scatterplot.wmv
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Scatterplot of phenotype averages 
 
To compare the experiments in one phenotype class versus the experiments in another 
phenotype class, BRB-ArrayTools provides a tool that plots the average log-ratio within 
one class on the x-axis versus the average log-ratio within the other class on the y-axis.  
These averages are taken on a gene-by-gene basis, and each gene is represented by a 
single point in the resulting scatterplot.  The experiment descriptor sheet must contain a 
descriptor variable containing the class labels to be compared.  A blank label in this 
column means that the corresponding experiment will be omitted from the analysis.  For 
this analysis, the column should contain only two unique class labels, and all labels 
belonging to other classes should be “blanked” out by the user. 
 
Genes that are differentially expressed between the two phenotypes will fall outside of a 
pair of outlier lines.  These outlier lines can be specified by the user to indicate genes for 
that the fold-difference between the geometric mean of the expression ratios within each 
of the two classes is greater than a specified amount. 
 
As with the scatterplot tool for a single experiment versus experiment, similar 
functionality is available. 
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Hierarchical cluster analysis tools 
 
For a given dataset, hierarchical clustering can occur in two directions: either the genes 
can be clustered by comparing their expression profiles across the set of samples, or the 
samples can be clustered by comparing their expression profiles across the set of genes.  
In BRB-ArrayTools, the data can be clustered in either one or both directions 
independently.  The objects to be clustered may be either the genes or the samples. 
 
Hierarchical clustering produces a sequentially nested merging of the genes (or samples) 
determined by a defined measure of pair-wise similarity or distance between expression 
profiles. The nested merging is represented by a “dendrogram”. At the lowest level of the 
dendrogram, each gene (or sample) is a member of an individual singleton cluster.  At the 
first step, the genes (or samples) with the two expression profiles most similar to each 
other are merged into a cluster. Then the next two most similar genes (or samples) are 
joined as a cluster. At each step, the most similar two clusters (including singleton 
clusters) are joined to form a larger cluster. This might actually involve the joining of two 
singleton genes (or samples), merging a gene (or sample) into an existing cluster, or 
merging two clusters formed at a previous step.  The “distance” between two clusters 
which merge into a single cluster can be read from the scale along side of the 
dendrogram. Clusters that are merged low on the dendrogram are similar, whereas 
clusters which are formed by mergers high on the dendrogram may be very 
heterogeneous. At the top level of the dendrogram, there is a single cluster containing all 
of the genes (or samples). At the lowest level of the dendrogram the “clusters” are very 
homogeneous because they consist of singleton genes (or samples). 
 
The tool for hierarchical clustering of genes can be used for perform a cluster analysis of 
the genes alone, or a cluster analysis of both the genes and the samples, where the output 
includes an image plot of the log-ratio values where the genes and the samples are sorted 
according to their dendrogram order.  These two tools will be discussed separately below. 
 
When performing a cluster analysis of genes or samples, BRB-ArrayTools will create a 
Cluster viewer  worksheet in the collated project workbook, which will display the 
dendrogram plot.  To continue viewing the sequence of plots, click on the Next button at 
the top of the page.  Clicking on the Next button may also bring up a prompt for the user 
to define discrete clusters from the dendrogram by “cutting” the tree, if the analyses 
selected by the users require the definition of distinct clusters.  All plots that are shown in 
the Cluster viewer are also automatically saved as JPEG files in the Output folder of 
the project folder, and may be subsequently edited using other commercially available 
graphics software. 
 
Several options are available in the clustering procedure for the distance metric and 
linkage method. 
 
 
Distance metric 
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The options currently available for the distance metric are: “one minus (centered) 
correlation” and “Euclidean distance”.  For clustering of samples only, the “one minus 
uncentered correlation” is also offered as an additional option. 
 
A Pearson (centered) correlation between two experiments X and Y is defined as 
 

Σ i=1 to N (Xi-Xavg)(Yi-Yavg) / [ (Σ i=1 to N (Xi-Xavg)2) (Σ i=1 to N (Yi-Yavg)2)] ½, 
 
where the summation index i runs through the N genes in the two experiments, and Xavg 
is the mean over all the genes in experiment X, and Yavg is the mean over all the genes in 
experiment Y.  (The formula is the same for the Pearson correlation between two genes X 
and Y, except that the summation index i would run through the M experiments in the 
dataset.)  Pearson correlation is a commonly used measure of similarity of two columns 
of numbers, and hence one minus Pearson correlation serves as a distance metric.  The 
two columns used in computing correlation contain the normalized log-ratios or 
normalized log-intensities of the genes for the two samples being compared. 
 
When the entire set of genes is not used for clustering samples, it may be appropriate to 
use the “uncentered correlation” metric.  The uncentered correlation between two 
experiments X and Y is defined as 
 

Σ i=1 to N XiYi / [ (Σ i=1 to N Xi
2) (Σ i=1 to N Yi

2) ] ½, 
 
where the summation index i runs through the N genes in the two experiments.  If the 
complete set of genes is used and the experiments have been normalized, then the 
centered correlation between any two experiments is very similar to the uncentered 
correlation between those two experiments, because the means of the two normalized 
data columns are very similar. 
 
Euclidean distance is a somewhat different metric. The Euclidean distance between two 
columns is equivalent to the root-mean-square error between the two columns; it is the 
square root of the sum of squared differences between the expression levels. The 
expression profiles of two samples have a large correlation if genes that are highly 
expressed relative to the mean in one are also highly expressed relative to the mean in the 
other. The Pearson correlation depends on the patterns of which genes are above and 
below the mean expression in each profile. Euclidean distance measures absolute 
differences between expression levels of individual genes rather than on patterns of 
whether similar genes are up or down regulated relative to each other.  The Euclidean 
distance between two expression profiles is small only if the absolute expression levels of 
the genes in the two profiles are very similar. The Pearson correlation metric is most 
commonly used, but it may be worthwhile to examine clustering also with regard to 
Euclidean distance.  
 
 
Linkage 
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The other option is whether to use the average linkage, complete linkage or single linkage 
version of the hierarchical clustering algorithm. The distance metric used defines the 
distance between the expression profiles of two samples. During hierarchical clustering, 
however, the algorithm must compute the distance between clusters formed at a previous 
step, or between a singleton and a previously created cluster. With average linkage 
clustering, the distance between two clusters is taken as the average of the distances 
between all pairs of elements, one from the first cluster and one from the second. With 
complete linkage clustering, the distance between two clusters is taken as the maximum 
distances between an element in the first cluster and an element in the second. With 
single linkage clustering, the distance between two clusters is taken as the minimum of 
these distances. Complete linkage clusters tend to be compact, with all members of a 
cluster relatively equally distant from each other. The results of complete linkage 
clusters, however, may be heavily dependent upon the elements that were used to start the 
clusters. Single linkage clusters tend to be “long and narrow” in multi-dimensional space, 
containing members very distant from each other but closer to some intermediate 
member. Average linkage clustering is most commonly used because it provides a 
compromise between the advantages and disadvantages of the other types. 
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Cluster analysis of genes (and samples) 
 
The cluster analysis of genes produces a heatmap image (a matrix of plotted varying 
colors, representing the over- or under-expression of each gene in each sample), where 
the rows in the image represent the genes, and the columns in the image represent the 
samples. The heatmap will be shown in an interactive Dynamic Heatmap Viewer tool. 
You can zoom in to show special regions of the heatmap, and mouse over to show gene 
and sample names. 

There are different metric choices. "1-Correlation" (which centers and scales the genes) 
or Euclidean distance can be used as the distance matrix. There are also different linkage 
choices. "Average linkage", "Complete linkage", or "Single linkage" can be used to 
determine the method of computing the distance between two clusters. Average linkage 
takes the average of the distances between each possible pair of genes from the two 
clusters, whereas complete linkage takes the maximum, and single linkage takes the 
minimum of the distances between each possible pair of genes from the two clusters. 

The user has the option to order the samples in the image plot based on a cluster analysis 
of the samples whose dendrogram-order will determine the plotting order of the samples, 
or based on a pre-defined experiment descriptor variable whose order will determine the 
plotting order of the samples.  If a cluster analysis of the samples is chosen, then the user 
has the option to center and scale the genes or not, and a dendrogram will be shown on 
the top of the heatmap. 

In the heatmap, the genes are sorted in dendrogram-order. The gene list and sample list in 
the heatmap orders can be exported. 
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Cluster analysis of samples alone 
 
Clustering samples is frequently performed using the entire set of genes that pass the 
established filter levels. In certain cases, the user may wish to use a special gene set for 
clustering and that is an option. There is an option for whether the genes should be 
median centered in computing the distance between pairs of samples. In most cDNA 
arrays using an internal reference channel, it is advisable to use the median gene 
centering option because it reduces the influence of the expression profile of the internal 
reference sample, which is often not itself of interest.  
 
Another option in the cluster analysis of samples is the ability to compute reproducibility 
measures.  Cluster analysis algorithms always produce clusters, but the clusters are not 
always reproducible or biologically meaningful. With gene clustering this is less of a 
problem because we know in advance that gene products are grouped into pathways. It 
may be a question whether genes in the same cluster are co-regulated, but the existence of 
biologically meaningful gene clusters is usually not open to question. This is not the case 
with clusters of samples based on disease tissue from different patients, however. The 
claim that there are “real” clusters in many cases represents the substantial claim that the 
disease is molecularly heterogeneous. Such a claim requires more evidence than the fact 
that the clustering algorithm produced clusters.  
 
Probably the best evidence for reproducibility of clusters of samples is to demonstrate 
that the clusters that patients tissues are placed in remain the same when the analysis is 
repeated using RNA independently extracted from each of the same samples. In many 
cases, however, two experiments based on independently extracted RNA samples for 
each sample is not available. BRB-ArrayTools provides some alternative, though less 
compelling, measures of the reproducibility of the sample clusters.  
 
The user may select the cluster reproducibility analysis in the dialog box for clustering 
samples. The reproducibility analysis is based on perturbing the normalized log-ratios (or 
normalized log intensities for single label oligonucleotide data) and re-clustering the 
perturbed data. Indices are computed for each cluster in the original data indicating how 
much the membership of the cluster changed based on the perturbation. The perturbation 
and re-clustering process is repeated many times (the number of repetitions is defined by 
the user) and the output is a summary over the replications of the indices of 
reproducibility for each cluster. The indices are not computed for all clusters in the 
dendrogram, but rather for all clusters defined by cutting the original dendrogram at a 
level defined by the user. A similar level is used for re-clustering the perturbed data in 
each replication.  
 
Two reproducibility indices are reported. One is called the Reproducibility or R measure 
for each cluster. The R measure is based on pairs of samples in a cluster of the data.  For 
each such pair of samples, the program computes the proportion of the replications that 
those two samples remain in the same cluster. That proportion, averaged over replications 
and over all pairs of samples in the same cluster, is the R measure for that cluster. An R 
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of 1 means perfect reproducibility of that cluster. An R of 0 means no reproducibility of 
the cluster.  
 
The other index used is the Discrepancy or D measure. Each cluster of the original data 
has a “target” cluster in a repetition of the perturbed data. The “target” cluster is that 
cluster of the perturbed data that contains the largest number of samples included in the 
original cluster. The program computes the number of discrepancies as the number of 
samples in the target cluster but not in the original cluster plus the number of samples in 
the original cluster but not in the target cluster. This number of discrepancies is computed 
for each original cluster and averaged over the repetitions.  
 
The data is perturbed using Gaussian random noise. The user can specify the variance of 
the noise if he/she has independent data on the variation over arrays of measurements of 
independent labelings and hybridization of the same RNA sample. If the user does not 
specify a value of the variance to be used, the program computes the variance of 
normalized log-ratios (or normalized log intensities) across all of the arrays for each gene 
and uses the median variance for the generation of Gaussian perturbations. This 
estimation is reasonable as long as most genes are not differentially expressed across the 
arrays. The variance measure used may include some component of biological variation, 
rather than just experimental variation. The inclusion of biological variability is desirable, 
although true biological variability would be correlated among sets of genes and the 
perturbations simulated by the program are generated independently for each gene.  
 
For more information about the cluster reproducibility analysis, see the paper “Methods 
of assessing reproducibility of clustering patterns observed in analyses of microarray 
data” by LM McShane, MD Radmacher, B Freidlin, R Yu, MC Li and R Simon in 
Bioinformatics 18:1462-1469, 2002 also available as a technical report at 
http://linus.nci.nih.gov/~brb/TechReport.htm 
 
 
Interface to Cluster 3.0 and TreeView 
 
BRB-ArrayTools now includes an interface to the Cluster 3.0 and TreeView software 
originally produced by the Stanford group (http://genome-www.stanford.edu).  This 
interface allows the user to automatically send data from the BRB-ArrayTools project 
workbook directly into a Cluster and TreeView analysis.  For instance, the user may 
choose to subset and manipulate the data within BRB-ArrayTools, but view the cluster 
analysis results in TreeView instead of using BRB-ArrayTools’ built-in clustering tools. 
 
 
Visualizationof samples 
 
Multi-dimensional scalingis a group of methods for representing high-dimensional data 
graphically in low (usually 2 or 3) dimensions and implemented in Visualization of 
samples tool. The objective in Visualization of samples is to preserve the pair-wise 

http://linus.nci.nih.gov/~brb/TechReport.htm
http://genome-www.stanford.edu/
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similarities or distances between objects in the low-dimensional graphical representation. 
Visualization of samples analysis is similar to cluster analysis in that one is attempting to 
examine the relations among samples. But Visualization of samples provides a graphical 
representation of the pair-wise similarities or distances among samples without forcing 
the samples into specific clusters.    
 
BRB-ArrayTools provides Visualization of samples analysis of the expression profiles of 
the samples.  We provide a 3-dimensional representation displayed as a rotating cloud of 
spheres in which each sphere represents a single sample. Samples whose expression 
profiles are very similar are shown close together.  The options for selecting gene sets, 
and similarity or distance metrics for the multi-dimensional scaling analysis are the same 
as for the clustering samples tool.  In general, the user will use the same selections in 
both analyses.  For more information on the options for the distance metric, please refer 
to the Distance metric section under the clustering samples tool.  When complete data is 
used (i.e., data with no missing values), then the multi-dimensional scaling analysis using 
Euclidean distance is equivalent to a priancipal component analysis.  When incomplete 
data is used (i.e., data which has missing values), then the multi-dimensional scaling 
analysis using Euclidean distance can be thought of as an approximation of a principal 
components analysis.  When Euclidean distance is used on complete data, then BRB-
ArrayTools utilizes the first three principal components as the axes for the multi-
dimensional scaling representation. The principal components are orthogonal linear 
combinations of the genes. That is, they represent independent perpendicular dimensions 
that are rotations of the gene axes (if the thousands of gene axes could be represented). 
The first principal component is the linear combination of the genes with the largest 
variance over the samples of all such linear combinations. The second principal 
component is the linear combination of the genes that is orthogonal (perpendicular) to the 
first and has the largest variance over the samples of all such orthogonal linear 
combinations; etc. The first three principal components are usually good choices for 
multi-dimensional scaling representation, though they are not necessarily the best choice 
for observing clustered structure. 
 
Options on the multi-dimensional scaling dialog box provide the user control of the 
labeling of samples in the graphical display.  
 
The 3-D rotating plot contains controls for controlling the axis and speed of rotation. The 
user may also stop the rotation and use his/her mouse (holding the button down) to brush 
some of the points to obtain identification of the samples represented by those points.  
 
The Visualization of samples dialog box also provides an option for computing a global 
statistical significance test of whether the expression profiles are clustered.  This global 
test of clustering is based upon the first three components obtained from a multi-
dimensional scaling of the samples, which is equivalent to the first three principal 
components for complete data (i.e., data with no missing values) when the Euclidean 
distance metric is used.  When computing the multi-dimensional scaling components for 
input into the global clustering procedure, the computation of the distance matrix is 
slightly different from the computation used in the rotating scatterplots.  This is to ensure 
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that the resulting multi-dimensional scaling coordinates are as analogous to principal 
components as possible, since the analogous relationship between multi-dimensional 
scaling coordinates and principal components exists only when the Euclidean distance is 
used.  If the user chooses the centered correlation metric, then the samples are first 
centered by their means and standardized by their norms, and then the multi-dimensional 
scaling components are computed using a Euclidean distance on the resulting centered 
and scaled sample data.  If the user chooses the uncentered correlation metric, then the 
samples are fist standardized by their norms, and then the multi-dimensional scaling 
components are computed using a Euclidean distance on the resulting scaled sample data.  
If the user chooses Euclidean distance as the distance metric, then there is no difference 
between the multi-dimensional scaling components used in the global test of clustering 
and that used in the rotating scatterplots. 
 
In v4.2, a new feature has been added that allows the user to specify either a pathway, 
genelist or a gene symbol for each of the axes. If a pathway/genelist is selected then all 
the genes in the dataset that match the pathway are used when computing the principle 
components. 
 
The statistical significance test is based on a null hypothesis that the expression profiles 
come from the same multivariate Gaussian (normal) distribution. A multivariate Gaussian 
distribution  is a unimodal distribution that represents a single cluster.  The global test of 
clustering can be computed only when the user has at least 30 experiments in his or her 
dataset.  More information about the global tests of clustering is available in “Methods of 
assessing reproducibility of clustering patterns observed in analyses of microarray data” 
by LM McShane, MD Radmacher, B Freidlin, R Yu, MC Li and R Simon, Journal of 
Computational Biology 9:505-511, 2002 and also available as a technical report at 
http://linus.nci.nih.gov/~brb/TechReport.htm 
 
Using the classification tools 
 
It is frequently of interest to determine whether samples of different phenotypes or 
samples collected under different conditions differ with regard to expression profile. For 
example, one class of samples may consist of breast tumors that contain BRCA1 
mutations and the other class may consist of breast tumors that do not contain such 
mutations (I Hedenfalk, et al., Gene expression profiles of hereditary breast cancer, New 
England Journal of Medicine 344:549, 2001). Another example is comparing tumors that 
respond to therapy to those that do not. There are numerous microarray studies that have 
objectives of this type. This type of problem has been called “class prediction” in 
distinction to “class discovery” because the classes, or phenotypes, of the samples to be 
compared are known in advance of the expression profiling.  
 
Cluster analysis is not usually the most effective tool for addressing class prediction 
problems. Clustering of samples is usually based on the entire set of genes represented on 
the experiment. Since the classes to be distinguished may differ only with regard to a 
relatively small subset of these genes, these differences may be dominated by variations 
among the thousands of other genes used in the clustering distance metric. Whereas 

http://linus.nci.nih.gov/~brb/TechReport.htm
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perusal of the image plot associated with clustering the samples and the genes may reveal 
some genes that appear to distinguish the classes, the visual approach is error prone 
without statistical confirmation that the clusters observed do not represent patterns 
obtained by chance from screening thousands of genes for those that sort the samples.   
 
BRB-ArrayTools contains two powerful tools for comparing expression profiles among 
pre-defined classes. They are found under the Class comparison and Class prediction 
menu items. Both tools presume that the data consists of experiments of different samples 
representative of the classes. The experiments should represent replication at the highest 
level, incorporating biological variability. That is, if we are comparing expression 
profiles of BRCA1 mutated breast tumors to non-BRCA1 mutated breast tumors, we 
need samples from breast tumors of different patients in both categories. It is not 
sufficient to compare replicate experiments of one RNA sample from a BRCA1 mutated 
tumor to one RNA sample from a non-BRCA1 mutated breast tumor. Comparing two 
RNA samples, regardless of how many experiments have been run with those two 
samples, cannot support conclusions about the influence of BRCA1 mutation on 
expression profiles. If cDNA arrays are used, the two class prediction analyses in BRB-
ArrayTools assume that a common internal reference sample has been used in all 
experiments, or that a patient-specific normal tissue reference is used for the experiments.  
 
 
Class comparison analyses 
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Class comparison between groups of arrays 
 
The Class Comparison Between Groups of Arrays Tool is used for comparing 2 or 
more pre-defined classes. The classes to be compared are defined by a column of the 
experiment design worksheet. The codes used in a column can be any set of numerical, 
character or character string codes. If an entry for a particular experiment is left blank in 
defining the column, that experiment will be omitted from the class comparison analysis. 
The ability of the user to define columns in the experiment design worksheet to specify 
class comparison analyses enables the user to import his/her complete set of experiments 
into BRB-ArrayTools once and to conduct a variety of different comparisons guided by 
different columns. 
 
Two options presented for the Class Comparison Between Groups of Arrays Tool are 
important for some situations: the ability to pair samples, and the ability to average over 
replicate experiments.  If two classes are compared and the experiments are paired, then 
the paired t-test option should be selected. For example, if experiments have been 
prepared for the primary tumor and metastatic tumors of each patient, then the paired t-
test option is appropriate and may improve the statistical power of the analysis.  If 
multiple technical replicates have been performed for some RNA samples, then the 
analysis must either be based on selection of a single replicate for each RNA sample or 
the averaging option should be used. The test is based on comparing the differences in 
mean log-ratios (or log-intensities) between classes relative to the variation expected in 
the mean differences. The variation is computed assuming that all the samples are 
independent. If there are multiple experiments for the sample RNA sample, then the 
within-class variation will under-estimate the inter-class variation in means to be 
expected. The user should either omit technically inferior experiments, arbitrarily choose 
between technically satisfactory experiments that are tightly correlated (as determined 
using the Scatterplot tool), or utilize the averaging option. A combination of these 
approaches may also be used. If the averaging option is selected, the user must specify a 
column of the experiment design worksheet that provides RNA sample identifiers so that 
the tool can identify when there are multiple experiments for the same RNA sample. 
When analyzing paired sample, samples with replicated pairing id and classification 
labels will automatically be averaged.  For further information, refer to the following 
section entitled Specifying replicate experiments and paired samples. The minimum 
number of arrays required to run the Class Comparison tool is atleast two arrays per class. 
 
The Class Comparison Between Groups of Arrays Tool computes a t-test or F-test 
separately for each gene using the normalized log-ratios for cDNA arrays and the 
normalized log-intensities for one color oligonucleotide arrays.  The F-test is a 
generalization of the two-sample t-test for comparing values among groups.  The user 
also has the option of using the random variance version of the t-test or F-test. This is 
generally advisable, particularly when the number of samples per class is small. The 
random variance tests are discussed in more detail below. They provide for sharing 
information among genes of the within-class variance in log-ratios or  log signals. The 
class comparison tool computes the number of genes that are differentially expressed 
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among the classes at the statistical significance level selected in the F-test menu and 
creates a gene list containing information about the significant genes.  
 
Several other important statistics are also computed. The tool performs random 
permutations of the class labels (i.e., which experiments correspond to which classes). 
For each random permutation, all of the t-tests, F-tests or random variance t-tests and F-
tests are re-computed for each gene. The Class Comparison Between Groups of Arrays 
Tool computes the proportion of the random permutations that gave as many genes 
significant at the level selected by the user as were found in comparing the true class 
labels. That p value provides a global test of whether the expression profiles in the classes 
are different. This test is also robust; although it uses the number of genes significant by 
the F-test as a statistic, it generates the permutation p-value of that statistic. In comparing 
classes, it is statistically easier to determine reliably whether expression profiles for pre-
defined classes are different than to reliably determine exactly which genes are 
differentially expressed among the classes. The latter problem more directly confronts the 
multiple comparison problem.  
 
For example, suppose that we select a significance level of 0.001 for including genes in 
the gene list. If there are 8000 genes on the experiment, then we expect by chance that 8 
genes on the gene list will be false positives. If we obtain 24 genes on the gene list, then 
about one third of them are false positives. If we obtain 80 genes on the gene list, then 
about one tenth of them are false positives. Traditionally multiple comparison corrections 
used in statistical analyses are much more stringent, usually requiring that the chance of 
any false positives be very small. For most microarray analyses, such conservatism is not 
appropriate. However, gene lists will not be a useful basis for further experimentation if 
they are heavily populated by false positives. For example, if we select a significance 
level of 0.01 instead of 0.001, then we expect by chance that 80 genes on the gene list 
will be false positives. Having 80 false positives makes interpretation or planning 
confirmatory experiments very problematic.  So using a relatively stringent 0.001 is 
usually appropriate. With that stringency, however, there may be a substantial chance of 
false negatives; that is, some genes that are differentially expressed among the classes 
will not be found significant at the 0.001 level. The false negative rate will depend on the 
sample size, the within-class variation among samples and the average fold difference 
between classes for the gene. Hence, although the statistical power for detecting 
individual genes is limited by the stringency needed to control the false positive rate, the 
global test of whether the classes differ with regard to expression profiles will have better 
power for establishing that the expression profiles are different. Because a single global 
test is performed, obtaining a p value of less than 0.05 is sufficient to establish that the 
expression profiles are different. Multiple comparison stringency needed for inferences 
about individual genes is not needed for the global test.  
 
The Class Comparison Tool also provides univariate or multivariate permutation tests for 
the significance of individual genes. The univariate permutation tests are computed 
separately for each gene. The proportion of the permutations of the class label giving a t-
test or F-test p value as small as obtained with the true class labels is the univariate 
permutation p value for that gene. Additionally beginning with BRB-ArrayToolsv3.4.0, if 
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the user requests that the gene list consist of those genes significant at a specified 
threshold p value, then the multivariate permutation tests are not performed. The output 
gene list table is ordered by univariate p value with the most significant genes listed first. 
One of the columns contains an estimate of the false discovery rates. The false discovery 
rate associated with a row of the table is an estimate of the proportion of the genes with 
univariate p values less than or equal to the one in that row that represent false positives. 
The method of Benjami and Hochberg is used for this estimation. This method is less 
accurate than the method used in the multivariate permutation test method, but is easily 
computed and has been widely used. For the i’th gene in the table, the estimated false 
discovery rate is m x pi / i  where pi is the univariate p value for the i’th most significant 
gene and m is the total number of genes tested (after filtering).  
Benjamini Y and Hochberg Y. Controlling the false discovery rate: a practical and 
powerful approach to multiple testing. Journal of the Royal Statistical Society B 57: 289-
300, 1995. 
 
When the univariate significance level option is selected,  the user will be given the 
option of computing univariate p values based on permutation t-statistics (or univariate F 
statistics if there are more than 2 groups) in addition to the t-tests (or F-tests). We have 
made the default not to report the univariate permutation significance levels for the 
following reason. When the number of samples is large, the permutation test will 
generally agree with the t/F test. When the number of samples is small, the permutation 
tests lack power for establishing statistical significance at stringent threshold p values.  
Additionally, the output will always contain a permutation based global test of the null 
hypothesis that there is no relationship between expression profile and class label. 
Suppose, for example, the user has requested that the gene list consist of genes with 
univariate significance levels (t/F tests) of 0.001 or less and suppose that n such genes are 
obtained. The global test will generate random permutations of the class labels and 
compute the t/F tests for all genes using the randomly shuffled class labels to compare the 
classes. The output will contain the proportion of randomly shuffled permutations for 
which there were at least n genes found that were significant at the 0.001 level or less.  
 
The multivariate permutation tests are much more effective than the univariate 
permutation tests when the number of samples per class are small because there may not 
be enough distinct permutations to give a permutational p value below a stringent level 
such as 0.001. The multivariate permutation tests are described in more detail in a later 
section. They provide the ability to control the number of genes in the “discovery list” 
that are false discoveries (i.e. false positives) and the ability to control the proportion of 
false discoveries in the discovery list. For example, the user can specify that he/she wants 
90% confidence that the discovery list contains no more than 10% false discoveries.   
 
The multivariate permutation tests are similar in spirit to the Statistical Analysis of 
Microarrays (SAM) method, although they provide tighter probabilistic control on the 
number and proportion of false discoveries (Tucher et al. 2001 in reference list).  SAM 
analysis is provided as a separate tool.  
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A new feature added to v4.5 is an option to find differentially expressed genes by 
controlling the local false discovery rate (Efron et al., 2001). This method uses an 
empirical Bayes approach for two-class or paired samples microarray data. Consider the 
two-class problem for example. For the ith gene a two-sample t-statistic ti is calculated 
and transformed to a z-value, zi = Φ-1(Fn-2(ti)) where Φ is the cumulative distribution 
function (cdf) of the standard normal distribution and Fn-2 is the cdf of a standard T 
distribution with (n-2) degrees of freedom. Let π0 be the (prior) probability a gene is null 
(non-differentially expressed). The Bayes posterior probability that gene i is null given zi 
can be expressed using Bayes theorem as :  
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where )(0 zf  is the density function of Z for non-differentially expressed genes and 
)(1 zf is the density of Z for differentially expressed genes. In this formula, )(zf  denotes 

the overall distribution of the Z values, including null and non-null genes.  The prior 
probability that a gene is null is generally close to one, so we can set π0=1 and obtain an 
approximation to the posterior probability that a gene is null given it’s Z value as 

)(/)(0 ii zfzf . This posterior probability is called the local false discovery rate. In BRB-
ArrayTools, )(0 zf  is computed from the standard N(0,1) density. The density function 

)(zf  is estimated using the nlpden function provided by Wager (2014). 
 
An option in the Class Comparison Between Groups of Arrays Tool allows the user to 
control for a potentially confounding factor while comparing classes. For example, you 
could compare expression profiles of tissue from two types of tumors while controlling 
for the gender of the patients from which the tissue was taken. You could also control for 
technical factors such as print set of the arrays.  The analysis performed is an analysis of 
variance for a randomized block design. Two linear models are fit to the expression data 
for each gene. The full model includes class variable and the block variable, and the 
reduced model includes only the block variable. Likelihood ratio test statistics are used to 
investigate the significance of the difference between the classes. The random variance 
option is also available for this analysis of variance and multivariate permutation tests are 
applied to the resulting significance levels.  
 
New to v3.8, is an option to restrict the significant genelist by a fold change criteria. This 
is available under the “options” button on the dialog. The HTML output has been 
enhanced in this release to include a heat map of the significant genes. This heat map is 
generated after clustering the significant genes and samples. The ‘grey’ color scale is 
used for single channel data and the default red-green color scale is used for dual channel 
data. The parameter to control the level of truncation can be modified in the “preference” 
option. Under the “ArrayTools” pull down menu there an option called “utility”-
>”Preference” and you can change the parameter “Heatmapthreshold”. Also included in 
this release is an  interactive plot namely ‘volcano’ plot for two classes or ‘parallel 
coordinate plot’ for more than two classes. Each point in the volcano plot for example 
represents a gene from the list of significant genes. By clicking on any point in the plot 
,the corresponding gene symbol will appear.New to v4.1 , a pair-wise comparison on a 
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class variable with more than 2 class levels will be automatically tested. The test is based 
on simple T-test. Users can change the default P-value threshold from the 'Options' 
dialog. On the HTML output, a new column 'Pairwise significant' will be included in the 
table of "Genes which are differentially expressed among classes". For example, (1,3) 
means class 1 and class 3 are different for that specific gene at the specified P-value 
threshold.  Starting from v4.4.0, the Class Comparison and Quantitative Analysis tools 
automatically create an Ingenuity IPA (Ingenuity Pathway Analysis) output file that 
contains a list of significant genes. This output file can be directly imported into 
Ingenuity IPA tool without any modifications.   
 
References:  
 
Efron, B., Tibshirani, R., Storey, J.D., and Tusher, V. Empirical Bayes analysis of a 
microarray experiment. Journal of the American Statistical Association, 96(456):1151-
1160, 2001. 
 
Wager, S. A Geometric Approach to Density Estimation with Additive Noise. Statistica 
Sinica, 533-554, 2014. 
 
 
 
Class comparison between red and green channels 
 
In v3.6, the Class comparison between red and green channels has been replaced by an 
enhanced ANOVA plug-in of log intensities. The plug-in is used for finding genes 
differentially expressed between two classes for two-color arrays without a common 
reference sample. It can also be used to compare samples of one class with the reference 
samples in the common reference design. For additional details on the plug-in you can 
refer to ANOVA on log-intensities 
 
 
 
Gene Set Comparison Tool 
 
The gene set comparison tool analyzes pre-defined gene sets for differential expression 
among pre-defined classes. The user chooses which pre-defined gene sets to analyze, 
which may be defined by user own genelists or based on Gene Ontology categories, 
BioCarta pathways, KEGG pathways, protein domains, transcription factor targets, 
microRNA targets, and the Broad Institute’s Molecular Signature DataBase (MsigDB) 
gene set collections. We will describe the Gene Set Comparison tool in the context of 
evaluating Gene Ontology gene sets.  
 
The evaluation of which GO categories are differentially expressed among phenotype 
classes is performed using a functional class scoring analysis as described by Pavlidis et 
al. (2004).  Functional class scoring is a more powerful method of identifying 
differentially expressed gene classes than the more common over-representation analysis 
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or annotation of gene lists based on individually analyzed genes. It indicates which gene 
sets contain more differentially expressed genes than would be expected by chance.  
 
First a p-value is computed for each gene in a GO category.  Then the set of p-values for 
a GO category is summarized by the LS and KS summary statistics.  For a set of N genes, 
the LS statistic  
 

LS = ∑i=1
N(-log(pi) )/N 

 
is defined as the mean negative natural logarithm of the p-values of the appropriate single 
gene univariate test. The KS statistic  
 

KS = maxi=1
N (i/N-pi),  p1 ≤ p2 ≤ … ≤ pN 

 
is defined as the maximum difference between i/N and pi, where pi is the ith smallest p-
value of the univariate test.  This is the Kolmogorov-Smirnov statistic for testing if the p-
values are of a uniform distribution. 
 
The statistical significance of a GO category containing N genes is evaluated by 
computing the empirical distribution of these summary statistics in random samples of N 
genes.  The significance values are based on testing the null hypothesis that the list of 
genes that belong to a given GO category is a random selection from the project gene list, 
against the alternative hypothesis that it contains more genes differentially expressed 
between the classes being compared. WARNING: Only use the gene set comparison tool 
with a gene list that has been subjected to non-specific filtering.  Do not use this tool with 
a list of differentially expressed genes identified by class comparison analysis in BRB-
Array Tools as the statistics are invalid". The re-sampling p-value is not based on normal 
distribution assumptions. Rather, it is based on a re-sampling procedure. For a given GO 
category, the re-sampling procedure randomly selects N genes from the list of genes that 
are selected for the analysis. Here N is the number of genes in the project gene list that 
belong to the GO category. For each selection, the associated LS and KS statistics are 
computed. The selection process is repeated 100,000 times to obtain a distribution of 
these statistics. Then, for each GO category, the LS (KS) permutation p-value is defined 
as the proportion of selections for which the LS (KS) statistic is larger then the LS (KS) 
statistics computed for the GO category with original gene list.  
 
The tests are applied separately to each GO category. A GO category is selected if its 
corresponding LS or KS re-sampling p-value is below the threshold specified by the user 
(default is 0.005). Some approximations are used to speed up computations. 
 
Results are provided as a table of selected GO categories that are ordered by the p-value 
of the LS test (smallest first). For each GO category, the table lists the unique identifier, 
the number of genes in the project gene list that belong to the GO category, and the LS 
and KS p-values. For each class, the geometric mean of gene expression (ratios) is 
provided. If only two classes are considered, the fold difference of these geometric means 
is also listed.  
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Another table lists all genes that are found in the selected GO categories. They are 
ordered by the p-value associated with the GO category. If a gene belongs to several GO 
categories, it will be listed several times, once for each GO category that contains the 
gene. 
 
 
Since BRB-ArrayTools v3.7 a new gene set analysis method, Efron-Tibshirani’s Gene 
Set Analysis (GSA, Efron & Tibshirani 2007), is implemented to use “maxmean” 
statistics improved upon the original Gene Set Enrichment Analysis (GSEA) procedure 
of Subramanian et al. (2005) for assessing signficance of pre-defined gene-sets. GSA 
uses the maxmean statistic: this is the man of the positive or negative part of gene scores 
di in the gene set, whichever is large in absolute value. Specifically speaking, take all of 
the gene scores di in the gene set, and set all of the negative ones to zero. The take the 
average of the positive scores and the zeros, giving a positive part average avpos. Do the 
same for the negative side, setting the positive scores to zero, giving the negative part 
average avneg. Finally the score for the gene set is avpos if |avpos| > |avneg|, and 
otherwise it is avneg. Efron and Tibshirani shows that this is often more powerful than 
the modified Kolmogorov-Smirnov statistic used in GSEA. The R-package GSA is 
automatically imported by ArrayTools and used for calculation.  
 
 
The Gene Set Comparison Tool can be used when user-defined gene lists are investigated 
rather than GO categories. The tool investigates the user-defined gene lists and selects 
those that have more genes differentially expressed among the classes than expected by 
chance. 
 
With pathway comparisons the genes are grouped by KEGG or BioCarta pathways, 
rather than by GO categories.  “BioCarta” is a trademark of BioCarta, Incorporated, and 
the pathways included in BRB-ArrayTools provide displays of gene interactions within 
pathways for human and mouse cellular processes.  “KEGG” (Kyoto Encyclopedia of 
Genes and Genomes) is an original database product developed by Kinoru Kanehisa and 
associates, and the pathways included in BRB-ArrayTools provide displays of 
interactions between enzymes and intermediary compounds within metabolic and 
regulatory pathways. The BioCarta and KEGG pathway gene lists used in BRB-
ArrayTools are obtained from the Cancer Genome Anatomy Project 
(http://cgap.nci.nih.gov/Pathways) and by using theKEGG.db R package available at 
Bioconductor 
(http://www.bioconductor.org/packages/release/data/annotation/html/KEGG.db.html), 
respectively. While both KEGG and BioCarta pathway gene lists are available to non-
commerical users, the KEGG pathway gene lists are not included in the software version 
for our commercial users. Starting from BRB-ArrayTools v4.4.0, a color-coded KEGG 
pathway graph functionality has been added to the Class Comparison and Gene Set 
Analysis tools. This new visualization tool provides a powerful way to discover up- or 
down-regulated genes in KEGG pathways. The color-coded graphs are given in the 
“KEGG Pathway Graphs” column of the table of gene sets in the html analysis output. 

http://cgap.nci.nih.gov/Pathways
http://www.bioconductor.org/packages/release/data/annotation/html/KEGG.db.html
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A new feature added to v3.4 allows the user the option to download and use the 
Broad/MIT pathways and signatures 
(http://www.broad.mit.edu/gsea/msigdb/msigdb_index.html). Once the user agrees to the 
terms and conditions from the Broad Institute, the relevant files get downloaded and 
parsed. From v3.7, ArrayTools extends to incorporate the complete gene set collections 
from the Broad Institute’s Molecular Signature DataBase (MsigDB). The database is 
organized into 4 broad collections: Positional gene sets, Curated gene sets, Motif gene 
sets, Computed gene sets. For descriptions of the collections, see the MSigDB release 
notes. The previous Broad/MIT gene sets available between release v3.4 and v3.6 are 
now part of the Curated gene sets collection in release v3.7. ArrayTools provides a 
convenient way for user to register and login on the Broad Institute Website and 
downloads the gene set collections for use within gene set comparison tool. Also, now the 
Broad/MIT gene sets are available for  both the Human and Rat species. However, only 
the curated and motif gene sets are available for Rat species. 
 
From release v3.6, three additional gene sets have been included, namely the 
transcription factor targets, microRNA targets, and protein domains.  
For gene sets of transcription factor targets, all genes in each gene set are either predicted 
or experimentally verified to be targets of the same transcription factor. Separate sets of 
human and mouse genes are provided. Predicted targets were obtained using the 
JASPAR2014 [1] (version 1.1.1) and TFBSTools [2] (version 1.4.0) to search the 
upstream sequences of genes (~1500bp). The sequences were obtained from the UCSC 
Genome Bioinformatics database. The search utilized transcription factor binding weight 
matrices obtained from the JASPAR [1] (version 2014) database and a minimum match 
score of 99%.  With this approach each set contains genes that are predicted to be 
potential targets of the same transcription factor. Additionally, also included are separate 
sets of genes that have been experimentally verified as targets of the same transcription 
factor. We used transcription factor binding curation information in the Transcriptional 
Regulatory Element Database (TRED) [3] to eliminate targets without any experimental 
verification.   

 
Gene sets of experimentally verified microRNA targets are also included. These 
microRNA target gene lists were created based on miRTarBase database[7]. Genes in 
each set are targets of the same microRNA. All the microRNA-target interactions were 
verified by reporter assay or western blot experiments. Separate sets of human and mouse 
genes are provided. 
 
In v3.6-Beta3, an additional family of gene sets was added from the PFAM and SMART 
Protein Domain. These are gene sets that contain genes whose protein products share a 
common domain. We used Pfam [4] and SMART [5] protein domain links in the Swiss-
Prot and TrEMBL [6] (version 9.3) databases to group genes into sets.  Proteins encoded 
by genes in each set contain the same domain.  Pfam and SMART are high quality 
manually curated protein domain databases.  Separate sets of human and mouse genes are 
provided. The reference can be found on http://linus.nci.nih.gov/techreport/Xu-
GeneSetToolkit.pdf  

http://www.broad.mit.edu/gsea/msigdb/msigdb_index.html
http://www.broad.mit.edu/gsea/msigdb/msigdb_index.html
http://www.broad.mit.edu/gsea/msigdb/msigdb_index.html
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In the previous v3.8 release, an option was added to handle redundant probe sets that 
correspond to the same gene. However, this option is now available in  the Filtering and 
gene sub-setting tool. Additionally, the HTML output now contains a heatmap for each 
significant gene set. The heat map is in a grey scale for single channel data and red-green 
scale for dual channel data. The parameter to control the level of truncation can be 
modified in the “preference” option. Under the “ArrayTools” pull down menu there an 
option called “utility”->”Preference” and you can change the parameter 
“Heatmapthreshold”. 
 
For BRB-ArrayTools v4.1, the gene set analysis tool has been extended to provide an 
option for interaction analysis.  Traditionally, gene set analysis finds sets of genes that are 
differentially expressed among defined classes of samples. For example, the classes 
might represent samples from patients who respond to a treatment versus samples for 
patients who do not respond. Interaction analysis finds gene sets for which the differential 
expression among classes is different for two pre-defined groups of samples. The groups 
might represent patients with different stages of disease. Testing for interactions is 
statistically preferable to the usual practice of comparing the gene sets significant for one 
group to the gene sets significant for the other group.  
 
The general testing procedure is as follows. We start by computing a nominal statistical 
significance value pi measuring differential expression between classes for each gene i 
using a univariate t test or random variance t test. These pi values are computed 
separately for the two groups. We would call them pi values for group 1 and qi values for 
group 2. Then for each gene set k we compute a summary statistic Pk of the pi values 
for i in k for samples in group 1 and a summary statistic Qk of the qi values for i in k for 
samples in group 2. 
 
We then test the hypothesis that the two groups are equivalent with regard to inter-class 
variation in gene expression for the genes in set k. We summarize the difference between 
groups using a test statistic Pk-Qk.  
 
To obtain the null distribution of the test statistic Pk-Qk we randomly permute the group 
labels, keeping the class labels unchanged and re-calculating P[k], Q[k] and the test 
statistic for the permuted data. We do this thousands of times and thereby tabulate 
the null permutation distribution of Pk-Qk. We calculate a two-sided significance level 
for each gene set k using these null permutation distributions. 
 
Two kinds of summary statistics have been implemented: LS test and GSA test. For the 
LS test, the summary statistic Pk is defined as the sum of the -log(pi) for i in k. For the 
GSA test, the summary statistic is the maxmean statistic as defined in Efron & Tibshirani 
(2007). 
 
References: 
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Significance Analysis of Microarrays (SAM)  
 
The Significance Analysis of Microarrays (SAM) Tool is based upon a popular 
algorithm developed by Tucher et al. (reference below) for identifying significant genes 
in microarray data (www-stat.stanford.edu/~tibs/SAM).  The SAM algorithm is one 
method of controlling the False Discovery Rate (FDR), which is defined in SAM as the 
median number of false positive genes divided by the number of significant genes.  The 
SAM algorithm is an alternative to the multivariate permuation test provided in several 
BRB-ArrayTools class comparison tools. The multivariate permutation test has a stronger 
statistical basis than SAM but we include SAM because some users are more familiar 
with it. 
 

http://nar.oxfordjournals.org/content/42/D1/D78.long
http://nar.oxfordjournals.org/content/42/D1/D78.long
http://www-stat.stanford.edu/~tibs/SAM
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First we compute for each gene a modified F-statistic (or t-statistic for two-class data) in 
which a “fudge factor for standard deviation” is included in the denominator to stabilize 
the gene specific standard deviation estimates. We order these F-statistics by sorting them 
from smallest to largest (F(1), F(2), …, F(i), …, F(n)), where n is the number of genes.  
Then we permute the class labels and re-compute a set of ordered F-statistics for each 
permutation.  The expected ordered statistics are estimated as the average of the ordered 
statistics over the set of permutations.  A cutpoint is then defined as F(i*)(∆), where i*( ∆) 
is the first index i in which the actual ordered F-statistic is larger than the expected 
ordered F-statistic by a ∆-threshold value, and is a function of this ∆.  Genes which have 
an F-statistic larger than this cutpoint are considered to be “significant”.  For random 
permutations, any “significant” genes are presumed to be false positives, and a median 
number of false positive genes can be computed over the set of permutations.  The 
median number of false positive genes is then multiplied by a shrinkage factor π, which 
represents the proportion of true null genes in the dataset, and is computed as the number 
of actual F-statistics which fall within the interquartile range of the set of F-statistics 
computed for all permutations and all genes, divided by the quantity of .5 times the 
number of genes.  If this π factor is greater than 1, then a π factor of 1 is used instead.  
The median number of false positive genes, multiplied by π and divided by the number of 
“significant” genes, yields the FDR for a given ∆ value.  
 
 In the SAM tool implemented in BRB-ArrayTools, the user specifies the desired False 
Discovery Rate (FDR) and number of permutations to run, and BRB-ArrayTools will 
automatically search through a range of ∆ values to find an optimal ∆* that yields the 
FDR specified by the user.  The “fudge factor for standard deviation” is obtained and 
fixed a priori by searching through a range of values, and finding a value which 
minimizes the coefficient of variation of the median absolute deviation of the modified F-
statistics.  More details about the algorithm may be found in Tusher, et al. (VG Tusher, R 
Tibshirani, G Chu, Significance analysis of microarrays applied to the ionizing radiation 
response, Proceedings of the National Academy of Science USA 98:9:5116-5121, 2001).   
 
The output of the SAM analysis contains the computed “fudge factor” and the optimal ∆* 

which yields the desired FDR, a list of the significant genes (defined as those genes for 
which the actual ordered F-statistic is larger than the expected ordered F-statistic by the 
∆* threshold), and a plot of the actual vs. expected ordered F-statistics.  Also, a barplot is 
given to compare the chromosomal distribution of the selected genelist to that of the 
overall geneset, and a table of observed vs. expected counts is given for Gene Ontology 
classes which are over-represented in the selected genelist. In BRB-ArrayTools v3.3 we 
have re coded the SAM algorithm in Fortran and now it is almost 8 times faster to run the 
SAM analysis. 
 
 
Class prediction analyses 
 
Class prediction 
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The Class Prediction Tool is similar to the Class Comparison Between Groups of Arrays 
Tool in that the classes must be pre-defined. The user specifies the classes by identifying 
a column of the experiment description worksheet. Blanks labels in the column indicate 
that the corresponding experiment should be omitted from the analysis. Several of the 
class prediction methods are only applicable when there are two classes. Replicate 
experiments of the same RNA sample may be averaged, by entering a sample id column 
in the experiment design worksheet.  When analyzing paired samples, samples with 
replicated pairing id and classification labels will automatically be averaged.  For further 
information, refer to the following section entitled Specifying replicate experiments and 
paired samples. 
 
For dual-label experiments, the class prediction methods are based on normalized log-
ratios relative to a common reference RNA sample. For Affymetrix GeneChipTM arrays 
the methods are applied to normalized log signal values. To reduce the dominating effect 
that genes with overall high intensity might have with some class prediction methods, the 
single-channel log-signal values are median-centered on a gene-by-gene basis for class 
prediction. This is not done for class comparison analyses because the results there are 
un-affected by median centering the genes.  
 
 
Gene selection for inclusion in the predictors  
 
Generally, the user specifies a significance level to be used for determining the genes that 
will be included in the predictors; genes that are differentially expressed between the 
classes at a univariate parametric significance level less than the specified threshold are 
included in the predictor. It doesn’t matter whether the specified significance level is 
small enough to exclude enough false discoveries, because class prediction is not really 
about discovering differentially expressed genes. In some problems better prediction can 
be achieved by being more liberal about the gene sets used as features. The predictors 
may be more biologically interpretable and clinically applicable, however, if fewer genes 
are included. As noted below in the section on cross-validation, gene selection is repeated 
for each training set created in the cross-validation process. That is for the purpose of 
providing an unbiased estimate of prediction error. The final model and gene set for use 
with future data is the one resulting from application of the gene selection and classifier 
fitting to the full dataset. 
 
Because the user generally doesn’t know whether better prediction would be obtained 
from a more stringent or less stringent threshold significance level for gene selection, an 
option is provided to develop the classifiers over a grid of significance levels for gene 
selection.  The cross-validated prediction error is computed for all significance levels in 
the grid and for all classifier functions selected. The significance level threshold used for 
gene selection can be viewed as a “tuning parameter” for the development of a classifier. 
Selecting the value of a tuning parameter to give smallest cross-validated prediction error 
should be viewed as part of the classifier determination algorithm. Providing the cross-
validated prediction error for a range of values of the tuning parameter and inviting the 
user to select the tuning parameter corresponding to the minimum prediction error is 
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somewhat dangerous however. The minimum cross-validated prediction error is a biased 
estimate of the prediction error to be expected for future data. Therefore, BRB-
ArrayTools provides a completely cross-validated estimate of the prediction error to be 
expected with independent data based on the optimal selection of the tuning parameter. 
This completely cross-validated estimate is obtained by doing a doubly nested cross-
validation; the outer loop for estimating the prediction error for a test set consisting of 
one or more samples omitted from the training data, and the inner loop used for 
optimizing the tuning parameter. This is quite computationally intensive, however. 
 
The gene selection methods described above ranks genes based on the extent to which 
they are individually differentially expressed among the classes. Some of the classifier 
functions then provide a multivariate modeling of the selected genes, but the genes to be 
incorporated in the model are selected based on univariate discrimination ability. BRB-
ArrayTools provides, however, one other option for selecting genes, namely the greedy-
pairs method described by Bo and Jonassen (Genome Biology 3(4):research0017.1-
0017.11, 2002). The greedy-pairs approach starts with ranking all genes based on their 
individual t-scores on the training set. The procedure selects the best ranked gene gi  and 
finds the one other gene gj that together with gi provides the best discrimination using as 
a measure the distance between centroids of the two classes with regard to the two genes 
when projected to the diagonal linear discriminant axis. These two selected genes are 
then removed from the gene set and the procedure is repeated on the remaining set until 
the specified number of genes have been selected. This method attempts to select pairs of 
genes that work well together to discriminate the classes. It is done in a computationally 
efficient manner. The user does have to specify the number of total genes to be selected 
(twice the number of pairs to be selected). As for all BRB-ArrayTools algorithms for 
gene selection, the process is repeated for all training sets created during the cross-
validation process.  
 
The Support Vector Machine Recursive Feature Elimination (SVM RFE) method uses an 
SVM classifier trained on the data to rank genes according to their contribution to the 
prediction performance. The SVM algorithm uses a weighted linear combination of the 
gene expressions as a discriminator between the two classes. This linear combination is 
selected to maximize the margin, or the distance between the worst classified samples 
and the discriminant plane. 
 
Initially expression of all the genes is used to train the SVM algorithm. The SVM RFE 
algorithm removes genes that have a low absolute value of weight in the linear 
combination and a new SVM classifier is developed using the remaining genes. After 
finding a new linear discriminant, the genes that have the lowest absolute weights in the 
new discriminant are removed and a new SVM classifier is developed. Etc. The process 
continues iteratively until the desired number of genes is left.  
 
Although this feature selection method uses SVM classifiers, the features can be used 
with any of the classification methods. If one is performing LOOCV, the feature selection 
is performed independently for each leave-one-out training set; and similarly for other 
cross-validation methods 



 76 

 
The Class Prediction Tool creates a multivariate predictor for determining to which of the 
two classes a given sample belongs. Several multivariate classification methods are 
available, including the Compound Covariate Predictor, Diagonal Linear Discriminant 
Analysis, Nearest Neighbor Predictor, Nearest Centroid Predictor, and Support Vector 
Machine Predictor. 
 
 
Compound covariate predictor 
 
The Compound Covariate Predictor is a weighted linear combination of log-ratios (or log 
intensities for single-channel experiments) for genes that are univariately significant at 
the specified level. By specifying a more stringent significance level, fewer genes are 
included in the multivariate predictor. Genes in which larger values of the log-ratio pre-
dispose to class 2 rather than class 1 have weights of one sign, whereas genes in which 
larger values of the log-ratios pre-dispose to class 1 rather than class 2 have weights of 
the opposite sign. The univariate t-statistics for comparing the classes are used as the 
weights. Detailed information about the Compound Covariate Predictor is available in the 
Hedenfalk reference given above or in “A paradigm for class prediction using gene 
expression profiles” by MD Radmacher, LM McShane and R Simon, A paradigm for 
class prediction using gene expression profiles. Journal of Computational Biology 9:505-
511, 2002, also available in Technical Report 01, 2001, Biometric Research Branch, 
National Cancer Institute, http://linus.nci.nih.gov/~brb/TechReport.htm).  
 
 
Diagonal linear discriminant analysis 
 
The Diagonal Linear Discriminant Analysis is similar to the Compound Covariate 
Predictor, but not identical. It is a version of linear discriminant analysis that ignores 
correlations among the genes in order to avoid over-fitting the data. Many complex 
methods have too many parameters for the amount of data available. Consequently they 
appear to fit the training data used to estimate the parameters of the model, but they have 
poor prediction performance for independent data. The study by Dudoit et al. (S Dudoit, J 
Fridlyand, TP Speed; Comparison of discrimination methods for the classification of 
tumors using gene expression data, Journal of the American Statistical Association 97:77-
87, 2002) found that diagonal linear discriminant analysis performed as well as much 
more complicated methods on a range of microarray data seta.  
 
 
Nearest neighbor predictor 
 
The Nearest Neighbor Predictor is based on determining which expression profile in the 
training set is most similar to the expression profile of the specimen whose class is to be 
predicted. The expression profile is a vector of log-ratios or log-intensities for the genes 
selected for inclusion in the multivariate predictor. Euclidean distance is used as the 
distance metric for the Nearest Neighbor Predictor. Once the nearest neighbor in the 

http://linus.nci.nih.gov/
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training set of the test specimen is determined, the class of that nearest neighbor is taken 
as the prediction of the class of the test specimen.  k-Nearest Neighbor Prediction is 
similar. For example with the 3-Nearest Neighbor algorithm, the expression profile of the 
test specimen is compared to the expression profiles of all of the specimens in the 
training set and the 3 specimens in the training set most similar to the expression profile 
of the test specimen are determined. The distance metric is again Euclidean distance with 
regard to the genes that are univariately significantly differentially expressed between the 
two classes at the threshold significance level specified. Once the 3 nearest specimens are 
identified, their classes vote and the majority class among the 3 is the class predicted for 
the test specimen. 
 
 
Nearest centroid predictor 
 
The Class Prediction Tool also offers Nearest Centroid Prediction. In the training set 
there are samples belonging to class 1 and to class 2. The centroid of each class is 
determined. The centroid of class 1, for example, is a vector containing the means of the 
log-ratios (or log intensities for single label data) of the training samples in class 1. There 
is a component of the centroid vector for each gene represented in the multivariate 
predictor; that is, for each gene that is univariately significantly differentially expressed 
between the two classes at the threshold significance level specified. The distance of the 
expression profile for the test sample to each of the two centroids is measured and the test 
sample is predicted to belong to the class corresponding to the nearest centroid.  
 
 
Support vector machine predictor 
 
The Class Prediction Tool also offers Support Vector Machine Prediction. A support 
vector machine (SVM) is a class prediction algorithm that has appeared effective in other 
contexts and is currently of great interest to the machine learning community. SVMs 
were developed by V. Vapnik (The Nature of Statistical Learning. Springer-Verlag, New 
York, 1995). We have implemented SVMs with linear kernel functions as our experience 
has been that more complex SVMs perform less well for this application. The SVM 
predictor is a linear function of the log-ratios or the log-intensities that best separates the 
data subject to penalty costs on the number of specimens misclassified. In the options 
dialog, the user can alter the default penalty cost or the cost of misclassifying a specimen 
of class 1 relative to misclassifying a specimen of class 2. We use the LIBSVM 
implementation of Chang and Lin.  
 
Bayesian compound covariate predictor 
 
The Bayesian compound covariate predictor is based on the method described by G 
Wright, B Tan, A Rosenwald, EH Hurt, A Wiestner and LM Staudt (A gene expression-
based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma, 
PNAS 100:9991-9996, 2003). After selecting the differentially expressed genes for 
distinguishing two classes in a cross-validated training set, the compound covariate is 
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computed which is the weighted average of the log expression values of the selected 
genes, with the weights being the t statistics of differential expression in that training set. 
That compound covariate can be computed for all of the samples in the cross-validated 
training set as well as for the sample(s) omitted from the training set. The values of the 
compound covariate scores of samples in each class in the training set are considered to 
have a Gaussian distribution. These are univariate Gaussian distributions. The means of 
the Gaussian distributions differ among the classes for the samples in the training set but 
the variances are assumed to be equal and a pooled estimate is used. With this model, 
using a Bayesian context, the posterior probability that the omitted sample belongs to 
class 1 can be written  
 
P(class 1 | x) = P(x | class 1) * Prior(class 1) / { P(x | class 1) * Prior(class 1) + P(x | class 
2) * Prior(class 2)}. 
 
In this formula x denotes the vector of log expression values for the omitted sample with 
regard to the genes selected for use in the classifier developed in the training set with that 
observation omitted. Because of the assumption of Gaussian distributions, P(x | class 1) is 
the univariate Guassian density function for the compound covariate score for class 1 in 
the training set and P(x | class 2) is the Gaussian density function for the compound 
covariate score for class 2 in the training set. Prior(class 1) and Prior(class 2) are the 
assumed prior probabilities for the two classes. The non-Bayesian compound covariate 
predictor is implicitly based on the assumption that the prior probabilities are each ½ . So 
if you select that option, the Bayesian compound covariate predictor with give the same 
predictions as the standard CCP. We have included that option so that users can see 
which predictions are clear-cut and which are less clear-cut. That is, if the posterior 
probability that an omitted observation is in class 1 is close to 1 or to 0, then that 
prediction is clear-cut. If the posterior probability is close to 0.5, then it’s a toss-up. We 
also provide an option of using prior probabilities that correspond to the relative 
frequencies of the classes in the cross-validated training sets. 
 
After computing the posterior probability of the class of an omitted observation we assign 
the observation to the class with the larger posterior probability. In the next release we 
will provide an option of providing no prediction if the posterior probabilities are within a 
specified threshold of 0.5.  
 
 
Cross-validation and permutation p-value 
 
For all of the class prediction methods requested, the Class Prediction Tool provides an 
estimate of how accurately the classes can be predicted by this multivariate class 
predictor. The cross-validated misclassification rate is computed and the results are 
reported. Several options are provided for cross-validation. Leave-one-out cross-
validation (LOOCV) is often used. With LOOCV, the cross-validation process omits one 
sample at a time. For each sample omitted, the entire analysis is repeated from scratch, 
including the determination of which genes are univariately significant on the reduced 
training sample. From that gene list, a multivariate predictor is constructed and applied to 
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the sample that was omitted. The program records whether that prediction was correct or 
not. This is repeated, omitting all of the samples one at a time. The output table shows 
which samples were correctly and incorrectly predicted, and the overall cross-validated 
misclassification rate. The output table is arranged so that you can see the extent to which 
the different predictors agree or disagree for each specimen left out of the training set. 
Because of the large number of candidate predictor variables, it is essential to use cross-
validation or some similar method to determine whether the model predicts accurately. 
Even with classes that do not differ in expression profiles, it is very easy to develop 
models that predict perfectly when measured in a non cross-validated manner. Such 
models would be useless for application with independent data.  For further discussion 
see Simon R, Radmacher MD, Dobbin K, and McShane LM, Pitfalls in the analysis of 
DNA microarray data: Class prediction methods, Journal of the National Cancer Institute 
95:14-18, 2003. 
 
The options page of the class prediction tool provides alternatives to LOOCV for cross-
validation. With k-fold validation, the samples are randomly partitioned into k 
(approximately) equal size groups. One of the k subsets is omitted and the classifier 
model developed from scratch using a training set consisting of samples in the union of 
the other k-1 subsets. The number of errors in using that model to classify samples in the 
subset omitted is recorded. This is done k times, omitting each of the k subsets one at a 
time and the total number of errors is obtained. That total number of errors corresponds to 
that partition into k subsets. The user can indicate that the process should be repeated 
with different random partitions into k subsets a specified number of times in order to 
improve the precision of the estimate of cross-validated prediction error. This is called 
repeated k-fold validation. When the number of samples is small, LOOCV is generally 
best. When the number of samples is large, LOOCV is very compute intensive and also 
an alternative like 10-fold cross-validation may provide a more precise estimate. The 
precision of the estimate does not generally improve greatly with repeating the partition 
more than once, but the user can experiment with more repeats to ensure that the estimate 
is stable. 
 
The options page also provides the 0.632+ bootstrap method of re-sampling for 
estimating prediction error as an alternative to LOOCV or repeated 10-fold cross-
validation. It is quite computationally intensive as it involves generating 100 (default) 
training sets by randomly selecting a subset of the samples to include. It is somewhat 
unusual in that each sample can be included in a single training set in multiple replicates. 
The 0.632+ bootstrap method was proposed by B Efron and RJ Tibshirani (Improvements 
on cross-validation: the .632+ bootstrap method, J. American Statistical Association 
92:548-560, 1997) and often performs well. When the number of samples is small, 
LOOCV is usually satisfactory, however. Cross validation and bootstrap methods for 
estimating prediction accuracy with high dimensional data have been evaluated and 
reviewed by AM Molinaro, R Simon and RM Pfeiffer (Prediction error estimation: a 
comparison of resampling methods, Bioinformatics 21:3301-3307, 2005). 
 
In addition to providing the cross-validated misclassification information, the Class 
Prediction Tool also (optionally ) provides the permutation p value for the cross-validated 
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misclassification error rate. That is, for each random permutation of class labels, the 
entire cross-validation procedure is repeated to determine the cross-validated 
misclassification rate obtained from developing a multivariate predictor with two random 
classes. The final p value is the proportion of the random permutations that gave as small 
a cross-validated misclassification rate as was obtained with the real class labels. There is 
a cross-validated misclassification rate and a corresponding p value for each class 
prediction method requested. The user inputs the number of permutations desired. At 
least 1000 permutations should be specified for a valid permutation p value on the cross-
validated misclassification rate. The user may specify only 1 permutation and will 
quickly obtain the appropriate gene list and valid cross-validated misclassification rates. 
Only the p values associated with the cross-validated misclassification rates will be 
missing. Computing the permutation p value for the cross-validated error rate is very 
compute intensive, because the entire cross-validtion process must be repeated for 
hundreds or thousands of random permutations of the class labels. Consequently, the 
default for this option is off, and in many cases it is best to not request this p value until 
later in the analysis. 
 
The set of “informative genes” , i.e. the genes that are selected as differentially expressed 
among the classes, will differ for each iteration of the cross-validation. This is because 
the entire predictor development process must be repeated from scratch for each new 
cross-validated training set. The gene list provided at the end represents the genes that are 
selected when the prediction algorithm is applied to the full dataset with no samples 
omitted. That is the predictor that would presumably be used in the future. But in order to 
properly estimate the prediction accuracy of that classifier based on the full dataset, one 
must go thru the cross-validation procedure. The final gene list contains a column labeled 
“cross-validation support.” It indicates the percentage of the cross-validation training sets 
in which each gene was selected. 100% means that the gene is so strong that it was 
selected in all of the cross-validated training sets. The initial table in the output, the one 
showing which samples are correctly and incorrectly predicted by which classifier, has a 
column indicating how many genes were selected for the cross-validated training set in 
which each sample was omitted.  
 
Note that the list of genes that are used to form the class predictors will coincide with the 
list of genes produced by the Class Comparison Between Groups of Arrays Tool for the 
same analysis between the two classes.  The only exception is when there is only one 
nonmissing value in one of the two classes, or when the variance in one of the two classes 
is zero.  In that case, the compound covariate predictor imputes the p-value for that gene 
to be 1, rendering that gene nonsignificant for that permutation or analysis, whereas the 
Class Comparison Between Groups of Arrays Tool does not.   
 
The Class Prediction Tool saves this gene list in the 
..\ArrayTools\Genelists\User folder using the genelist name specified by the 
user. 
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Prediction for new samples 
 
The Class Prediction Tool can be used to classify samples not used in the model building 
process. In the class prediction dialog, check the box labeled “Use separate test set” . You 
should create a column in your experiment descriptor worksheet that indicates which 
experiments contain samples that are to be included in the model building process 
(labeled “training”), which are to be used only for classification prediction once the 
model building is completely finished (labeled “predict”), and which samples are to be 
excluded entirely from both the training and test sets (labeled “exclude”). Predictions will 
be made for the samples labeled “predict” using all of the class prediction methods 
requested in the dialog.  
 
Ususally, you do not have a separate set of samples that you wish to withhold from the 
model building process when the analysis is first done. The model building process itself 
uses leave-one-out cross validation, and so it is not necessary to have a separate test set. 
Sometimes, however, after the model is built, you have additional samples whose classes 
you wish to predict using the previously developed model(s). We have enabled you to do 
this by re-building the model using the initial set of samples, and to then predict for the 
new samples in a combined analysis. This has been more direct for us to implement, 
rather than trying to save the originally developed model, since in cases like k-nearest 
neighbor classifiers, the entire dataset is needed for classification of new samples. 
 
 
Binary tree prediction 
 
The Binary Tree Prediction Tool is another algorithm that can be used for class 
prediction when there are more than 2 classes. The same methods (compound covariate 
predictor, diagonal linear discriminant analysis, k-nearest neighbor using k=1 or 3, 
nearest centroid, and support vector machines) form the foundation of both tools. 
Moreover, for the case of only two distinct classes, binary tree prediction is identical to 
the Class Prediction Tool (except it evaluates only one prediction algorithm at a time 
whereas Class Prediction Tool can evaluates all of them in one run). The difference 
between the algorithms lies in how they treat cases with 3 or more classes.  
 
The Binary Tree Prediction Tool does not attempt to predict the class of a sample in one 
step. Instead, at each node of a binary tree the samples are classified into two subsets of 
classes. One or both of the subsets may consist of multiple classes. The user-specified 
prediction method is applied to construct a predictor that can distinguish the two subsets 
of classes. The decision on how to split the classes in each node into two subset classes is 
determined by the split that can be accomplished with the fewest cross-validated 
misclassification errors. All possible divisions of the classes into two groups are tested, 
and the best one (with the lowest misclassification rate) is accepted as a node of the 
binary tree. If the misclassification rate associated with the node is above the specified 
threshold, the split is not accepted. In this case, the classifier will not attempt to 
distinguish between the specific classes in the group.  
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Then, each of the resulting two groups is investigated in a similar manner. The process 
stops when each group contains only one sample or none of the divisions of the group 
into the subgroups has the cross-validation misclassification error rate below the 
threshold.  
 
If cross-validation of the binary tree-prediction algorithm is requested by the user, then 
the entire process of binary tree building is repeated for each training set, and the overall 
cross-validation misclassification rate is thereby determined.  
 
Two methods of cross-validation are implemented. For leave-one-out cross-validation 
method, samples are excluded from the analysis one by one, the remaining samples used 
to create a classifier that is used to predict a class of the one sample that was set aside.  
For large data sets, the leave-one-out validation may take very a long time. The tool has 
an option of using K-fold validation instead of the leave-one-out validation.  For K-fold 
cross-validation method, samples are divided into K approximately equal groups. Then, 
groups are excluded from the analysis one by one, the samples of the remaining K-1 
groups are used to create a classifier that is used to predict a class of the samples that 
were set aside.  The user can assign K. By default, this tool uses leave-one out validation 
for the data sets with 25 or fewer arrays, and 10-fold validation if the number of arrays 
exceeds 25. 
  
Some of the algorithms in the standard Class Prediction Tool can be used even when 
there are more than 2 classes. The sets of genes used in the predictor at each node of the 
binary tree may differ, however, thus enhancing the ability of the algorithm to 
discriminate between the classes. More research is needed to investigate relative strength 
and weaknesses of the binary tree prediction algorithm when compared to the one-step 
prediction algorithms as applied to the microarray data. 
 
 
Prediction analysis for microarrays (PAM) 
 
The Prediction Analysis for Microarrays (PAM) Tool represents another method of 
class prediction, in addition to those provided in the class prediction tool. The method 
uses the shrunken centroid algorithm developed by Tibshirani et al. (PNAS 99:6567-
6572, 2002). The method is similar to the nearest centroid classifier provided in the class 
prediction tool, but the centroids of each group are shrunken toward each other by 
shrinking the class means of each gene toward an overall mean. The amount of shrinking 
is determined by a “tuning parameter” called delta. As the shrinking occurs, some genes 
will have the same value of shrunken class mean for the different classes, and hence they 
will have no effect in distinguishing the classes. For larger values of delta, fewer genes 
will have different shrunken means among the classes, and so the classifier will be based 
on fewer genes. With this approach, the number of genes included in the classifier is 
determined by the value of delta. The algorithm provides a k-fold cross-validated 
estimate of prediction error for all values of delta where k is the minimum class size. The 
tool indicates the delta corresponding to the smallest cross-validated prediction error and 
gives the list of genes that are included in the classifier for that value of delta. The 



 83 

minimum cross-validated prediction error over the range of delta values is however a 
somewhat biased estimate of the error to be expected with new data. That is because the 
selection of the optimal delta should be viewed as part of the classification algorithm and 
should be included in the cross-validation procedure. We have utilized the PAM analysis 
program developed by Tibshirani, Hasti, Narashimha and Chu, however, and it does not 
incorporate the optimization of delta within each step of the cross-validation. The bias 
may not be large in cases where the graph of cross-validated error as a function of delta is 
relatively flat, and that graph is provided as part of the output.  
 
 
Survival analysis 
 
The Survival Analysis Tools are for analyzing time to event data, where some of the 
observations are right censored; that is, the survival time for some of the individuals is 
known to be at least as large as the data recorded, and the patient was still alive at the 
time of last follow-up. The survival analysis tools can be used for any such time to event 
data, but we shall refer to such data as “survival” data. Two tools are provided. One tool 
finds genes that are correlated with survival time for patients. There are many statistical 
methods for analysis of censored survival data.  The most popular method is Cox’s 
proportional hazards model, and the Efron method of handling ties is implemented here.  
This is a regression model in which the hazard function for an individual is a function of 
predictor varE iables.  In our case the predictor variables are log expression levels.  The 
hazard function is the instantaneous force of mortality at any time conditional on having 
survived till that time.  The proportional hazards model postulates that the logarithm of 
the hazard of death is a linear function of the predictor variables, linked by unknown 
regression coefficients.  For more details see biostatistics texts or the original paper (DR 
Cox, Regression models and life tables, J.Royal Stat Soc B 34:187-202).  
 
The Survival Analysis Tool for finding genes whose expression is correlated with 
survival time fits proportional hazards models relating survival to each gene, one gene at 
a time and computes the p value for each gene for testing the hypothesis that survival 
time is independent of the expression level for that gene. Gene lists are created based on 
these p values in the same way as in the Class Comparison tools. The p values can be 
used to construct gene lists using multivariate permutation tests for controlling the 
number or proportion of false discoveries. Or the gene list can simply consist of the genes 
with p values less than a specified threshold (0.001 is default).  For more information 
regarding the multivariate permutation tests for controlling the number or proportion of 
false discoveries, please see the preceding section on Multivariate Permutation Tests for 
Controlling Number and Proportion of False Discoveries. 
 
The Survival Analysis Prediction Tool develops a gene expression based predictor of 
survival risk group. The number of risk groups and the risk percentiles for defining the 
groups are specified by the user. The survival risk groups are constructed using the 
supervised principal component method of E Bair and R Tibshirani (2004): 
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E Bair & R Tibshirani, Semi-supervised methods to predict patient survival from gene 
expression data, PLOS Biology 2:511-522, 2004). 
 
 This method uses a Cox proportional hazards model to relate survival time to k “super-
gene” expression levels, where k is selectable by the user (usually 1-3). The “supergene” 
expression levels are the first k principal component linear combinations of expression 
levels of the subset of genes that are univariately correlated with survival. The user 
specifies the threshold significance level (e.g. 0.001) for selecting the genes to be used in 
computing the principal components. The significance of each gene is measured based on 
a univariate Cox proportional hazards regression of survival time versus the log 
expression level for the gene. After selecting the genes, the principal components are 
computed, and the k-variable Cox proportional hazard regression analysis is performed. 
This provides a regression coefficient (weight) for each principal component.  
 
Having developed a supervised principal component model as described above, to 
compute a prognostic index for a patient whose expression profile is described by a 
vector x of log expression levels, the following steps are performed. First the components 
of the vector x corresponding to the genes that were selected for use in computing the 
principal components are identified. Then the k principal components are computed. 
These are just linear combinations of the components of x, with the weights of each linear 
combination having been determined from the principal component analysis described 
above. Finally, the weighted average of these k principal component values is computed, 
using as weights the regression coefficients derived from the k-variable Cox regression 
described above. That computation provides a prognostic index for a patient with a log 
expression profile given by a vector x. A high value of the prognostic index corresponds 
to a high value of hazard of death, and consequently a relatively poor predicted survival.  
 
In order to evaluate the predictive value of the method, Leave-One-Out-Cross-Validation 
is used. A single case is omitted and the entire procedure described above is performed to 
create a prognostic index. This function is created from scratch on the training set with 
the one case removed, including determining the genes to be included in the calculation 
of the principal components. Having determined a prognostic index function for that 
training set, it is used to compute a prognostic index for the omitted observation. That 
value is compared to the prognostic index for the n-1 cases included in that training set 
(assuming that there are n distinct cases available in total).  The prognostic index for the 
omitted patient is ranked relative to the prognostic index for the patients included in the 
cross-validated training set. The omitted patient is placed into a risk group based on 
his/her percentile ranking, the number of risk groups specified, and the cut-off percentiles 
specified for defining the risk groups.  This analysis is repeated from scratch n times, 
leaving out a different case each time.  
 
Having completed the computations described in the previous paragraph, we plot Kaplan-
Meier survival curves for the cases predicted to have above average risk and the cases 
predicted to have below average risk. It is important to note that the risk group for each 
case was determined based on a predictor that did not use that case in any way in its 
construction. Hence, the Kaplan-Meier curves are essentially unbiased and the separation 
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between the curves gives a fair representation of the value of the expression profiles for 
predicting survival risk.  
 
The Survival Risk Group Prediction tool also provides an assessment of whether the 
association of expression data to survival data is statistically significant. A log-rank 
statistic is computed for the cross-validated Kaplan-Meier curves described above. Let 
LRd denote the value of that log-rank statistic computed for the data. Unfortunately, this 
log-rank statistic does not have the usual chi-squared distribution under the null 
hypothesis. This is because the data was used to create the risk groups. We can, however, 
obtain a valid statistical significance test by randomly shuffling the survival data among 
the cases and repeating the entire cross-validation process. For each random re-shuffling, 
we repeat the process, create new cross-validated Kaplan-Meier curves, and compute the 
log-rank statistic for the random shuffling. This provides a null-distribution of the log-
rank statistic created in this way. The tail area of this null distribution beyond the value 
LRd obtained for the real data is the permutation significance level for testing the null 
hypothesis that there is no relation between the expression data and survival.  
 
The Survival Risk Group Prediction tool also lets the user evaluate whether the 
expression data provides more accurate predictions than that provided by standard 
clinical or pathological covariates or a staging system. The user specifies the columns of 
the experimental descriptor worksheet that defines the clinical covariate. This could be a 
single column specifying a stage or a set of columns for which a multivariate proportional 
hazards model will be developed. Kaplan-Meier curves are developed for the covariates 
without any use of the expression data. An additional model is also developed for a 
combination of the covariates and the expression data. For each cross-validated training 
set, genes are selected which add to predicting survival over the predictive value provided 
by the covariates for that training set. The principal components of those genes are 
computed and a model fitted containing the covariates and the supervised principal 
components. The survival risk group for the patient(s) omitted from that training set are 
predicted using that composite model. In that way cross-validated Kaplan-Meier curves 
are developed for the combination of covariates and expression data. A permutation 
analysis is performed in which the survival data and covariates are kept together for each 
patient but the expression profile is permuted. The cross-validated Kaplan-Meier cuves 
and log-rank statistics are generated for those permutations and finally a p value is 
determined which measures whether the expression data adds significantly to risk 
prediction compared to the covariates.  This approach to combining covariates and 
expression data is experimental and may be modified or supplemented in future releases.  
 
Version 3.6, has an additional tool called Survival Gene Set analysis. Similar to the gene 
set comparison tool, this tools finds sets of genes that are correlated with survival. A 
proportional hazards model is fitted to survival time, one gene at a time and the 
corresponding p value for the gene is computed. The LS and KS statistics are computed 
using the p-values from the proportional hazard model for each in a gene set. The tests 
are applied separately to each gene set in the category. A gene set is selected to be 
significant if its LS or KS re-sampling p-value is below the threshold specified by the 
user. Results are provided as a table of selected gene sets that are ordered by the p-value 
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of the LS test. For each gene set, the table lists the unique identifier, the number of genes 
in the project gene list that belong to that gene set, the LS p-value and the KS p-value. 
Another table lists all the genes that are found in the selected gene sets.  
 
For BRB-ArrayToolsv3.7 a new gene set analysis method, Efron-Tibshirani’s Gene Set 
Analysis (GSA, Efron & Tibshirani 2007), is implemented to use “maxmean” statistics 
improved upon the original Gene Set Enrichment Analysis (GSEA) procedure of 
Subramanian et al. (2005) for assessing signficance of pre-defined gene-sets. GSA uses 
the maxmean statistic: this is the man of the positive or negative part of gene scores di in 
the gene set, whichever is large in absolute value. Efron and Tibshirani shows that this is 
often more powerful than the modified Kolmogorov-Smirnov statistic used in GSEA. The 
R-package GSA is automatically imported by ArrayTools and used for calculation.  
 
The method described above can be used to analyze GO Categories, BioCarta pathways, 
KEGG pathways, microRNA targets, transcription factor targets, protein domains, the 
Broad Institute’s MSigDB gene sets collections as well as user-defined genelists. 
 
Quantitative traits analysis 
 
This tool finds genes that are significantly correlated with a specified quantitative 
variable (trait) such as age. Spearman or Pearson correlation coefficients are used as a 
measure of correlation and to compute parametric p-values. Most of the options are 
identical to the Class Comparison Tools. Two exceptions are the pairing of the samples 
and the random variance model that are not implemented for the Quantitative Traits 
Analysis Tool. Output of the tool is also nearly identical to that for the Class Comparison 
Tools. 
 
 
Some options available in classification, survival, and 
quantitative traits tools 
 
Random Variance Model 
 
The random variance model is found as an option in the class comparison and class 
prediction tools.   The random variance t and F tests can be selected as alternatives to the 
standard t/F tests. The standard t/F tests are based on the assumption that the within class 
variance is different for different genes and hence these variances are estimated 
separately for each gene. When there are few samples in each class, the variance 
estimates are not very accurate and the statistical power of t/F tests are poor. Some 
published methods assume that the variances are the same for all genes, and that is clearly 
a poor assumption. The random variance model takes an intermediate approach. It 
assumes that different genes have different variances, but that these variances can be 
regarded statistically as independent samples from the same distribution. Specifically, the 
reciprocal of the variances are regarded as draws from a gamma distribution with two 
parameters (a,b). The parameters are estimated from the complete set of expression data 
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and we first test that the model is accurate. In most datasets we have examined, the model 
assumption is very accurate. The usual t test for comparing expression of gene i in two 
classes is based on the statistic 
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where the numerator is the difference in the means of log expression for gene i in the two 
classes, n1 and n2 are the number of samples in the two classes, and ˆiσ  denotes the 
square root of the usual within-class variance for gene i. The within-class variance is 
computed by a weighted average of the variance of log expression in each of the two 
classes. With the usual t test, under the null hypothesis, the t value has a t distribution 
with n1+n2-2 degrees of freedom. For the random variance model, the same formula for t 
is used, except that ˆiσ  is replaced in the denominator by iσ  where 
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The quantity 1/ab is an estimate of the expected variance for the inverse gamma model. 
Consequently, 2

iσ  is a weighted average of the usual gene specific variance and the 
average variance for all the genes. The weight given to the gene specific variance is the 
total number of samples in the two classes minus two. The weight given to the average 
variance for all the genes is 2a. It can be shown rigorously that when the model 
assumption holds, that the t values computed using iσ  have a t distribution under the null 
hypothesis but the degrees of freedom is now n-2+2a. In cases where the number of 
samples n is small, this increase in degrees of freedom and the associated improvement in 
the estimation of variances results in improved statistical power for detecting 
differentially expressed genes. These results extend directly to the F distribution for 
comparing more than two classes.  For details, see G Wright and R Simon, The random 
variance model for finding differentially expressed genes, Bioinformatics (19:2448-2455, 
2003), also Technical Report,  Biometric Research Branch, National Cancer Institute, 
http://linus.nci.nih.gov/~brb ;  P Baldi and AD Long, A Bayesian framework for the 
analysis of microarray expression data: regularized t-test and statistical inferences of gene 
changes, Bioinformatics 17:509-519, 2001. 
 
Multivariate Permutation Tests for Controlling Number and Proportion of 
False Discoveries 
 
The multivariate permutation tests for controlling number and proportion of false 
discoveries is an option found in the class comparison, survival analysis, and quantitative 
traits analysis tools.  Using a stringent p<0.001 threshold for identifying differentially 
expressed genes is a valid way for controlling the number of false discoveries. A false 

http://linus.nci.nih.gov/~brb
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discovery is a gene that is declared differentially expressed among the classes, when in 
fact it is not. There are two problems with this approach to controlling the number of 
false discoveries. One is that it is based on p values computed from the parametric t/F 
tests or random variance t/F tests. These parametric p values may not be accurate in the 
extreme tails of the normal distribution for small numbers of samples. The second 
problem is that this approach does not take into account the correlation among the genes. 
Using stringent p value thresholds on the univariate permutation p values won’t be 
effective when there are few samples and will not account for correlations. We have 
implemented multivariate permutation tests that accomplish both objectives. They are 
described in detail in R Simon, EL Korn, LM McShane, MD Radmacher, GW Wright 
and Y Zhao, Design and Analysis of DNA Microarray Investigations, Springer 2003, in 
EL Korn, JF Troendle, LM McShane and R Simon, Controlling the number of false 
discoveries: Application to high dimensional genomic data; Journal of Statistical 
Planning and Inference (In Press), also Technical Report 3, Biometric Research Branch, 
National Cancer Institute, 2002; http://linus.nci.nih.gov/~brb. This approach is also 
described by Reiner A, Yekutieli D and Benjamini Y, Identifying differentially expressed 
genes using false discovery rate controlling procedures, Bioinformatics 19:368-375, 
2003). 
 
The multivariate permutation tests are based on permutations of the labels of which 
experiments are in which classes. If there are fewer than 1000 possible permutations, then 
all permutations are considered. Otherwise, a large number of random permutations are 
considered. For each permutation, the parametric tests are re-computed to determine a p 
value for each gene that is a measure of the extent it appears differentially expressed 
between the random classes determined by the random permutation. The genes are 
ordered by their p values computed for the permutation (genes with smallest p values at 
the top of the list). For each potential p value threshold, the program records the number 
of genes in the list. This process is repeated for a large number of permutations. 
Consequently, for any p value threshold, we can compute the distribution of the number 
of genes that would have p values smaller than that threshold for permutations. That is 
the distribution of the number of false discoveries, since genes that are significant for 
random permutations are false discoveries. The algorithm selects a threshold p value so 
that the number of false discoveries is no greater than that specified by the user C% of the 
time, where C denotes the desired confidence level. If C=50%, then the median number 
of false discoveries is that specified by the user. If, for example, C=90%, then you have 
90% confidence that the number of false discoveries is no greater than that number 
specified by you. In a similar manner, we determine threshold p values so that the 
resulting gene list contains no more than a specified proportion of false discoveries.  
 
The class prediction tool produces a gene list ordered with the genes having the smallest 
parametric p values at the top. The length of the gene list is determined by the types of 
false discovery control selected. Generally, we recommend using all of the options:  
univariate p value threshold (0.001); limiting number of false discoveries (10 default), 
and limiting proportion of false discoveries (0.10 default). The output tells you where to 
truncate the gene list in order to get each type of control.  
 

http://linus.nci.nih.gov/~brb
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The procedures for controlling the number or proportion of false discoveries are based on 
multivariate permutation tests. Although parametric p values are used in the procedures, s 
the permutation distribution of these p values is determined, and hence the false 
discovery control is non-parametric and does not depend on normal distribution 
assumptions.  
 
The multivariate permutation tests use the expression data much more efficiently than the 
univariate permutation tests. Consequently, we no longer recommend using the univariate 
permutation tests. We have retained the option to do the univariate permutation tests, but 
we have made the default to skip them. The multivariate permutation tests are particularly 
more effective when the number of samples is limited. In that case it may be impossible 
to obtain differences significant at the 0.001 level by a univariate permutation test, but 
quite possible to find significant genes while ensure that the number or proportion of 
false discoveries is controlled using the multivariate permutation tests.  
 
The multivariate permutation tests take advantage of the correlation among the genes. For 
a given p value for truncating an ordered gene list; the expected number of false 
discoveries does not depend on the correlations among the genes, but distribution of the 
number of false discoveries does. The distribution of number of false discoveries is 
skewed for highly correlated data. If you specify the confidence coefficient at 50%, the 
program provides the length of the gene list associated with a specified median number of 
false discoveries or given proportion of false discoveries. You may think of those gene 
lists as being expected to contain the target number or proportion of false discoveries, 
although the median and expected number are not exactly the same. Requiring 90% 
confidence that the gene list does not contain more false discoveries than the target 
amount is a more stringent condition and the associated gene lists will be much shorter 
than those based on the median. When there are few samples, the median number of false 
discoveries may be highly variable, and we recommend using the 90% confidence level.     
 
The HTML output file created by the Class Comparison Tools gives the parametric p-
value, the univariate permutation p-value (if requested), and the geometric mean ratio 
(geometric mean intensity for single color oligonucleotide arrays) in each class, and gene 
identifying information. The list is sorted by parametric significance level. If there are 
two classes, the list is in two parts; those genes down-regulated in class one relative to 
class two followed by those genes up-regulated in class one relative to class two. When 
there are more than two classes, the patterns of differential expression among the classes 
will be more varied for genes in the list. The Class Comparison Tools save this gene list 
in the ..\ArrayTools\Genelists\User folder using the genelist name specified 
by the user.  It is often useful to cluster the samples with regard to this gene list in order 
to better understand the pattern of genes across samples. 
 
Specifying replicate experiments and paired samples 
 
For the class comparison and class prediction analysis tools, the user may need to specify 
replicate experiments or paired samples, and for the survival analysis and quantitative 
traits analysis tools, the user may need to specify replicate experiments on the same 



 90 

sample.  To enter paired samples into an analysis, the user must create a descriptor 
variable on the Experiment descriptors sheet in which a unique value is given for each 
pair.  The following example shows the experiment design sheet for a paired analysis: 
 

 
Here, the pre-treatment samples are to be compared against the post-treatment samples 
for each patient.  The pairing variable is Patient_Id and the class variable to be 
compared is Treatment.  Note that both Array012 and Array013 contain post-
treatment samples for Patient006.  In that case, the average of the two experiments 
will be used for the analysis. 
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When an unpaired analysis is used, the user should make sure to specify whenever there 
are replicate experiments that have been performed using the same sample.  The 
following example shows an experiment descriptor sheet in which replicate experiments 
were performed for some of the samples: 
 

 
In this case, Sample_Id is the replicate variable to average over.  Since Array001 
and Array002 have the same Sample_Id, their average will be used for the analysis.  
Similarly, Array003 and Array004 will be averaged for the analysis.  All the other 
experiments will be used as-is, since they have no replicates. 
 
Gene Ontology observed v. expected analysis 
 
The Gene Ontology Observed vs. Expected analysis is an option found in the class 
comparison, class prediction, survival analysis, and quantitative traits analysis tools. 
 
The purpose of the Gene Ontology Observed vs. Expected analysis is to give information 
whether or not the list of significant genes selected by the analysis is different from a 
genelist randomly selected from all genes in the analysis, for a given Gene Ontology.   
This is expressed by the Observed vs. Expected ratio.  Before we define the Observed 
and Expected ratio, the term “genes in the analysis” should be clarified.  The “genes in 
the analysis” refers to the set of genes which were input into the class comparison, class 
prediction, survival analysis, and quantitative traits analysis tool, i.e. the genes passing 
the filtering criteria. 
 
The Observed is defined as the number of genes in the list of significant genes selected 
by the analysis tool which fall into a Gene Ontology category. The Expected is defined 
as the average number of genes which would be expected to fall into that Gene Ontology 
category in a subset of genes randomly selected from the genes in the analysis.  A Gene 
Ontology category is considered to consist of not only the genes which are described by 



 92 

that Gene Ontology term, but also any gene which is described by any children of that 
Gene Ontology term. 
 
For example, suppose we are computing the observed and expected counts of the Cellular 
Component term “Cytoplasm”.  We choose a set of genes, denoted as A, which has total 
N number of genes with a Cellular Component term, in the analysis of Class Comparison. 
From these N genes, we get n significant genes by certain criteria, which forms a subset 
S. In the set A, there are M genes belonging to the Cellular Component term 
“Cytoplasm” or any of the term’s children. And in the subset S, there are m genes 
belonging to the Cellular Component term “Cytoplasm” or any of the term’s children.  
Then, the Observed is m and the Expected is n×M/N. The ratio of Observed vs. Expected 
for “Cytoplasm” is m/(n×M/N), simplified by mN/Mn.  
 
The user may specify a threshold for the minimum number of genes which must be in a 
Gene Ontology category to be considered (default=5), as well as a threshold for the 
minimum Observed vs. Expected ratio to be considered (default=2) in the Options page 
of the analysis dialogs. 

 
Programmable Plug-In Faciltiy 
 
BRB-ArrayTools has a plug-in facility that enables users or methodology developers to 
extend the tool set built in to BRB-ArrayTools by providing their own tools. Users can 
then easily add-in the new tools to their version of BRB-ArrayTools and use them in the 
analysis of their data. The extensions must be written as functions in the R statistical 
programming language. R is an open source and very powerful statistical language that is 
popular with academic statistical scientists. It is in many ways a public domain version of 
S+, although each language has some features missing in the other. There is a growing 
body of R functions developed for the analysis of microarray data and the plug-in facility 
can give BRB-ArrayTools users and R software developers access to each other via 
BRB-ArrayTools.  
 
Detailed information about the creation and use of add-in R functions is described in a 
separate document entitled BRB-ArrayTools Plug In Guide. Here we will give an 
overview of the plug-in facility. In considering R plug-ins there are two perspectives, one 
for the R tool developer and one for the BRB-ArrayTools user analyzing his/her data and 
wanting to utilize plug-ins.  
 
For the plug-in user, the process of installing and accessing a plug-in is quite simple. The 
BRB-ArrayTools main menu contains a “Plug In” entry and a “Load Plug In” sub-menu 
entry. The Load Plug In dialog box askes for the path name of the plug in and it asks 
whether the user wants the plug-in added to the plug-in menu for future use. When the 
user clicks the “Load” button on the Load Plug In dialog box, the plug-in is launched and 
it will prompt the user for any further information it needs. BRB-ArrayTools will pass the 
R plug-in any data that it needs in the user’s Project Workbook that has already been 
collated by the user. The output of the analysis performed by the plug-in will be directed 
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to a file and that file will be opened either by the plug-in itself or by the user.  The user 
only needs to know the name of the plug-in. In using plug ins obtained from others, the 
user has to install the plug in in the PlugIns folder of the BRB-ArrayTools directory. 
There is a .r sub-folder for r functions, a .plug sub-folder for plug-in interfaces created by 
developers, and a .txt sub-folder for readme files created by developers.  
 
The creation of R plug-ins for BRB-ArrayTools is also relatively easy. The first step is to 
write the R function that performs the desired analysis. This function will be launched by 
the BRB-ArrayTools user as described above, and BRB-ArrayTools will pass to the R 
function the information in the active collated workbook that the function needs. The data 
will be automatically and the developer need not read any files to obtain the desired data. 
In writting the R function, the developer can name the available data objects provided by 
BRB-ArrayTools any way he/she chooses. Because the R function runs in the 
background, output from the function should be written to a file. The R function may 
open the file before terminating or the user can open the file.  
 
The second step in creating a plug-in is to create the interface between the R function and 
BRB-ArrayTools. We provide a wizard to make this step easy. The wizard enables the 
developer to tell BRB-ArrayTools what data objects the R function needs and what 
names the R function wants associated with those data objects. The wizard also enables 
the developer to prompt the user for additional data input. The input dialog will be in the 
format of the Micrososft Windows type of dialog boxes used by BRB-ArrayTools but the 
VBA coding of these dialogs will be automatically generated by BRB-ArrayTools using 
information provided by the developer in his/her dialog with the wizard. For more 
information, see the BRB-ArrayTools Plug In Guide. 
 
Pre-installed plugins 
 
Analysis of variance 
 
BRB-ArrayTools contains several ANOVA plugins: 
 
 Basic ANOVA 
 ANOVA for mixed effects model 
 ANOVA on log-intensities 
 Time series regression analysis 
 
Random forest 
 
Random forest is a class prediction method which bases predictions on majority voting of 
a collection of decision trees. 
 
Top scoring pair class prediction 
 
The top scoring pair class prediction is a method for finding the pair of genes whose 
expression best classifies samples into 2 pre-defined classes. 
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Sample Size Plug-in  
 
The Sample Size plug-in calculator provides information on the number of samples per 
class needed for identifying genes that are differentially expressed between the classes 
when controlling for the number of false positives. 
 
Nonnegative matrix factorization for unsupervised sample clustering 
 
This method has been developed as an unsupervised sample clustering of microarray 
gene expression data.  Nonnegative matrix factorization for unsupervised sample 
clustering 

 



 95 

Further help 
 
Some useful tips 
 
Utilities 
 
Preference Parameters 
 
To modify some of the default preference parameters, from the “ArrayTools” pull down 
menu, select the option “Utillities” and the choose the “Preference”. The allows you to 
turn and off the following parameters: 
Variable Value Comments 
LowessSpan 0.4 #Span for lowess parameter (proportion of data used for each point 
in lowess curve). 
ShowWelcome  True #Shows the Welcome screen when BRB-ArrayTools is 
loaded. 
DebuggerOn True #Turns on debugger which points to offending line of code. 
PluginsUpgrade 3.1 #Plugin files have been upgraded to the structure of the version 
listed in this parameter. 
CheckedUpdate 3/19/2009 #Date of last update check. 
UpdateInterval   7 #Number of days to wait before checking for updates again.  
Use FALSE to turn off updates feature. 
DendroWidthG    580  #Pixel-width of dendrogram for clustering genes (in 
pixels).  (Or enter "default" to use default value of 580.) 
DendroHeightG   400 #Height of dendrogram for clustering genes (in pixels).  (Or enter 
"default" to use default value of 400.) 
DendroWidthE  Default #Pixel-width of dendrogram for clustering 
experiments (in pixels).  (Or enter "default" to use default values customized to plot.) 
DendroHeightE  Default #Height of dendrogram for clustering experiments 
(in pixels).  (Or enter "default" to use default values customized to plot.) 
ChangeRServer False #If TRUE, then use RExcel.xla instead of RServer.xla. 
PercentMissing  50 #If total % missing > PercentMissing, then pass data as 
character not numeric, to avoid time spent in converting missing values. 
Verification True #If TRUE, then turn on the data import, filtering, and 
normalization error detection. 
RetainTempFiles False #If TRUE, then turn on to retain the temporary files in the 
working path folder. 
StopCheckAnnotationsFolder False #If TRUE, then stop checking if project contains 
annotations folder. 
Heatmapthreshold 3 #Truncate parameter for log-ratio or intensity of heatmap. 
These parameters apply to analysis related heatmaps for Class Comparison, Geneset 
Class Comparison, and Time Course Analysis tools. For the dual channel data, the 
“Threshold log-ratio = X” is the thresholding parameter for the log-ratio values. Any 
values larger than X will be assigned to be X, and any values less than –X will be 
assigned to be –X. Minvalue is the color for the minimum value, MidValue is the color 
for the middle value (usually 0), and MaxValue is the color for the maximum value.  
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For the Single channel data, the “Threshold log-intensity percentile”, a lower percentile 
from X1 to a higher percentile X2 are used for thresholding the data. The program will 
calculate the intensity values I1 and I2 of the percentiles X1 and X2. Any value larger 
than I2 will be assigned to be I2 and any values less than I1 will be assigned to be I1. 
MinVaule is the color for the minimum value, and MaxValue is the color for the 
maximum value. 
 
 
Download packages from CRAN and BioConductor 
 
If you plan to run various analysis tools on your collated project data offline (without an 
internet connection), we have added a utility feature to pre-download all the packages 
necessary to run various analysis tools and plug-ins from the CRAN site as well as 
Bioconductor. You must be connected to the internet to run this utility. The following is a 
list of packages that get downloaded. 
Packages downloaded from BioConductor are: 
affy 
annotate 
annaffy 
gcrma 
globaltest 
GO.db 
lumi 
ROC 
simpleaffy 
 
Packages downloaded from CRAN: 
bitops 
car 
gplots 
GSA 
impute 
lars 
matlab 
pamr 
randomForest 
R2HTML 
RColorBrewer 
XML 
Xtable 
 
Gene color coding for KEGG human disease pathways: 
 
This utility uses gene symbols to map the genes in the KEGG human disease pathways, 
and shows the color coding of the intensities, ratios, or fold changes of the genes on the 
pathway diagrams. Now it works for 76 human disease pathways from the website: 
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http://www.genome.jp/kegg/pathway.html. Genes on the colored pathways have links for 
detailed information.  
 
The utility has three options: Sample name, Class variable, and Import data. First, you 
can select a sample name from the current project. The utility will color-code the sample 
log expression values (intensities, or ratios) of the filtered genes, and map them to a 
human disease pathway. Second, you can select a two-category class variable from the 
current project. The utility will calculate the average log expression values (intensities, or 
ratios) of the filtered genes in each class, and the difference is the log fold change for 
each gene. Then the utility will color-code the log fold change values of the filtered 
genes, and map them to a human disease pathway. Third, the utility works for imported 
data. The imported data should be in a text file, and need to have a Gene Symbol column, 
and a log Intensity/Ratio/Fold Change column with tab delimited. The utility will color-
code the log values for all the genes in the imported file, and map them to a human 
disease pathway. 
 
 
Excluding experiments from an analysis 
 
Some of the analyses within BRB-ArrayTools can be run on a subset of the experiments 
in the collated project workbook.  For the hierarchical clustering and multidimensional 
scaling tools, an experiment will be excluded from the analysis if it has a blank label 
within the designated experiment descriptor variable.  For the scatterplot of phenotype 
averages and the classification tools, an experiment will be excluded from the analysis if 
it has a blank label within the selected phenotype class variable. 
 
 
Extracting genelists from HTML output 
 
Sometimes the user may need to extract columns of data from the HTML tables that are 
produced by BRB-ArrayTools.  For example, the user might wish to include the HTML 
genelist table produced by the classification tools in a Word document for publication.  
Or the user might need to extract the t-values and midpoint values from the compound 
covariate predictor output for use in classifying new samples.  Or the user might wish to 
sort the genelist table by a particular column. 
 
HTML tables can be easily converted to tables in Word or columns in Excel.  You can do 
this in one of two ways.  One way is to select the HTML table by left-clicking and 
dragging the mouse over the entire table, and then copying to the buffer through  Edit    
Copy  (or Ctrl-C).  Then open up a blank Word or Excel document, and paste the 
contents of the buffer into the document through  Edit    Paste  (or Ctrl-V). 
 
Another way is to open the HTML file within Word or Excel using the  File   Open  
menu.  In the  Open  dialog box, go to the  Files of type  field and select  HTML 
Document  (in Word or Excel 97) or select either  All Microsoft Excel Files  or  Web 
Pages  (in Excel 2000).  Now browse for the HTML document which you would like to 
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convert.  Once the table has been converted to a Word table or to cells within Excel, it is 
very easy to add to, delete, or edit any of the rows or columns in the table.  Note that all 
hyperlinks are preserved when converting HTML tables to Word or Excel. 
 
 
Creating user-defined genelists 
 
The best utility to use for creating user-defined genelists is Notepad.  This is because 
Notepad always saves files as ASCII text files, without adding the hidden formats into 
the file which some word processors do.  To open Notepad, click on  Windows Start 
Button    Programs    Accessories    Notepad. 
 
To save any list of genes from a column of cells within Excel, simply select the cells by 
left-clicking and dragging your cursor over the cells, and copying to the buffer through  
Edit    Copy  (or Ctrl-C).  Then open up a blank text file in Notepad, and paste the 
contents of the buffer into the text file through  Edit    Paste  (or Ctrl-V).  It is 
possible to save the list of selected genes from a BRB-ArrayTools scatterplot in this way. 
 
To save any list of genes from an HTML table, first convert to Word or Excel, then copy 
the desired column of gene identifiers into a Notepad document.  Of course, the genelists 
from the Class Comparison or the Compound Covariate Predictor tool are already 
automatically saved into the  ..\ArrayTools\Genelists\User  folder.  
However, the user may be interested in saving the genes from an HTML table for 
purposes other than to enable subset analyses within BRB-ArrayTools, since the HTML 
tables report the genes in sorted order by p-value or another criterion. 
 
A new option in BRB-ArrayToolsv3.4.0 called “Create Genelist using GO” allows the 
user to enter a search string for Gene Ontology terms. The output from the search, is a 
gene list file which will contain the list of unique Ids where the search criteria term 
matches the GO description. The user can name the gene list file appropriately and this 
list gets saved in the “Genelists” folder under the user’s project folder. The genelist so 
created will now be available for the user to use by running the GeneSubset option from 
the Filter and Subset dialogue. 
 
Another utility feature added in BRB-ArrayTools 3.6, is called “create genelist”-
>”Correlated with a target gene”. This utility is for finding genes positively and 
negatively correlated with a target gene above a minimum threshold value. The inputs are 
the type of gene identifier, the value of gene identifier for a target gene, the minimum 
correlation threshold (default 0.5), and the name for the output genelist folder. This utility 
uses only the genes that have passed the filtering criteria. The output is a genelist file 
containing multi-column identifiers for those genes that are correlated above the specified 
correlation threshold with the target gene. This output generates a HTML table showing  
the positive and negatively correlated genes and generates corresponding genelist files 
that are  placed in the project folder’s “genelists” subfolder. The resulting genelist will be 
used with in the “Gene subsets” of the “Filter and subset the data” option. If duplicates of 
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a target gene are found, the averaged value for the target gene will be used in computing 
correlation with every gene else.  
 
DrugBank information for a genelist: 
 
New to v4.1.0, is the option to obtain drug names based on any genelist. The output from 
this a list sorted by either gene names or drug names. The link that the data is obtained 
from is  http://www.drugbank.ca/. The DrugBank database is a unique bioinformatics and 
cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological 
and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and 
pathway) information. The database contains nearly 4800 drug entries including >1,350 
FDA-approved small molecule drugs, 123 FDA-approved biotech (protein/peptide) 
drugs, 71 nutraceuticals and >3,243 experimental drugs. Each DrugCard entry contains 
more than 100 data fields with half of the information being devoted to drug/chemical 
data and the other half devoted to drug target or protein data.  
 
Drug Gene Interaction database information for a genelist: 
 
Starting from v4.4.0, another utility feature called “Drug Gene Interaction database 
information for a genelist” has been added in BRB-ArrayTools. Upon submitting a list of 
genes, a user can utilize this tool to search the Drug Gene Interaction Database (DGIdb, 
http://dgidb.genome.wustl.edu/) for the Drug-Gene interaction information on the genes 
of interest. DGIdb is a research resource that can be used to search candidate genes in 
various source databases for known and potential gene-drug interactions. The source 
databases used in DGIdb for drug-gene interactions include CancerCommons, 
ClearityFoundationBiomarkers, ClearityFoundationClinicalTrial, DrugBank, 
MyCancerGenome, MyCancerGenomeClinicalTrial, PharmGKB, TALC, TEND and 
TTD. An HTML output file containing the drug-gene interaction information on the list 
of user-submitted genes is generated after this utility is run.  
 
 
Affymetrix Quality Control for CEL files: 
 This utility which generates quality control plots and RNA degradation plots has been 
included in v3.5.To run the utility, you must open a project that has been collated using 
.CEL files and select the column from your experiment descriptor file that you wish to 
use as the column defining your arrays. This utility uses functions from the Bioconductor 
libraries ‘simpleaffy’ and ‘affy’. The HTML output contains plots and associated tables. 
The main objective is to identify any outlier arrays within a class. The output contains 
Quality Control(QC) plots for each class variable for the following metrics: Scale factor, 
average background noise, percentage of genes called present, 3’to 5’ ratios for GAPDH 
and B-actin ratios. 
 The typical recommendations are as follows: 
GAPDH 3’:5’ ratios: The ratio values should be around 1, values that are larger than 
1.25 are colored red. 

http://www.drugbank.ca/
http://dgidb.genome.wustl.edu/
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B-actin 3’:5` ratios: These ratios should be 3, values that are smaller than 3 are colored 
in blue and values that are above 3 are colored red as it may indicate an issue with labeled 
RNA. 
Scale Factor: The blue strip in the image represents the range where the scale factors are 
within 3-fold of the mean for all the chips. If any scale factors fall outside this range they 
are colored red. 
Average Background: This value is represented by a number besides the image and 
these values should be consistent with each other. Large variations in these values are 
colored red, otherwise in blue. 
Percentage Present: The percentage of genes called present is shown besides the image 
and these values too should be consistent with each other.  
Additionally, a table of the QC metrics for each array is presented below the plot. In 
addition to the QC metric plot, a RNA degradation/digestion plot is also provided for all 
the arrays within the class. The objective of this plot is to assess the quality of the RNA 
used in each sample. The plot, shows the expression as a function of 5’-3’ position of 
probes. For each array within each probeset , probes are arranged by their proximity to 
the 5’ end of the gene. The plot shows the average intensity of the probes classified by 
this order. Only the PM probes are taken into account for this plot. Each line represents 
an array and usually we expect the lines to be parallel. Plots showing lines with different 
trends could indicate possible differences in laboratory processing. Below the plot, a table 
containing the slopes and p-values of the slopes is also provided. 
For additional details refer to 
http://bioconductor.org/packages/1.8/bioc/vignettes/simpleaffy/inst/doc/simpleAffy.pdf 
 
Using the PowerPoint slide to re-play the three-dimensional rotating 
scatterplot 
 
When running the three-dimensional rotating scatterplot, users who have PowerPoint 
2000 or later installed will also have a PowerPoint file created in the Output folder of 
the project folder.  The name of this file is specified on the Options page of the 
Multidimensional scaling of samples dialog, and is named MDS.ppt by default, unless 
the user changes this name.  To play the three-dimensional rotating scatterplot from the 
PowerPoint file, open up the PowerPoint file, and choose to Enable macros when 
prompted.  Once the slide is opened, go into Slide Show mode by clicking on the View 
 Slide Show menu item in PowerPoint.  Once you are in Slide Show mode, then click 
on the Click Here to Display link to view the rotating scatterplot.  You may edit the slide 
in Edit mode (such as changing the title, removing the warning label, or changing the 
caption on the link by right-clicking on it and opening the Properties dialog).  However, 
the Click Here link will open up the rotating scatterplot only if you click on it during the 
Slide Show mode and not during the Edit mode.  To go into the Edit mode, click on the 
View  Normal menu item in the PowerPoint menu. 
 
Users who do not have PowerPoint 2000 or later will not have this PowerPoint file 
created for them.  However, these users may still save a screenshot of the scatterplot or 
re-play the rotating scatterplot from a DOS command, as described below.  To save a 
still-shot of the screen, simply press the PrintScreen button on the keyboard, then go into 

http://bioconductor.org/packages/1.8/bioc/vignettes/simpleaffy/inst/doc/simpleAffy.pdf
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any application which has image editing capabilities, and paste the screenshot (usually by 
pressing the Ctrl-V key combination). 
 
 
 
Stopping a computation after it has started running 
 
Sometimes a user may want to cancel a computation after it has started running. If the 
computation is running in Excel, then the user may stop the computation from within 
Excel by pressing the ESC key, or by pressing the Ctrl-Break key combination. If the 
computation is running as a batch job within an MS-DOS window, then the computation 
may be cancelled by simply closing the MS-DOS window. 
 
 
Automation error 
 
An automation error is an error which occurs when one of Excel’s built-in functions is 
unable to run.  This error often occurs at the save step, when the project workbook is 
unable to be saved to the disk for some reason.  One possible cause for this error is that a 
user’s disk may already be full.  However, many users have encountered this error during 
the collation step, even when their disks had not been full.  The exact cause of this error 
is not yet known, as the error is often not reproducible on another computer system 
running the same software when collating the same dataset.  However, a workaround 
does exist which enables users to continue using their project workbook even when this 
error does occur. 
 
The project workbook is saved to disk twice during the collation step.  Before the 
collation process actually begins, a template project is saved to disk, containing all the 
proper worksheets but no data.  After the collation process is completed, the project is re-
saved to the disk, overwriting this original template.  When the automation error occurs 
during the second save step, the user can often still open the original template project 
workbook and use it to regenerate all the data.  Because the collation process did finish 
before the automation error at the second save step, all the data has already been written 
to binary files in the project folder.  After opening the empty project workbook, the user 
may force the project to regenerate all the data by re-filtering the project using a slightly 
different set of spot filtering criteria (for example, by changing the intensity threshold).  
The re-filtering process will regenerate all the data which had already been written to 
binary files during the collation step, and the user may then change the filters back to 
their original settings, re-filter again, and then save the project workbook manually. 
 
 
Excel is waiting for another OLE application to finish running 
 
Sometimes when a user is running a large computation (usually occurs if the user is 
running a hierarchical clustering of more than approximately 4000 genes), the user may 
receive the following message from Excel:  “Excel is waiting for another OLE 
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application to finish running.”  This message is NOT an error, but merely informing the 
user that the computation has not yet finished.  Because the actual computation for the 
analysis may be performed in R (such as the case for hierarchical clustering), the Excel 
application must wait until the computation has finished in R before Excel can continue 
on.  When this message appears, the user can ignore the message and just keep waiting 
for the computation to finish.  Even if the user does not click OK to dismiss the message, 
the message will disappear on its own.  Or if the user does not want to wait, then the user 
may choose to stop the computation, by following the instructions given above in the 
section Stopping a computation after it has started running. 
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Collating data using old collation dialogs 
 
Prior to v3.1, BRB-ArrayTools used collation dialogs in which users must enter the 
format specifications directly, primarily by specifying column numbers where data 
elements were to be found.  The collation dialogs used in previous versions are no longer 
necessary, since v3.1 now has a data import wizard which automatically reads the input 
files and displays the columns which are to be specified.  However, the old collation 
dialogs are still supplied with BRB-ArrayTools v3.1 for backward-compatibility. 
 
Example 1 - Experiments are horizontally aligned in one file 
 
Format of the raw data files 
 
In this file format, the expression data from each array is represented by a block of 
columns in the data file, and the array data blocks are horizontally aligned in one file.  
There may be other columns, such as gene identifiers, that precede the array data blocks.  
However, there should be no other miscellaneous data columns following the last array 
data block.  If there are any other data columns following the last array data block, then 
the user should either delete those last columns or move them to the beginning of the file 
so that they precede the first array data block. 
 
The file may be a tab-delimited ASCII text file, or an Excel spreadsheet (a single 
worksheet within an Excel workbook).  If the file is an Excel spreadsheet, then BRB-
ArrayTools will automatically convert it to text format.  The following figure shows an 
example of a horizontally aligned expression data file with four columns in each data 
block: 
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The following figure shows the experiment descriptor file.  The experiment descriptor 
file describes the samples used in the dataset.  This particular dataset is a replication 
study.  Each row of the experiment descriptor file describes the sample on one array.  The 
order of the experiments listed in the experiment descriptor file are assumed to 
correspond to the order of the array data blocks in the expression data file.  Thus, array 
data block #1 will be matched with HSOC2px-10 in row 2 of the experiment descriptor 
file, array data block #2 will be matched with HSOC2px-11 in row 3 of the experiment 
descriptor file, etc.  The Reverse descriptor in column D indicates the experiments on 
which the fluors were reversed. 
 

 
 
 
Collating parameters 
 
There are two ways in which the data may be specified in the collating dialog form.  One 
way is to enter the red and green signal columns, and let BRB-ArrayTools compute the 
log-ratio.  Another way is to enter the log-ratio column directly.  The user is not 
permitted to enter both the log-ratio and the dual-channel signals, since the log-ratios can 
be computed once the dual-channel signals are entered.  It is preferred that the dual-
channel signals be entered (if they are available) rather than the log-ratio, since BRB-
ArrayTools can use the signal intensities for filtering, lowess (intensity-based) 
normalization, and creating diagnostic scatterplots.  If the log-ratios are entered directly, 
then these functionalities are not available to the user.
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The figure below shows the collating parameters which would be entered on the 
Expression data page of the collating dialog box to describe the horizontally aligned 
data file shown above, if the signal intensities were to be entered rather than the log-ratio.  
The user should browse for or type in the name and path of the file that contains the 
expression data.  Note that the column designations of the red, green, and spot flag 
variables are relative to the first column of the array data block.  In other words, a 
designation of “4” for the spot flag column means that the spot flag is in the fourth 
column of each array data block.  Any extra columns within the array data blocks that are 
not specifically designated in the Data variables section of the collating dialog box, such 
as the third column (the log-ratios), will be ignored during the collating step.  Since BRB-
ArrayTools automatically calculates the log-ratio from the red and green signals, it is not 
necessary to enter the log-ratios as input. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The figure below shows the 
collating parameters which 
would be entered on the 
Expression data page of the 
collating dialog box to 
describe the horizontally 
aligned data file shown 
above, if the log-ratios were 
to be entered directly instead 
of the signal intensities. 
 
 



 106 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The figure below shows the collating parameters which would be entered on the Gene 
identifiers page of the collating dialog box.  In this case, the gene identifiers are found in 
the same rows alongside the expression data, not in a separate file.  The gene identifiers 
are specified by their column designation under the Column format section, which are 
given  relative to the file specified in the File section. 
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The figure below shows the collating parameters which would be entered on the 
Experiment descriptors page of the collating dialog box. The user should browse for or 
type in the file and path name of the experiment descriptor file.  In this case, any array 
with a label of  1 in column D of the experiment descriptor file would have its intensity 
ratios “flipped” so that the log-ratios in that array are “reversed” to have the opposite 
sign. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Filter dialog box, which allows the user to change the default filtering parameters, 
will be reviewed in a separate section of this manual.  After all the collating and filtering 
parameters have been entered, the user will be prompted to enter a name for the project 
folder to be used exclusively for this dataset, and to enter a name for the collated project 
workbook to be created. 
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Example 2 - Experiments are in separate files 
 
Format of the raw data files 
 
In this file format, the expression data from each array is stored in a separate file.  All 
files must have the same column format, though the genes contained in the rows of the 
separate files may differ.  Each file may be a tab-delimited ASCII text file, or an Excel 
spreadsheet (a single worksheet within an Excel workbook).  If the files are a Excel 
spreadsheets, then BRB-ArrayTools will automatically convert them to text format.  The 
BreastSamples dataset enclosed with this software package is an example of this data 
format.  This dataset was obtained from published data by Ross, et al. 
 
To view the BreastSamples dataset, unpack the BreastSamples.zip  file using 
WinZip or other utility.  When you unpack the dataset, you should get a folder called 
BreastSamples, containing a gene identifier file called GeneIds.xls, an 
experiment descriptor file called ExpDesc.xls, and a subfolder called 
ExpressionData.  Inside the ExpressionData subfolder, there are thirteen 
expression data files.  The expression data files in this dataset are already aligned. 
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The following figure shows the format of each of the expression data files: 
 

 
 
The following figure shows the format of the gene identifiers file: 
 

 
The following figure shows the format of the experiment descriptors file: 
 

 



 110 

Collating parameters 
 
The following three figures show the collating parameters that would be entered on the 
Expression data page, Gene identifiers page, and Experiment descriptors page of the 
collating dialog box, for collating the BreastSamples data using SPOT as the unique 
gene identifier that links the expression data with the gene identifiers. 
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The Filter dialog box, which allows the user to change the default filtering parameters, 
will be reviewed in a separate section of this manual.  After all the collating and filtering 
parameters have been entered, the user will be prompted to enter a name for the project 
folder to be used exclusively for this dataset, and to enter a name for the collated project 
workbook to be created. 
 
 
Reporting bugs 
 
To make comments or ask questions of a general nature, please post a message on the 
message board at the BRB-ArrayTools website: 
 
http://linus.nci.nih.gov/BRB-ArrayTools.html 
 
Bug reports should be e-mailed to the BRB-ArrayTools Development Team at: 
arraytools@emmes.com.  Because many emails get automatically deleted as spam, please 
follow these guidelines to ensure that your email gets past the filter: 

1) Always include an appropriate subject header which indicates the topic of the 
email. 

2) If you are sending attachments, then please send them in a SEPARATE email 
from the main text, so that we will know in case the email with attachments gets 
deleted by our virus filter. 

 

http://linus.nci.nih.gov/BRB-ArrayTools.html
mailto:arraytools@emmes.com
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Due to limited resources, we cannot guarantee that we will be able to diagnose and fix all 
bugs reported by users.  However we do try our best to respond to users within a 
reasonable time, and to advise the user or fix the problem whenever we can. 
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